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Prediction Models for Transverse
Cracking of Jointed Concrete Pavements
Development with Long-Term Pavement

Performance Database

Hsiang-Wei Ker, Ying-Haur Lee, and Chia-Huei Lin

The main objective of this study was to develop improved prediction mod-
els for transverse cracking of jointed concrete pavements with the Long-
Term Pavement Performance database. The retrieval, preparation, and
cleaning of the database were carefully handled with a systematic and
automatic approach. The prediction accuracy of the existing prediction
models implemented in the recommended Mechanistic-Empirical Pave-
ment Design Guide (NCHRP Project 1-37A) was found to be inadequate.
Exploratory data analysis indicated that the normality assumption with
random errors and constant variance by using conventional regression
techniques might not be appropriate for this study. Therefore, several
modern regression techniques, including the gencralized linear model
and the generalized additive model, along with the assumption of Pois-
son distribution, were adopted for the modeling process. The resulting
mechanistic-empirical model included several variables—such as pavement
age, yearly equivalent single-axle loads (ESALSs), accumulated ESALs,
annual precipitation, freeze—thaw cycle, annual temperature range, stress
ratio, and percent steel—for the prediction of transverse cracking. The
goodness of fit was further examined through significant testing and
various sensitivity analyses of pertinent explanatory parameters. The
tentatively proposed predictive models appeared to agree reasonably with
the pavement performance data, although their further enhancements
are possible and recommended.

Performance predictive models have been used in various pavement
design, evaluation, rehabilitation, and network management activities.
Transverse cracking 1s one of the major distress types for jointed con-
crete pavements and is primarily caused by accumulated traffic loads
and environmental effects. Extensive rescarch has been conducted to
predict the occurrence of this distress type by using various empirical
and mechanistic—empirical approaches.

Conventional predictive models usually correlate transverse crack-
ing to accumulated traffic, fatigue damage. environmental effects, and
several other design parameters (/-3). As pavement design evolves
from traditional empirically based methods toward mechanistic—
empirical, the concept of the equivalent single-axle load (ESAL) used
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for traffic-load estimation is no longer recommended in the current
Mechanistic-Empirical Pavement Design Guide (MEPDG) (NCHRP
Project 1-37A) (4). The success of the new design guide consider-
ably depends upon the accuracy of pavement performance predic-
tions. Thus, this study first investigates its goodness of fit and strives
to develop improved transverse-cracking prediction models for
Jointed concrete pavements by using the Long-Term Pavement Per-
formance (LTPP) databasc (www.datapave.com or LTPP DataPave
Online) (5-7).

REVIEW OF EXISTING MECHANISTIC-EMPIRICAL
PREDICTION MODELS

NCHRP Project 1-19 (/) was conducted with the primary objective
of developing a system for statewide and nationwide evaluation of
concrete pavement performance. A total of 410 jointed plain con-
crete pavement (JPCP) and jointed reinforced concrete pavement
(JRCP) sections representing 1,297 mi of concrete pavement were
collected from six states distributed in various climatic regions,
including Hlinois. Georgia, Utah, Minnesota, Louisiana, and Cali-
fornia. Eight additional JRCP pavement sections from Nebraska
were also included in this database. The combined data represented
about 6% of the total Interstate highway concrete pavements in the
continental United States. Several combinations of multiple regres-
sion, stepwise regression, and nonlinear regression techniques were
used to develop various pavement performance prediction models
by using the SPSS statistical package. The following models were
developed for the prediction of transverse cracking:

CRACKSIP = ESAL* ™ %[ 3092 4 * (1 - SOILCRS) * RATIO" ]
+ESAL" +(1.233x TRANGE® * RATIO* ™)
+ESALT™ (0.2296 * FI'*' % RATIO ")

Statistics: R* = .69, SEE = 176, N = 303 (n

CRACKSIR = ESAL™" [7130 * JTSPACE/

(ASTEEL * THICK") ]+ ESAL"' (2.281* PUMP")

+ESAL Y| 18
(BASETYP +1)
+ AGE"'*[0.0036 % (F1+1)’ "]

Statistics: R* = .41, SEE = 280, N = 314
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where

