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Abstract:

Airfield pavement design is a decision making process which uses pertinent information available to make required judgments.  One of the tools used in the design process is analysis of the pavement system.  To be of value, it may be necessary to make many analyses of several pavement systems with different gear configurations and different loading conditions.  With the more sophisticated models, such as the finite element models (FEM), this may require considerable time on the part of the designer.  Furthermore, many consulting firms and designers do not have the necessary background and/or computational tools needed to make many of the required analyses.  This paper specifically focuses on the use of artificial neural networks (ANNs) as design tools to analyze Portland Cement Concrete (PCC) airfield pavements.  

Introduction

Artificial neural networks (ANNs) are valuable computational tools that are increasingly being used to solve resource-intensive complex problems as an alternative to using more traditional techniques, such as the finite element method.  In recent successful applications, the use of ANNs was introduced for the analysis of jointed concrete pavement responses under the dual-wheel and tri-tandem type aircraft gear loadings (Ceylan et al., 1998 and 1999).  An ANN model was trained with the results of the ILLI-SLAB finite element solutions which was intended to enable pavement engineers to easily incorporate current sophisticated finite element methodology into routine practical design.

This paper primarily focuses on the development and performance of a comprehensive ANN model for the analyses of jointed airfield slabs under the aircraft gear loadings. More than 38,000 ILLI-SLAB analyses have provided the design parameters and the pavement responses as inputs for training the ANN model.  Consideration was only given to the loading of a jointed slab assembly under the tri-tandem type Boeing B-777 aircraft gear configuration.  The trained ANN model gave maximum bending stresses within an average error of 0.4% and maximum deflections within an average error of 0.5% of those obtained directly from ILLI-SLAB analyses.
Rigid Pavement Theory and the ILLI-SLAB FEM Program
Jointed slab analysis was performed using a finite element program referred to in the literature as ILLI-SLAB (Tabatabaie and Barenberg, 1980).  This program was developed at the University of Illinois in the late 1970s for the structural analysis of jointed concrete slabs consisting of one or two layers, with either a smooth interface or complete bonding between layers.  The ILLI-SLAB model is based on the classical theory for a medium-thick elastic plate resting on a Winkler foundation, and can be used to evaluate the structural response of pavement systems with arbitrary crack/joint locations, any slab size, and any arbitrary loading combinations.  Aggregate interlock or dowels or combinations of the two can provide load transfer across joints/cracks.  The model employs the 4-noded, 12-dof rectangular plate bending elements (ACM or RPB 12). This model has been extensively tested by comparison of results with available theoretical solutions and results from experimental studies (Tabatabaie and Barenberg, 1980; and Thompson et al., 1983).

Back-Propagation Artificial Neural Networks

A back-propagation type artificial neural network model was trained in this study with the results of ILLI-SLAB finite element program and used as an analysis design tool for predicting stresses and deflections in jointed concrete airfield pavements. Back-propagation ANNs are very powerful and versatile networks that can be “taught” a mapping from one data space to another using examples of the mapping to be learned.  The term “back-propagation network” actually refers to a multi-layered, feed-forward neural network trained using an error back-propagation algorithm.  The learning process performed by this algorithm is called “back-propagation learning” (Rumelhart et al., 1990; and Haykin, 1999).  Back-propagation networks excel at data modeling with their superior function approximation capabilities (Haykin, 1999; and Meier and Tutumluer, 1998).

ILLI-SLAB Analysis of Concrete Slabs

Concrete airfield pavements were represented by a four-slab assembly, each slab having dimensions of 7.62 m by 7.62 m (25 ft by 25 ft).  Figure 1 depicts the geometry and analysis conditions of the pavement sections such as the constant slab size (L), standard tri-tandem loading applied only on one quadrant of the lower-left slab, and the standard finite element mesh used.  The Young’s modulus and the Poisson’s ratio for the concrete slabs were set at 27,560 MPa (4,000 ksi) and 0.15, respectively.  A total of 38,880 ILLI-SLAB analysis runs were conducted with the four-slab assembly by varying a number of design parameters used to generate a neural network training database. Various loading locations (slab interior, corners and/or edges) and deflection load transfer efficiencies (LTEs) were chosen along x- and y- directions (Ceylan et al., 1999).

At the end of each analysis, the maximum bending stresses ((x-max and (y -max) and the maximum vertical deflections ((-max.) due to the applied loading were calculated on the pavement section.  The input variables for load location (x/L and y/L), slab thickness (t), modulus of subgrade reaction (k), and load transfer efficiencies (LTEs) were recorded along with the outputs maximum bending stresses and maximum deflections.  Finally, a training database was formed using the 35,280 data set comprising both the input variables and the output responses from all analyses.

