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Abstract

This study focuses on the development and performance of a comprehensive artificial neural network (ANN) model for the analysis of jointed concrete slabs under simultaneous aircraft and temperature loading.  Using the results of the ILLI-SLAB finite element program, a comprehensive artificial neural network model was trained for the different loading conditions of gear loading only, temperature loading only, and simultaneous aircraft and temperature loading cases.  Comparing the ANN predictions to the ILLI-SLAB solutions validated the ANN model.  The trained ANN model gave maximum bending stresses and maximum vertical deflections within an average absolute error of 1.4 percent of those obtained directly from ILLI-SLAB analyses.  The typical ANN prediction time is about 0.3 million times faster than the average ILLI-SLAB finite element solution.  Therefore, the use of an ANN-based design tool is deemed to be very effective for studying hundreds or thousands of “what if” scenarios for including the temperature effects in pavement design.

Introduction

Today’s large aircraft with complex loading patterns, such as the six-wheel tri-tandem type Boeing 777 gear loading, require detailed analysis in airport pavement design (FAA-AC, 1995).  The LEDFAA program, developed by the Federal Aviation Administration (FAA), employs an elastic layered program (ELP) for the analysis of pavement sections.  However, the joints within a Portland Cement Concrete (PCC) pavement naturally conflict with the assumption of an infinite, semi-elastic halfspace concept mostly utilized in ELPs.  In addition, ELPs cannot handle the effects of varying pavement climatic conditions, e.g., slab curling and warping.  These additional considerations further necessitate the use of more sophisticated finite element analyses for a better pavement design.

The ILLI-SLAB (Tabatabaie, 1977; and Tabatabaie and Barenberg, 1978 and 1980) program was chosen as the analysis tool because of its ability to analyze jointed concrete pavements.  This program was developed at the University of Illinois and is a validated finite element program. In this study, ILLI-SLAB was used to solve for critical pavement responses (e.g., slab bending stresses and deflections) under the following loading conditions: B-777 gear loading only, temperature loading only, and finally, the simultaneous aircraft and temperature loading conditions.

This paper mainly focuses on the development and performance of a comprehensive ANN model for the analysis of jointed concrete slabs under the three aforementioned conditions.  Because the new B-777 gear is currently one of the most complex gear configurations, special consideration was given to the loading of a jointed slab assembly under the tri-tandem type B-777 aircraft gear.  For training the ANN model, a total of 5,616 ILLI-SLAB analyses were used to generate the design parameters and the pavement responses as ANN inputs.  When compared to the actual ILLI-SLAB analyses, the trained ANN model successfully predicted the maximum bending stresses and maximum vertical deflections.  Since the critical pavement responses are predicted instantly (2,700 analyses per second) by the use of ANNs, ANN-based design tools proved to be very effective for studying “what if” scenarios before making final design decisions and for allowing design engineers to easily employ many useful algorithms, e.g., concrete fatigue life prediction algorithms.
Rigid Pavement Theory and the ILLI-SLAB FEM Program
Jointed slab analysis was performed using a finite element program referred to in the literature as ILLI-SLAB (Tabatabaie-Raissi, 1977; Tabatabaie and Barenberg, 1978 and 1980).  This program was developed at the University of Illinois in the late 1970s for the structural analysis of jointed concrete slabs consisting of one or two layers, with either a smooth interface or complete bonding between layers.  The ILLI-SLAB model is based on the classical theory for a medium-thick elastic plate resting on a Winkler foundation, and can be used to evaluate the structural response of pavement systems with arbitrary crack/joint locations, any slab size, and any arbitrary loading combinations (Timoshenko and Woinowsky-Krieger, 1959).  Load transfer across joints/cracks can be provided by aggregate interlock or dowels or combinations of the two.  The model employs the 4-noded, 12-dof rectangular plate bending elements (ACM or RPB 12). This model has been extensively tested by comparison of results with available theoretical solutions and results from experimental studies (Tabatabaie et al., 1979; Tabatabaie and Barenberg, 1980; and Thompson et al., 1983).

Back-Propagation Artificial Neural Networks

A back-propagation type artificial neural network model was trained in this study with the results of ILLI-SLAB finite element program and used as an analysis design tool for predicting stresses and deflections in jointed concrete airfield pavements. Back-propagation ANNs are very powerful and versatile networks that can be taught a mapping from one data space to another using examples of the mapping to be learned. The term “back-propagation network” actually refers to a multi-layered, feed-forward neural network trained using an error back-propagation algorithm.  The learning process performed by this algorithm is called “back-propagation learning” (Rumelhart et al., 1990; and Haykin, 1999).  Back-propagation networks excel at data modeling with their superior function approximation capabilities (Haykin, 1999; and Meier and Tutumluer, 1998).

ILLI-SLAB Analysis of Concrete Slabs

Concrete airfield pavements were represented in this study by a four-slab assembly, each slab having dimensions of 7.62 m by 7.62 m (25 ft by 25 ft).  Figure 1 depicts the geometry and analysis conditions of the pavement sections such as the constant slab size (L), standard tri-tandem B-777 loading applied only on one quadrant of the lower-left slab, and the standard finite element mesh used.  The elasticity modulus and the Poisson’s ratio for the concrete slabs were set at 27,560 MPa (4,000 ksi) and 0.15, respectively.  A total of 5,616 ILLI-SLAB analyses were performed with the four-slab assembly by varying a number of design parameters. Various loading locations (slab interior, corners and/or edges) and joint load transfer efficiencies (LTEs) chosen along x- and y- directions (Ceylan et. al., 2000b).  LTEs were varied from 0% to 90%.  The typical variations of field values of the slab thickness (h), moduli of subgrade reaction (k), and the linear temperature gradient (tg) considered in the ILLI-SLAB finite element analyses for a total of seven input design parameters (Ceylan et. al., 2000b).
Out of the total 5,616 ILLI-SLAB analyses conducted, 2,592 of the analyses correspond to the temperature gradient loading only case.  Another 2,592 of ILLI-SLAB analyses were for the simultaneous aircraft and temperature gradient loading, and the remaining 432 were made to study the effects of B-777 gear loading only.  After all the analyses were completed, an ILLI-SLAB data file was formed comprising of seven input design parameters and four outputs with two critical vertical deflections ((D-max. and (U-max.) and two critical bending stresses ((x-max. and (y-max.).
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Neural Network Design, Training and Validation