CRACKSJP = total length of transverse cracking, including low,
medium, and high severities (f/mi):
ESAL = accumulated 18-kip ESALs (x 10°):
SOILCRS = subgrade classification (1 for Al to A3 coarse-
grained soils, 0 for A4 to A7 fine-grained soils):
TRANGE = yearly temperature range (°F):
RATIO = stress ratio defined as the ratio of Westergaard
edge stress versus concrete modulus of rupture;
FI = freeze index (°F-days):
CRACKSIJR = sum of medium- and high-severity transverse
cracking (ft/mi);
JTSPACE = mean transverse joint spacing (1t):
ASTEEL = cross arca of reinforcing steels (in.*/ft of width).
THICK = slab thickness (in.):
PUMP = pumping status (U for no pumping: I, 2. and 3
for low-. medium-, and high-severity pumping,

respectively):
BASETYP = base types (0 for granular base. | for treated
base):

AGE = pavement age (years):
R* = coefficient of determination;
SEE = standard error of estimates: and

N = number of observations.

For the caleulation of Westergaard edge stress, a single wheel

load of 9,000 Ib (40 kN), a concrete modulus of elasticity of

4.2 Mpsi (28.9 GPa). a Poisson ratio of 0.2, and a load radius
of 6.4 in. (16.36 ¢m) were used. For JPCP model, the increase
of slab thickness will result in stress reduction and thus signifi-
cantly reduce the occurrence of transverse cracking. Sensitivity
analysis also indicates that if the concrete modulus of rupture is
below 600 psi (4.13 MPa) the stress ratio becomes higher, which
will result in more transverse cracking. With better drainage in
coarse-grained soil or base type, the possibility of pumping and
loss of support are reduced and so is the occurrence of transverse
cracking.

However, a field-collected pavement database may not contain
a wide range of design parameters. and this situation may limit the
inference space and the results of data interpretation. To remedy
this problem, the LTPP program, since 1987, has been collecting
anational pavement database in a factorial format with wider ranges
of pavement designs, materials, and climatic zones. More than
2,400 asphalt and portland cement concrete pavement test sections
across North America have been monitored. Detailed information
about original constructionzpavement inventory data, materials
and testing, historical traffic counts, performance data, mainte-
nance and rehabilitation records, and climatic information have
been collected. In NCHRP Project P-393 (2), an early sensitivity
analysis study of the LTPP database was conducted, and the fol-
lowing models were developed for the prediction of transverse
cracking:

1
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CRACKSJIR = =729+ 1.9 ESAL + 0.182 —————j
PSTEEL"

+ 2473 % L———) +0.697 * PRECIP
KSTATIC
Statistics: R° = .48, SEE = 20.8, N =27 H

where

PCRACKED = percentage of slabs with transverse cracking for
JPCP pavements,
FD = cstimated cumulative fatigue damage.
k = number of axle load types,
n, = expected number of load repetitions under differ-
ent axle load types,
N, = corresponding maximum allowable number of
repetitions,
CRACKSJR = number of medium- and high-seventy transverse
cracking (number/mi).
PSTEEL = percentage of longitudinal reinforcing steel,
PRECIP = average annual precipitations (in.), and
KSTATIC = modulus of subgrade reaction (psi/in.).

Westergaard edge stress and curling stress equations (8) were used
1o account for the combination effects of loading and thermal curling.
The assumed temperature gradients in different climatic zones and
slab thicknesses could be found elsewhere (2). A single whecl load of
9.000 1b (40 kN) and a coefficient of thermal expansion for the slab
of 5.5 x 10°/°F were used in the analysis. Cumulative fatigue dam-
age is determined by summing the damage caused by each load appli-
cation on the basis of Miner's hypothesis accordingly. Slab thickness
and the modulus of rupture are important factors atfecting the cal-
culation of fatigue damage and estimation of transverse cracking.
Sensitivity analysis also indicated that a lower modulus of subgrade
reaction or a lower percentage of reinforcing steel would result
in higher deflection, larger crack width, and thus more transverse
cracking for JRCP pavements. Similar conclusions may be achieved
for pavements with higher tratfic and precipitations as well.

