線性代數
教材:"Linear Algebra and Its Applications" (4th ed) by Gilbert Strang,具有啟發性。
"Introduction to Linear Algebra" by Robert F.V. Anderson 這本書我覺得不錯,例子具體清楚,但絕版了:
  
   ISBN 0-03-921835-X (US College Edition)
   ISBN 0-03-910801-5 (HRW International Edition)
學過線性代數的 進階參考書籍:
  - "Applied Linear Algebra" (3rd ed) by Ben Noble & James Daniel
  
 - "Applied Numerical Linear Algebra" (3rd ed) by James Demmel  
  
 
重要觀念   &   指定練習    
上學期
- 第一章
 - 
§1.1 (none) 
§1.2 # 1,2,3,5,7,8,9,11,13,16,17,18,20,21,22,23 
§1.3 # 1,3,4,6,7,9,10,13,14,15,16,17,19,20,22,23,25,26,27,30,31,32 
§1.4 # 3,4,6,9,11,12,13,14,15,19,21,23,26,27,28,30,32,37,38,39,40,41,43,45,48,52,55,57 
§1.5 # 2,3,5,6,8,11,13,15,18,19,20,21,24,26,30,32,33,38,41,42,44,46,48 
§1.6 # 2,3,6,8,11,13,15,17,19,20,21,22,23,24,25,30,32,41,49,51,57,58,68
 - 第二章
 - 
§2.1 #1,2,4,6,8,9,10,13,14,16,17,19,25,27,29
§2.2 #3,5,10,14,15,16,19,21,22,27,31,38,41,43,48,52,53,54,56,57,61,64,67
§2.3 #3,5,6,9,10,14,16,17,19,21,25,27,28,30,32,33,36,37,41
§2.4 #4,8,9,10,15,16,17,21,23,25,27,32,37,40
§2.6 #4,5,6,11,13,16,17,23,25,26,28,29,30,31,35,36,40,43,47,48,50
 - 期中考解答
- 第三章
  - §3.1 #6,12,15,16,19,20,25,26,33,37,38,40,42,43,45,52
- §3.2 #2,7,8,13,14,18,20,24,25
- §3.3 #7,8,10,14,16,17,21,22,25,27,29,32,33,36
- §3.4 #2,3,7,8,12,13,14,17,19,22,24,25,27,28,31
    - 第四章
 - §4.1 (none)
- §4.2 #2,8,10,12,14,17,22,29
- §4.3 #1,4,6,9,15,20,34,36,39
- §4.4 #6,9,10,12,13,15,18,21,22,23,31
    - 期末考解答
下學期
- 第五章
  - §5.1 #6,9,10,14,20,21,27,29,33,34,36,38
- §5.2 #1,2,7,10,12,14,17,20,25,27,34,36,38,39,42  
    殺 A 多項式例子
- §5.3 #2,4,5,6,7,8,9,(10,11,12,13),20,21,22,26(b),27 (比較 #24 和 §5.2 第 249 頁的 5F)。
- §5.4 #10,11,18,22,24,26,29,35,36,39,42,43
- 複數空間 \({\Large\mathbb C}^n\) 的向量內積為何? 所謂夾角如何定義? 與實際吻合嗎?
    (視 \({\Large\mathbb C}^n\) 為 \({\Large\mathbb R}^{2n}\) ) Complex Eigenvalues、內積
- §5.5 #1,4,5,6,7,9,13,14,15,18,20,22,24,28,32,34,35,36,39,40,41,43,44,46,48,49,50
- 有關 \(\Large\displaystyle e^{At}\)
    可參見『常微分方程』之  『線性常微分方程組』 
- §5.6 #4,5,8,11,13,17,18,19,21,22,24,28,32,33,35,40,42  
    Generalized Eigenspace、
    續 Generalized Eigenspace 
- Chapter 5 Review #9,10,13, 14\{(a)}, 15,16(ignore 2 by 2 Q), 17,20, 21(esp.(c)), 24,30  
    Jordan form 計算範例一、
    Jordan form 計算範例二
         - 期中考解答
- 第六章
  - 
  §6.1 #3,5,9,12,14≒17,19,20,21,22(later)
  你一定要會配方 (將二次齊次多項式寫成線性獨立的平方和/平方差,
  即 \(\Large x^TAx=\pm(c_1^Tx)^2\pm\cdots\pm(c_r^Tx)^2\),
  \(\Large\{c_1,\cdots,c_r\}\) 線性獨立。  範例 、 用矩陣做配方的範例 
- §6.2 #12,24,5,7,10,11,12,13,15,16,18,19,20
- §6.3 #6-13,15-23
- §6.4 #2,4,5,6,7,10,11,12,13 Rayleigh Quotient Example 
- §6.5 (skip)
     - 第七章
 - 
  §7.1 (none)
  §7.2 #4,5,8,9,10,11,12,13,18,19,20,23,25
  §7.3 #2,3,8,9,14
  §7.4 #5,6,7,9,13,14,15,17
 - 期末考解答