線性代數
教材:"Linear Algebra and Its Applications" (4th ed) by Gilbert Strang
參考書籍:

重要觀念重申   &   指定練習    
(在下一個 link 還沒出現以前,最後一個 link 仍會增修!)


指定練習
第一章
§1.1 (none)
§1.2 # 1,2,3,5,7,8,9,11,13,16,17,18,20,21,22,23
§1.3 # 1,3,4,6,7,9,10,13,14,15,16,17,19,20,22,23,25,26,27,30,31,32
§1.4 # 3,4,6,9,11,12,13,14,15,19,21,23,26,27,28,30,32,37,38,39,40,41,43,45,48,52,55,57
§1.5 # 2,3,5,6,8,11,13,15,18,19,20,21,24,26,30,32,33,38,41,42,44,46,48
§1.6 # 2,3,6,8,11,13,15,17,19,20,21,22,23,24,25,30,32,41,49,51,57,58,68
第二章
§2.1 #1,2,4,6,8,9,10,13,14,16,17,19,25,27,29
§2.2 #3,5,10,14,15,16,19,21,22,27,31,38,41,43,48,52,53,54,56,57,61,64,67
§2.3 #3,5,6,9,10,14,16,17,19,21,25,27,28,30,32,33,36,37,41
§2.4 #4,8,9,10,15,16,17,21,23,25,27,32,37,40
§2.6 #4,5,6,11,13,16,17,23,25,26,28,29,30,31,35,36,40,43,47,48,50
期中考到此 (edited on November 2, 2009)
第三章
§3.1 #6,12,15,16,19,20,25,26,33,37,38,40,42,43,45,52
§3.2 #2,7,8,13,14,18,20,24,25
§3.3 #7,8,10,14,16,17,21,22,25,27,29,32,33,36
§3.4 #2,3,7,8,12,13,14,17,19,22,24,25,27,28,31
第四章
§4.1 (none)
§4.2 #2,8,10,12,14,17,22,29
§4.3 #1,4,6,9,15,20,34,36,39
§4.4 #6,9,10,12,13,15,18,21,22,23,31
關於期末考
共十三題: §3.1 二,§3.2 一,§3.3 二,§3.4 二,§4.2 二,§4.3 三,§4.4 一題,
其中有兩大題計算:《 Least Square Problem, Completing The Square 》|《 Gram-Schmidt Process, QR-decomposition, Orthogonal Complement 》
其他幾乎都是觀念題。
下學期

第五章
§5.1 #6,9,10,14,20,21,27,29,33,34,36,38
§5.2 #1,2,7,10,12,14,17,20,25,27,34,36,38,39,42
殺 A 多項式例子
§5.3 #2,4,5,6,7,8,9,(10,11,12,13),20,21,22,26(b),27 (比較 #24 和 §5.2 第 249 頁的 5F)。
§5.4 #10,11,18,22,24,26,29,35,36,39,42,43
複數空間 的向量內積為何? 所謂夾角如何定義? 與實際吻合嗎? (視 \({\Large\mathbb C}^n\) 為 \({\Large\mathbb R}^{2n}\) )
§5.5 #1,4,5,6,7,9,13,14,15,18,20,22,24,28,32,34,35,36,39,40,41,43,44,46,48,49,50
有關 \(\LARGE\displaystyle e^{At}\) 可參見『常微分方程』之 『線性常微分方程組』
§5.6 #4,5,8,11,13,17,18,19,21,22,24,28,32,33,35,40,42
Generalized Eigenspace
續 Generalized Eigenspace
Chapter 5 Review #9,10,13, 14\{(a)}, 15,16(ignore 2 by 2 Q), 17,20, 21(esp.(c)), 24,30
『算一個矩陣的 eigenvalues,以其 eigenvectors/generalized eigenvectors 做為基,將矩陣重新表示』
(即 如何將一矩陣化成 Jordan form) 期中、期末都要考。
Jordan form 計算範例一
Jordan form 計算範例二
關於期中考
第六章
§6.1 #3,5,9,12,14≒17,19,20,21,22(later)
你一定要會配方 (將二次齊次多項式寫成線性獨立的平方和/平方差,
即 \(\Large x^TAx=\pm(c_1^Tx)^2\pm\cdots\pm(c_r^Tx)^2\), \(\Large\{c_1,\cdots,c_r\}\) 線性獨立) 範例 用矩陣做配方的範例
§6.2 #12,24,5,7,10,11,12,13,15,16,18,19,20
§6.3 #6-13,15-23
§6.4 #2,4,5,6,7,10,11,12,13 Rayleigh Quotient Example
§6.5 (skip)
第七章
§7.1 (none)
§7.2 #4,5,8,9,10,11,12,13,18,19,20,23,25
§7.3 #2,3,8,9,14
§7.4 #5,6,7,9,13,14,15,17