

Instructional Objectives

- Provide a historical perspective of the evolution of PMS over the last 20 years
- e Describe the basic components of a PMS
- ϵ Discuss how the products are used to aid decision making
- ϵ Be aware of current state practice

Historical Perspective

- e Early PMS
- e AASHTO & NCHRP research
- $_{\rm e}~$ 1985 AASHTO Guidelines on P M
- $_{\rm e}~$ 1989 FHWA Policy on PM
- $_{\rm e}~$ 1990 AASHTO Guidelines for PMS
- e ISTEA of 1991

Early PMS

- Washington
- e Arizona
- Utah

E7

E7

E7

- South Dakota
- US Army Corps of Engineers

2
1986 AASHTO Guidelines
Introduced and defined PMS
Supported development and implementation of PMS

1989 FHWA PMS Policy

- $\epsilon~$ Required all states to have PMS to manage their Federal Aid Highways (Interstate, Principal)
- Condition of funding

1990 AASHTO Guidelines for PMS

- e Developed under guidance of AASHTO Task Force on Pavement Management
- Specific project with limited scope
- $_{\rm e}~$ Prepared by F. Finn and D. Peterson
- Limited to 35 pages

E7

Scope of 1990 AASHTO Guidelines

- Described the basic characteristics
- Identified the components of a PMS and role
- Described development, implementation and operation steps
- Described the products
- Defined the role of communications

2

2 2

E7

Database Reports

- e Pavement Condition Deficiency Reports
- Pavement Condition Performance Histories
- MR&R Actions
- e Pavement Inventory and Ranking

- e Pavement Condition Analysis
- € Priority Assessment Models
- Network Optimization Models

Condition Analysis

- $\varepsilon \;\;$ Combines the pavement distress data into a score or index
- e Represents overall pavement condition
 - Describes system condition
 - Uses priority ranking scheme
 - Uses decision tree approach as primary criteria to select project, timing, and treatments

Prioritization Models

- ϵ Optimal MR&R strategies based on life cycle costs
- $\varepsilon~$ Projects are prioritized at the network level
- $\varepsilon~$ Benefit/cost ratio and cost effectiveness are more prevalent methods

Éľ

2

Éľ

EŢ

Prioritization Output

- e Prioritized listing of projects requiring action
- $\varepsilon~$ Costs for MR&R treatments
- $\varepsilon~$ Funding needs to meet desired network condition
- ϵ Single-year and multi-year with segments treatment timing and cost identified

2

Optimization Models

- Identifies network MR&R strategies by:
 Maximize total network benefits or
 Minimize network costs
- € Simultaneously evaluates entire network

Optimization Output

- $\ensuremath{\epsilon}$ Similar to prioritizing model
- $\varepsilon~$ Identifies an optimally balanced MR&R program
- ϵ Optimization models do not normally identify segment priorities

Feedback Process

 $\varepsilon~$ A variety of processes are used to confirm reliability of PMS

Network Level PMS

- $\varepsilon~$ Establish network budget requirements
- $\varepsilon~$ Allocate funds to network priorities
- € Schedule MR&R actions

E7

Network Level Products

- e Pavement network condition
- MR&R policies
- e Budget requirements
- \in Network priorities

2

Budget Requirements

- e Provide an estimate of budget requirements
- ϵ At prescribed levels of performance

- ϵ Route Number
- € Functional Class
- € Length
- € Pavement Type
- e Pavement Width
- € Lane Number and Width
- € Shoulder Type and Width
- E Layer Thickness
- MR&R History

E7

Pavement Condition Survey

- e Ride quality or roughness
- € Physical distress
- Structural capacity
- € Safety

Current State of Practice in PMS

Different PM methodologies Used

€ 50% use

E7

2

- pavement condition analysis
- € **50% use**
 - network optimization
 - priority assessment
 - other approach
- € FHWA 1996 Survey
 - Detailed survey of state in workbook

EŢ

Instructional Objectives

- Provide a historical perspective of the evolution of PMS over the last 20 years
- ${\ensuremath{\scriptstyle e}}$ Describe the basic components of a PMS
- ${\ensuremath{\scriptscriptstyle \varepsilon}}$ Discuss how the products are used to aid decision making
- ϵ Be aware of current state practice