In the recommended MEPDG (4), both bottom-up and top-down
cracking are considered for the prediction of JPCP transverse crack-
ing. No prediction model was proposed for JRCP pavements. The
fatigue-cracking damage for JPCP is determined in an incremental
manner on the basis of the more-complicated concept of axle load
spectra (ALS). Various artificial neural network models were devel-
oped from the ISLAB2000 finite element model to compute critical
stresses and deflections. Monthly damage was computed for different
axle loads, load positions, and equivalent temperature differences over
the analysis period. Traffic data were turther processed to determine
the equivalent number of single, tandem. and tridem axles. Hourly
pavement temperature profiles generated from the enhanced integrated
climate model were converted to monthly equivalent linear tempera-
ture difterences. Monthly relative humidity data were used to account
for the effects of scasonal changes in moisture conditions on differ-
ential shrinkage and were also converted to effective temperature
difference. The proposed model is briefly summarized as follows:

PCRACKED = __1_\_
1+ FD "
- ”. Limmn
FD = EEELESUII
Statistics: R* =.75. SEE=6.9. N =516 (5
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where

n, e = applied number of axle loads under cach condition
detined by subscripts:

i = age to account for change in modulus of rupture, layer
bond condition. and deterioration of shoulder Joad
transfer cfficiency:

j = month to account for change in base and effective
dynamic modulus of subgrade reaction:

k = axle type (single. tandem, and tridem for bottom-up
cracking: short, medium. and long wheelbase for
top-down cracking):

[ = load level for each axle type:

m = temperature difference;

n = traffic path: and

N itmn = corresponding allowable number of load applications
determined by the following ticld calibrated fatigue
mode.

MR )

log(N j +0.4371 (6)

B

S
where MR, equals the PCC modulus of rupture (psi) at age [ and
G i 1w equals the estimated stress (psi) at cach condition,

DATABASE PREPARATION

Initially, the DataPave 3.0 program was used to prepare a database
for this study. However, to obtain additional variables and the latest
updates of the data, the LTPP database retrieved from www.datapave.
com (or LTPP DataPave online, standard release 18.0) (6) became the
main source for this study. There are cight general pavement studies
(GPSs) and nine specific pavement studies (SPSs) in the LTPP
program, of which only JPCPs (GPS3) and JRCPs (GPS4) were used
for here. The database was implemented in an information man-
agement system (IMS) that is a relational database structure that uses
the ORACLE program. However. the standard releases were in the
Microsoft Access database structure. Automatic summary reports
of the pavement information may he generated tfrom different IMS
modules. tables, and data elements.

The thickness of pavement layers was obtained from the IMS test-
ing module rather than the IMS inventory module to be consistent
with the results of the section presentation module in the DataPave
2.0 program. Several other material properties, such as the modulus
of rupture, plasticity index, and the percent passing a No. 4 sieve,
were queried from the inventory module. Detailed traftic counts and
ESALs were obtained from the traftic module. The cumulated ESAL
during the performance analysis period was calculated by multiply-
ing pavement age with mean yearly ESAL (or kesalpyr). which could
be casily estimated from the database. Environmental data were
retrieved from the IMS climate module and the associated virtual
weather station link.

There are distinct differences in the distress data collected from
the two collection methods, that is, the manual survey (MON_DIS _
JPCC_ REV)and the photographic survey (MON_DIS_PADIAS42.
JPCC) (9). Although techniques in colleeting and interpreting LTPP
photographic distress data may have been improved (/0). for simplic-
ity and consistency, only manual survey data were used in this study.
The transverse-cracking data (low. medium, and high severities for
JPCP and medium and high severities for JRCP) were obtained from
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the MON DIS_JIPCC_REV table in the IMS monitoring module.
Maintenance and rehabilitation activities could effectively reduce
the distress quantities. Thus, the records in both the maintenance
and rehabilitation modules were used to assure that this study chose
only the performance data of those sections without or before major
improvements. For the purpose of this study, a Microsoft Excel
summary table containing the pavement inventory. material and
testing, traftic, climatic. and distress data was created by using the
relational database features of the Access program. The Excel table
was then stored as S-Plus data sets (/1) for subsequent analysis. The
summary. table. cor, plot, pairs. and coplot functions were heavily
used to summarize the information of interest and to provide more
reliable data for this study.

A data-cleaning process had tobe conducted before any preliminary
analysis or regression analysis could be performed. With the help of
graphical representation. transverse-cracking data were plotted against
surveyed vears for each section in the database. with additional infor-
mation displayed. For example. the plot shown in Figure [ was used to
examine the distress trends to identify possible data errors, The state
code. SHRP identification number. modulus of rupture (MPa), slab
thickness (cm), construction year, and mean yearly ESAL were labeled
on cach plot. Each section was carefully examined. Two additional
codes were assigned to each section o indicate the findings of the
examination (i.c.. whether the transverse cracking was reasonable in
relation to the distress history, or which year of data was questionable
and could be deleted if necessary). For example. a comparison of the
first three data points of pavement Seetion 6/3005 with the remaining
data found that this section probably had some maintenance or reha-
bilitation activities. although they were not recorded in the database.
Data correction and preparation were made in a way that could be
casily traced. By doing so. different subsets of the final database
providing more reliable data might be analyzed for difterent purposes.

