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ABSTRACT

Knowledge is the essential element of human thoughts. Creating an artificial
system with knowledge and intelligence, furthermore, has been one of the
humankind's long-term visions. The computer has been the smartest machine ever
since human history in technology began. Therefore, people attempted to use
computer to realize human intelligence such as thinking, reasoning, learning.
However, it aways encountered numerous bottlenecks. The operating model of a
computer is absolutely different from that in humanbrain. The computer is superior to
human brain by its computing ability. But the computer loses its efficiency in
conceptualizing, thinking, reasoning and distinguishing. The soft computing theory is
developed to make a connection between machine intelligence and human brain. With
such atheory, researchers on knowledge engineering can transfer the minding process,
recognition structure and learning procedure of human into mathematical
models. Then, they could work on any kinds of analysis, designing, simulation and
experiments systematically. By doing so, the knowledge processing ability of artificial
intelligent sysem can be improved and enhanced.

This paper is focused on the integration issues of soft computing theory. It
discusses the application potentia of soft computing in the fields of machine thinking,
machine recognizing, and machine learning. In addition, it also anatomizes the role of
knowledge processing technologies that based on soft computing theory play in
modern knowledge engineering.
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