To train a back-propagation type neural network with the results of the ILLI-SLAB finite element analyses, a network architecture was required.  Seven input variables (x, y, h, k, LTEx, LTEy, and tg) constituted the network input layer.  The four output variables for each loading case were the critical x- and y- bending stresses ((x-max and (y-max) and the critical downward and upward vertical deflections ((D-max. and (U-max.).  An ANN training data file was formed comprised of 3,024 rows and 19 columns with seven input parameters and twelve output responses (Ceylan, et. al., 2000b).  This was done by carefully recording the four critical pavement responses for the three loading cases.  A network with two hidden layers was exclusively chosen for the ANN models trained in this study.  Satisfactory results were obtained in the previous studies with these types of networks due to their ability to better facilitate the nonlinear functional mapping (Ceylan, et. al., 1998 and 2000a).

To train the ANN models, first the entire training data file was randomly shuffled and divided into training and testing data sets.  About 90 % of the data, 2,724 patterns, was used to train the different network architectures where remaining 300 patterns were used for testing to verify the prediction ability of each trained ANN model.  Since ANNs learn relations and approximate functional mapping limited by the extent of the training data, the best use of the trained ANN models can be achieved in interpolation.

The back-propagation ANN program “Backprop 3.5” developed by Meier (1995) was used for the training process, which consisted of iteratively presenting training examples to the network.  The neural network sigmoidal transfer function could only output results within the range of 0 and 1 (Rumelhart, et al., 1986).  Haykin (1999) suggested that offsetting the target values away from the limits of the sigmoidal activation function increases the learning process.  Both the 2,724 training and the 300 independent testing data sets, therefore, were normalized between the values of 0.1 and 0.9.  Each training “epoch” of the network consisted of one pass over the entire 2,724 training data sets.  The 300 testing data sets were used to monitor the training progress for a total of 10,000 learning cycles (epochs), which was found to be sufficient for proper network training (Ceylan, et. al., 2000b).  The function mapping/approximation ability of the trained ANN model was verified for each of the critical stresses and deflections with the low testing and training Mean Squared Error (MSE) values.
Six network architectures with two hidden layers were trained for predicting the critical pavement responses with 7 input nodes and 12 output nodes.  Overall, the MSEs decreased as the networks grew in size with increasing number of neurons in the hidden layers.  The testing MSEs for the two stresses and deflections were in general slightly lower than the training ones.  The error levels for both training and testing sets matched closely when the number of hidden nodes approached 60 in the 7-60-60-12 architecture (7 inputs, 60 nodes in each hidden layer, and 12 output nodes, respectively).  The lowest training MSEs in the order of 5(10-7 were obtained with the 7-60-60-12 architecture for both the maximum deflections and stresses.

Figure 2 shows the prediction ability of the 7-60-60-12 network at 10,000 learning cycles for the case of simultaneous aircraft and temperature gradient loading.  Similarly, for the gear loading only and temperature loading only cases (not shown here), the comparison of the predicted critical ANN deflections and stresses with the IILI-SLAB finite element solutions resulted in very low average absolute errors (AAEs).  The AAEs for the critical deflections were 2.1 % for downward and 1.9 % for upward while the AAEs for the critical stresses were 1.3 % in the x-direction and 1.6 % in the y-direction.  All 300 testing data points fall right on the line of equality.

Analysis of slabs under the simultaneous aircraft and climatic loading is a complicated task.  As shown in Figure 2, the prediction ability of the trained ANN model is very good even for the most complex simultaneous loading condition.  Only the seven input design variables are entered and the trained ANN model predicts accurately the critical pavement responses in less than a millisecond under the gear loading only, temperature loading only, and the simultaneous aircraft and temperature loading cases with an overall AAE value of about 1.4 % obtained for all twelve pavement responses.  Such a powerful design tool will be very beneficial for pavement engineers and designers to quickly analyze different “what if” scenarios to excel in their final design decisions and also to consider the effects of the varying climatic conditions.
Summary/Conclusions

The use of artificial neural networks (ANNs) as analysis design tools was demonstrated by analyzing concrete airfield pavements under the following three loading cases:  Boeing 777 aircraft gear loading only, temperature loading only, and simultaneous aircraft and temperature loading.  An ANN model was successfully trained with the results of some 5,600 ILLI-SLAB finite element analyses performed on a four-slab airfield pavement system.  For the three different loading cases, the ANN model predicted maximum bending stresses and deflections with an overall average absolute error of less than 1.4% when compared to those computed by the ILLI-SLAB program.

The use of the ANN model resulted in both a drastic reduction in computation time (about 0.3 million times faster than the finite element model) and a simplification of the complicated finite element program input and output requirements.  Such an ANN-based design methodology employed for an improved analysis would be very helpful for checking the alternative design options (“what if” scenarios) with the inclusion of climatic effects in the design of airport pavements.  
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