COMPARISON OF LABORATORY-TESTED
AND BACKCALCULATED MODULI

The modulus of cach pavement layer, backealculated by using the
ERESBACK 2.2 program (/2), was retrieved from the IMS monitor-
ing module. The Jaboratory-tested layer moduli were compared with
the backealeulated moduli so as to obtain a better understanding of
their associated variability in the study. The variability of the relation-
ship between the Jaboratory-tested (or static) and backcalculated (or
dynamic) moduli could not be ignored. Figures 2a through 2¢ depict
that the average ratios are approximately 1.4, 1.5, and 1.5 for surface,
subbasc, and subgrade layers, respectively. for a dense liquid founda-
tion. Few laboratory-tested modulus of subgrade reactions were avail-
able in the database. Likewise, Figures 2d through 2f depict that the
average ratios were roughly 1.0. 1.1. and 3.0 for surface, subbase.
and subgrade layers, respectively. foran elastic solid foundation (7).
For consistency. the recommendation by AASHTO (13) of dividing
the backcalculated modulus of subgrade reaction (k-value. MPa/m)
by 2 as the static k-value was used in the calculation of the stress
ratio in this study.

RELATIONSHIP BETWEEN ELASTIC MODULUS
AND MODULUS OF SUBGRADE REACTION

For practical reasons. a relationship between the elastic modulus and
the modulus of subgrade reaction is often needed. According to the
literature (/2). the following empirical relationship was developed
from the GPS and SPS data analysis:
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1/3028, mr = 4.5 MPa, h =25.9 cm
const = 1971, kesal = 153.5

4/7614, mr = 4.2 MPa, h =24.6 cm
const = 1984, kesal = 2501.6
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FIGURE 1 Some transverse-cracking history of JPCP pavements.

k=0.296LF,

Statistics: R* =.872, SEE =9.37. N = 596 (7)

where & is the modulus of subgrade reaction (MPA/m) and £, 1s the
subgrade elastic modulus (MPa). According to the available GPS data.
very good agreements have been achieved with the above relationship.

Nevertheless. Barenberg (/4) indicated a theoretical difference
by using an elastic solid foundation and a dense liquid foundation
having the same maximum deflections in backcalculation analysis.
Assuming a Poisson ratio of 0.5 for the subgrade, a Poisson ratio

of 0.15 for the concrete slab, and an elastic modulus for the slab of

4 Mpsi (27.6 GPa). the following relationship was derived after a
simplification process:

Fo=2837%h*k (%)

where
-

k = modulus of subgrade reaction (Ib/in.").
E. = subgrade clastic modulus (psi). and

h = slab thickness (in.).

As Figure 3a shows, the effectof slab thickness has to be considered
in such a relationship.

The aforementioned relationship was further veritied with a com-
parison of the backcalculated subgrade elastic moduli with the back-
calculated modulus of subgrade reaction from the LTPP database.
Slab thickness had significant effects on this relationship. as shown in
Figure 3b. Consequently, the following relationship was developed
by using regression techniques:

E = 09015(k*h)"

Statistics: R = 9524, SEE = 1587, N =138 9)

where
&k = modulus of subgrade reaction (MPa/m).
E, = subgrade clastic modulus (MPa), and

I = slab thickness (¢cm).

PRELIMINARY ANALYSIS OF
TRANSVERSE-CRACKING DATABASE

Univariate Data Analysis

Univariate data analysis consists of statistical methods for describing
the distribution and spread of each variable. Some basic descriptive
statistics of JPCP pavements about the data range, its variation, and
the number of observations for cach variable are given in Tables |
and 2. The univariate data analysis procedure is often used to inves-
tigate the possibility of data errors and potential distribution problems
for cach variable considered in a regression analysis. A few extreme
(or unusual) data points may be identified or deleted from the analysis
(as. for example, in the bottom half of Table 2). In the tables, age stands
for pavement age (years): kesalpyris the yearly ESALS (thousands):
cesal is the cumulative ESALs (millions): jtspace is the transverse

joint spacing (m): hpee is the slab thickness (cm): fi is yearly freezing

index (°C-days): precip is the mean annual precipitation (mm); kstatic
is the modulus of subgrade reaction (MPa/m): trange is the difference
between the maximum and the minimum mean annual temperature
(°C); days32 is the number of days the temperature was above 327C:
ft is the yearly freeze—thaw cycle: mris the concrete modulus of
rupture (MPa): ratio is the stress ratio: and act.erack is the pereentage
of cracked slabs (“¢).
A graph is always far more perceptible than thousands of numbers