An independent testing database was also required during training to verify the prediction ability of the various ANN models.  For this purpose, 3,600 additional ILLI-SLAB runs were generated using new input parameters.  The new input values selected were completely different from, but within the ranges of, those used for training of the ANN model. The maximum bending stresses and deflections corresponding to the new independent testing data set were then calculated using the ILLI-SLAB program and compared to the output stresses and deflections obtained using the ANN model.
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Neural Network Training and Validation

To train a back-propagation neural network with the results of the finite element analyses, a network architecture was required.  Six input variables (x/L, y/L, t, k, LTE-x, and LTE-y) were used in the network input layer.  The three output variables were the maximum bending stresses ((x-max and (y-max) and the maximum vertical deflection ((-max.) in the pavement section. A network with two hidden layers was exclusively chosen for the ANN models trained in this study.  Satisfactory results were obtained in the previous studies with these types of networks due to their ability to better facilitate the nonlinear functional mapping with the use of relatively fewer neurons (Haussmann et al., 1997 and Ceylan et al., 1998).
The back-propagation ANN program “Backprop 3.5” developed by Meier (1995) was used for the training process, which consisted of iteratively presenting training examples to the network.  Both the 35,280 training and the 3,600 independent testing data sets were normalized between the values of 0.1 and 0.9.  Each training “epoch” of the network consisted of one pass over the entire 35,280 data set.  The 3,600 independent testing data set were used to monitor the training progress for a total of 10,000 epochs, which was found to be sufficient for proper network training.  The function mapping/approximation ability of the trained ANN model was verified for each of the maximum stresses and maximum deflections with the low testing and training Mean Squared Error (MSE) values.

A network architecture with two hidden layers and 29 neurons used in each hidden layer was chosen as the best for predicting the two maximum bending stresses and maximum deflections with 6 input nodes and 3 output nodes. The lowest training and testing MSEs in the order of 1(10-6 (corresponding to a root mean squared error of 0.1%) were obtained with the 6-29-29-3 architecture for both the x- and y-stresses.

Figures 2 and 3 compare the predicted maximum ANN stresses in x- and y-directions, respectively, with the finite element results. The average error for the maximum stress in the x-direction was ( 9 kPa (1.3 psi) [i.e., ( 0.4 %], while the average error in the y-direction was ( 9.6 kPa (1.4 psi) [i.e., ( 0.4 %].  These average errors were calculated as sum of the individual errors divided by 3,600.  The maximum individual error for the stress in x-direction was ( 53.7 kPa (7.8 psi) [i.e., ( 2.1 %] for an actual stress magnitude of 2,544 kPa (366 psi), while the maximum individual error for the stress in y-direction was ( 38.4 kPa (5.6 psi) [i.e., ( 1.6 %] for an actual stress magnitude of 2,473 kPa (359 psi).  Each of the individual maximum errors predicted for x- and y-stresses occurred at mid-edge loading.  This was expected since the magnitudes of predicted stresses and the stress gradients considerably increase especially in the case of near edge loading conditions, which was also observed by Ceylan et al. (1998) and Haussmann et al. (1997).

Figure 4 compares the predicted maximum ANN deflections with the results of the ILLI-SLAB finite element program.  The average error for the predicted maximum vertical deflections was ( 0.5% (6.6 (m) while the maximum individual error was ( 1.9% (0.046 mm) for an actual deflection of 2.52 mm (0.1 in).  Maximum errors occurred close to the slab corners where also maximum deflections were computed. Average errors were the lowest for the 6-29-29-3 network when compared to the other networks analyzed.

Figure 5 shows the variation of the predicted maximum y-stresses with load transfer efficiencies when: (1) LTE-x = 25% was kept constant and LTE-y values were queried for 35%, 50%, and 75%; and (2) LTE-y = 25% was kept constant and LTE-x values were queried for 35%, 50%, and 75%.  As can be seen in Figure 5, when LTE-x = 25% is kept constant and LTE-y is varied from 25% to 90%, maximum y-stresses increase in a piecewise continuous functional form. On the other hand, the opposite occurs when LTE-y = 25% is kept constant and LTE-x is varied from 25% to 90%, i.e., the maximum y-stresses smoothly decrease. This suggests that the ANN model then sufficiently generalized the load transfer efficiency input parameters used in the training data. The trained ANN model has captured the nonlinear relations between the maximum stresses and deflections and the critical input variables.  The prediction capability of the network appears to be accurate as illustrated by the excellent match between the validation stresses on the piecewise smooth functional relations indicated in Figure 5.

Summary/Conclusions

The use of artificial neural networks (ANNs) as analysis design tools is demonstrated in this paper by analyzing concrete airfield pavements serving the Boeing B-777 aircraft.

An ANN model was successfully trained with the results of more than 38,000 ILLI-SLAB finite element analyses runs performed on a four-slab airfield pavement system. Under the six-wheel tri-tandem type B-777 gear loading, the ANN model predicted maximum stresses and deflections with average errors less than 0.5% when compared to those computed by the ILLI-SLAB.

The use of the ANN model results in both a drastic reduction in computation time and a simplification of input and output requirements over the finite element program which are currently needed for routine practical design.  The application of an artificial neural network model to predict the results of finite element analyses, therefore, has proved to be very promising.

Current research focuses on the expansion of the ANN model to handle all possible aircraft gear configurations with multiple-wheel loading conditions using the principle of superposition. The inclusion of temperature and moisture related loadings are also being considered at this stage of the research.
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