A single plot that well describes the spread of the data may be cre-
ated by combining these univariate statistics with a histogram. A sim-
plitied distribution plot that graphically displays the variability of
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FIGURE 2 Comparison of labaratory-tested and backcalculated layer moduli of (8) surface, (b) subbase, and (c) subgrade for dense liquid
foundation and of (d) surface, (e) subbase, and (f) subgrade for elastic solid foundation, respectively.
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FIGURE 3 Comparison
(b) backcalculated results.

data. including median, lower and upper quantiles, 95% confidence
intervals. and extreme points (if any) may be made in a box plot. A
box plot displays not only the location and spread of the data but also
skewness. A histogram displays only a rough and crude shape of the
distribution of data. To have a smoother look. a continuous curve of
the nonparametric estimate of the probability density may
obtained. A normal probability plotor quantile—quantile plot can be

also be
used 1o provide a quick visual check on the assumption of a normal
distribution. 1f the distribution is ¢lose to normal, the plot will show
approximately a straight-line relationship, The distribution of trans-
verse cracking (act.erack) of JPCP pavements is shown in Figure 4.
The solid horizontal line in the box plot indicates the median of the
data, whereas the upper and lower ends of the box show the upper and
Jower quantiles, respectively. These plots reveal a relatively skewed
distribution for actual transverse cracking.
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of elastic solid foundstion versus dense liquid foundation: (8) theoretical comparison (74) and

Bivariate and Multivariate Analysis

A correlation matrix of these variables is also given in Table 2
In addition. trimmed correlation matrices show the variable cor-
rolations after a certain portion of influential data points or possible
outliers are eliminated (3% in this example) such that more reliable
indices of the correlations are obtained. The difference between
the resulting traditional correlation matrix and the trimmed cor-
relation matrix is shown in Table 2. A scatter plot matrix can graph-
ically represent their relationships and scatters. With the application
of a data-smoothing technique (lowess) on the same scatter plot
matrix. the pairwise relationships as shown in Figure 3 become
clearer. and possible data errors may be identitied. In Figure 5.
age. cesal, trange, and fthave better correlations with actual transverse
cracking (act.crack) although highs ariations are still observable.

TABLE 1 Univariate Statistics
A Mean Std Dev. Sum Min. Max,

age 393 16,44 6.34 6.460.90 234 35.04
kesalpyr 393 485.72 43373 190.886.02 20.21 2.501.02
cesal 393 T.N83 7.45 3.077.23 0.16 33,00
JIspace 393 S.02 (083 197218 351 6.55
hpee 393 24.22 297 951814 1626 30,32
fi 393 24692 206712 97.039.23 0.00 1.777.22
precip 93 883NN 428.60 347.248.12 1187 1.725.07
Kstatic 393 3380 14.79 13.281.09 1275 S1.5%
trange 393 12.87 20N S.058.77 .40 18.04
days32 393 4388 3141 17.245.62 015 17-4.35
ft 393 68,31 44.00 26.840.05 0.00 173,13
mr 393 446 041 1.754.72 303 5.88
ratio 393 044 0.10 17340 0.21 0.77
act.erack 393 571 10.22 2.242.50 0.00 100.00
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TABLE 2 Multiple Correlations of JPCP Pavements

SR

age cesal Jspace hpec fi precip Kstatic trange ft mr ratio

act.erack

Correlation Matrix

age 1.00 0.26 0.16 -0.13 -0.10 013 -0 18 -0.17 -0.11 -0.14 0.17 0.16
cesal 026 1.00 0.02 0.17 -0.27 017 0.06 0.37 0.13 -0.12 —-0.20 0.33
jtspace 0.16 0.02 1.00 0.02 018 0.68 0.20 0.21 ~0.I8 -0.10 -0.09 0.01
hpee -0.13 0.17 0.02 1.00 -0.07 -0.01 0.16 0.01 0.00 0.00 -0.86 -0.02
n -0.10 -0.27 -0.18 -0.07 1.00 -0.27 -0.24 016 046 -0.07 0.21 ~0.06
precip 0.13 -0.17 0.68 -0.01 -0.27 1.00 0.20 —().5N8 -0.40 0.01 -0.02 -0.02
Kstatic 018 0.06 0.20 0.16 0.24 0.20 1.00 0.02 ~0.13 0.09 -0.37 0.03
trange -0.17 0.37 -0.21 0.01 -0.16 —0.58 0.02 1.00 0.36 0.02 -0.10 0.20
ft 011 -0.113 -0.18 0.00 046 -0.40 0.13 0.36 1.00 0.04 0.00 0.19
mi 0.14 -0.12 -0.10 0.00 0.07 0.01 0.00 0.02 0.04 1.00 -0.38 -0.03
ratio 0.17 -0.20 —-0.09 —-().86 0.21 -0.02 0.37 -0.10 0.00 -0.38 1.00 0.00
act.erack 0.16 0.33 0.01 -0.02 -0.06 -0.02 0.03 0.20 0.19 -0.03 0.00 1.00
Trimmed Correlation Matrix (deleted 3¢ of data)
age 1.00 0.30 0.20 -0.11 0.05 0.16 018 —~0.17 ~0.13 -0.16 0.19 0.18
cesal 0.30 1.00 0.04 0.26 -0.15 ~0.18 0.11 043 -0 14 008 0.25 0.30
jtspace 0.20 0.04 1.00 0.08 014 0.71 0.22 0.19 -0.16 016 -0.09 0.02
hpee 0.11 .26 0.05 1.00 -0.04 0.08 0.21 0.10 0.04 0.09 —0).88 008
h 0.08 -0.15 -0.14 —-0).04 1.00 0.27 -0.15 0.13 0.60 0.10 0.15 0.18
precip 0.16 018 0.71 0.03 -0.27 1.00 0.18 ~-(0.60 —0.42 -0.13 0.05 —0).08
Kstatic -0.18 0.11 0.22 0.21 -0 15 018 1.00 0.11 -0.10 017 ~().38 0.14
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The slab thickness (hpeey is highly correlated with stress ratio
(ratio). and transverse joint spacing (jtspace) is also highly cor-
related with annual precipitation (precip). Special cautions are
needed during the modeling process to avoid potential collincarty

problems.

INVESTIGATION OF GOODNESS OF FIT
OF EXISTING MODELS

Toinvestigate the goodness of predictions. the models given in Eqgua-
tions 1 10 4 were used to predict the occurrence of transverse crack-
ing, and the results were plotted against the actual observed data.
Figures 6 and 6b show the goodness of prediction with NCHRP 1-19
models for JPCP and JRCP pavements, respectively. Similarly. Fig-
ures 6¢ and 6d depict the results of this comparison with P-393 mod-
¢ls for JPCP and JRCP pavements, respectively. Visual graphical
techniques such as condition plots were used to assistin the iden-
tification of the factors affecting the goodness of predictions. For
it was found that the circled data with relatively high
small Tongitudinal

example,
predictions in Figure 6d resulted trom the very
reinforcement.

The prediction accuracy of the proposed models implemented in
the recommended MEPDG (4) was further iny extigated. To avoid

undesirable misunderstanding of the new guide’s prediction algo-
rithm due ta the complexity involved. directuse ot the MEPDG solt-
ware was chosen for prediction of transverse cracking. The beta
version of the software was downloaded from www trb.org/mepdg/
coftware.htm. A total of 22 JPCP pavement sections containing 102
data points were randomly selected for this analysis. The goodness of
transverse-cracking prediction with NCHRP Project P-393 models
and the recommended MEPDG (DG2002) models are shown in Fig-
ures 6¢ and 6f. Apparently, the prediction aceuracy of the existing
models was found to be inadequate.

DEVELOPMENT OF IMPROVED
TRANSVERSE-CRACKING MODELS

The oceurrence of transverse cracking in the ficld depends on various
factors, namely traftic, environment. structure, construction. mainte-
nance. and rehabilitation. Even though the use of cumulative fatigue
damage based on Miner's hypothesis and the more-complicated ALS
concept seems to be alogical approach, their integration with monthly
or seasonal environmental factors (such as humidity and temperature
ditferentials) often resulted in more variations in the predictions ot
ransverse eracking, as shown in Figures 6c. 6¢, and 0f. due to the
many uncertainties ivolved.
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To develop a more-reliable predictive model for practical engi-
neering problems, Lee and Darter ( /5. 16) proposed a predictive
modeling approach o corporate robust (least median squarcd)
regression, alternating conditional expectations, and additvity and
variance-stabilization algorithms into the modeling process. The
robust regression was proposed because of its favorable feature of
analyzing highly contaminated data by detecting outliers from both
the dependent variable and independent variables. Through the
iterative use of the combination of these outlier detection and non-
parametric transformation techniques, it was believed that some
potential outliers and proper functional forms might be identified.
Subsequently, traditional regression techniques can be casily used for
model development. Nevertheless, it has been extremely difficult to
achieve a satisfactory predictive model for this set of data by using
these regression techniques i many preliminary trials.

Exploratory data analysis of the response variable as shown in Fig-
ure 4 has indicated that the normality assumption with random crrors
and constant variance by using conventional regression techniques
might not be appropriate for prediction modeling. The distribution of
transverse cracking was tested for departures from normality by using
Shapiro and Wilk's W-statistic ( /1. Various transformations. includ-
ing the logarithm of the transverse cracking, were tested, although the
Wostatistic still indicated that transverse cracking did not have a log-
normal distribution, either. Because of the nature of collecting dataon
transverse cracking. those data could be treated as rate data (e, per-
centage of cracked slab). Agresti suggested that “when events of a
certain type oceur over time, space, or some other index of size, itis
often relevant to model the rate at which events occur,” and using the
Puisson regression for rate data is an appropriate decision (/7. p. 86).

Preliminary Analysis Using Poisson
Regression Techniques

Therefore, the generalized linear model (GLM) (/8). along with the
assumption of Poisson distribution, was adopted in this analysis. Here.
a Poisson log-linear model is a GLM that assumes 4 Poisson distri-
bution for the response variable and uses the log link. Many factors,
including age. kesalpyr, cesal. jispace, hpec, fi, precip, kstatic. trange.
days32. ft, basetype [base types (0 for granular base, 1 tor treated
base)). stype [subgrade types (1 for Al to A3 coarse-grained soil,
0O for A4 1o A7 fine-grained soil)], edgestress [estimated Westergaard
edge stress (MPa)]. mr, ratio, and psteel were considered in the begin-
ning trial analysis (with those variables not defined here having their
carlicr definitions). After several attempts to eliminate parameters that
were, from both statistical and engineering viewpoints, insignificant
or inappropriate, the following models were obtained:

In(PCRACKED) = ~6.105+ 0. 1015 *age 4 0.001317 * kesalpyr
+0.001209 * precip + 0.01284 % ft
+0.1999 * trange + 1.03 1 * ratio
Statistics: N = 393, null deviance = 8,138.5,
residual deviance = 54021 (10
In(CRACKSIR) = =0.9396+ 0.06729 = cesal + 002152 7 f
+0.2326 * trange — 10.20  patecl

Statistics: N = 151, null deviance = 5.391.9.
residual deviance = 2.991.3 (b

29

where PCRACKED is the percentage of cracked slabs tor JPCP pave-
ments and CRACKSIR is the number of medium- and high-severity
(ransverse cracks (number/km). The dispersion parameter for the Pois-
son family was taken to be 1. Here, a total of 74,43, 114, and 162 data
points were obtained from dry—freeze. dry- nonfreeze, wet—freeze, and
wet-nonfreeze zones for JPCP pavements, whereas the performance
data of JRCP pavements consisted of only 80 and 71 observations from
wet—freeze and wet-nonlreeze zones, respectively.

The primary assumption of the above preliminary GLM models was
that a lincar function of the parameters was used in the maodel. The
generalized additive model (GAM) extends GLM by titting nonpara-
metric functions by data-smoothing technigues to estimate the relation-
ship between the response and the predictors (19). To further enhance
the model fits, GAM techniques were adopted in this analvsis. The
Box -Cox power transformation technique was routinely used to esli-
mate 4 proper monotonic transformation for each variable on the basis
of the resulting preliminary GAM model. The transverse-cracking data
were refitted with these transformed predictors with GLM techniques.
Visual graphical techniques as well as the systematic statistical and
engineering approach proposed by Lee and Darter ( 15, 16) were fre-
quently adopted during the prediction-modeling process. A plotof
residuals versus the fitted values could be used to check the adequacy
of the model. If any curvature was observed. then the model could be
umproved by adding more nonlinear terms to the model.

After a considerable number of tnals, the following models were
separately developed for the transverse-cracking prediction of JPCP
and JRCP pavements. As Figure 7 shows. a plot of the observed
versus the fitted values illustrates the goodness of fit.

~9.913+3.711*log(age )+ 1.931 ‘

PCRACKED = exp *log Kesalpyr +0.05116 Jprecip +0.01180
|

. 1 —
¥l = 2671 % ——— + 2496 % Jratio J
trange

L

Statistics: N = 393, R™ = 358, SEE = 13.01 (12)

- I
5.863 - 1.780 * ~ +0.2397
Jcesal
CRACKSIR =exp| vees
« i - 37.25»

—10.12 = psteel

J

trange

Statistics: N = 151, R* = 380, SEE =20.79 (13

To improve the model fits further. it is possible to develop separate
models for different climatic zones to account for other factors not con-
sidered implicitly in the above model. For example. the following two
models could be subsequently developed by using the same functional
forms with somewhat better regression statistics tor JPCP pavements
in the wet—nonfreeze zone and JRCP pavements in the wet-{reeze
zone. respectively. Nevertheless, it is still possible to develop better.
more-refined models with more efforts in identifying other important
factors and functional forms under different climatic conditions.

237.33+ 7.042 # log(age ) + 4.565

* log Kesalpyr +0.2242» (precip

(PCRACKED)  =exp |
wNi Z0.02320# ft=T1.77 % —
e trange
+24.77 ¢ \/mlm
Statistics: N = 162, B = 818, SEE =8.20 (4



FIGURE 7 Goodness of fit of the proposed model for (8) JPCP and (b) JRCP pavements.
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7142-1.927% +0.1459
(CRACKSIR), = exp cesal
Wt N 1
« JIt — 41 87 x ——— —8.500 * pstecl
trange
Statistics: N = 80. R* =.393, SEE = 23.95 (15)

Sensitivity Analysis of Tentatively
Proposed Models

The goodness of the model fit was further examined through sigmti-
cant testing and various sensitivity analyses of pertinent explanatory
parameters. Some plots showing the sensitivity of the various factors
in the tentatively proposed models, that is. Equations 12 and 13, are
presented in Figure 8. These plots were prepared on the basis of the
range of the actual data while the remaining parameters were set to
the corresponding mean values. The plots show the relationships
among annual temperature range (trange), ycarly ESALs (kesalpyr),
quress ratio (ratio), pavement age (age) for the JPCP model. and yearly
freeze—thaw cycle (1), cumulated ESAL (cesal). and percent of rein-
forcing steel (psteel) for the JRCP model. The general trends of these
effects seem to be fairly reasonable.

DISCUSSION AND CONCLUSIONS

Even though the use of cumulative fatigue damage based on Miner's
hypothesis and the more-complicated ALS conceptas recommended
by the MEPDG seems to be a logical approach. integration of that
information with monthly or seasonal environmental factors such
as humidity and temperature differentials often resulted in more
variations in the predictions of transverse cracking because of the
many uncertainties involved. The prediction accuracy of the existing
ransverse-cracking models for jointed concrete pavements was
found to be inadequate and greatly in need of improvement.

A relatively skewed distribution for actual transverse cracking
was identified and also indicated that the normality assumption using
conventional regression techniques might not be appropriate for this
study. Thus,a GLM and a GAM along with the assumption of Poisson
distribution were adopted for the modeling process. After many trials
in eliminating insignificant and inappropriate parameters. the resulting
proposed models included several variables (such as pavement age,
vearly ESALs. cumulated ESALSs, annual precipitation. treeze—thaw
cycle, annual temperature range. stress ratio, and percent steel) for
the prediction of transverse cracking.

The goodness of the model fit was further examined. The plot of the
response versus fitted values indicated that the proposed model pro-
vided substantial improvements over the existing models. Sensitivity
analysis of the explanatory variables indicated that their general trends
seem (o be fairly reasonable. The tentatively proposed predictive mod-
cls appeared to agree reasonably with the pavement performance data.
although their further enhancements are possible and recommended.
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