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1 Introduction

A standard assumption in panel models is that regression functions are identical across all
observations in a sample. In some applications this assumption may be violated. Hansen
(1999a) suggested an alternative in which the individual observations are divided into classes
according to an observable variable. If the regression functions are the same for all observations
in a class and this holds for all classes, this assumption leads to a panel threshold regression
(PTR) model. Hansen (1999a) derives econometric techniques for the PTR model. These
include maximum likelihood estimation, asymptotic confidence intervals for the parameters as
well as specification tests for determining the number of classes. The last problem leads to
nonstandard inference because of an identification problem present in the tests. The PTR
approach is motivated by an empirical example, in which there exists theory suggesting that
the regression functions may not be identical across samples. In particular, the economic
theory suggests that in the case of imperfect information, external finance may be limited, and
already heavily indebted firms may have to use their cash flow to finance their investments. This
separates them from other firms whose access to external sources of financing is not restricted.
A leading article making use of this classification of firms is Fazzari, Hubbard, and Petersen
(1988).

At the end of his article, Hansen (1999a) points out that one could also apply models with a
smooth transition to this problem. In that case, instead of a small finite number of classes there
would be a smooth transition controlled by an observable variable from one extreme regime
to another. In the application to investment financing, that would mean that the degree of
indebtedness would have a more subtle effect on the availability of external financing than a
PTR model would allow. In this paper we introduce a nondynamic fixed effect panel model in
which the regression coefficients are allowed to change smoothly as a function of an exogenous
variable. In this sense, the paper offers an alternative methodology to Hansen (1999a).

This paper is organized as follows: The next section introduces the panel smooth transition
model. The third section discusses estimation and model building. Section 4 contains small-
sample properties of the specification procedure. Section 5 contains an illustration of the
proposed methodology where it is applied to the economic problem analyzed by Hansen (1999a).
Section 6 concludes.

2 Panel smooth transition regression model

The Panel Smooth Transition Regression (PSTR) model is a fixed effect model with exogenous
regressors. The basic PSTR model with a single transition is defined as follows:

yit = µi + β′1xit + β′2xitg (qit; γ, c) + uit (1)

for i = 1, . . . , N and t = 1, . . . , T . The dependent variable, yit, is a scalar, µi is an unobservable
time-invariant regressor, xit is a k−dimensional vector of time-varying exogenous variables1, qit

is an observable transition variable and uit are the errors.
The main feature of this model is the transition function g (qit; γ, c) . It is a continuous and

bounded function of qit that allows the parameter in (1) to change smoothly as a function of

1Lagged values of the dependent variable are not allowed because the presence of the fixed effect would
invalidate the use of the within transformation to handle the nuisance parameters; see Chamberlain (1984, p
1256).

1



qit. In this work we follow Granger and Teräsvirta (1993), Teräsvirta (1994) and Jansen and
Teräsvirta (1996) and define

g (qit; γ, c) =

(
1 + exp

(
−γ

m∏
j=1

(qit − cj)

))−1

, γ > 0, c1 ≤, . . . ,≤, cm (2)

where c = (c1, . . . , cm)′ is an m-dimensional vector of location parameters, and γ ≥ 0 and
c1 ≤ · · · ≤ cm are identification restrictions. Parameter γ determines the slope of the transition
function. When m = 1 and γ → ∞, (1) and (2) define the two-regime PTR model in Hansen
(1999a). When m > 1 and γ → ∞, the number of identical regimes remains two, but the
function switches between zero and one at c1, . . . , cm. Finally, when γ → 0, the transition
function (2) becomes constant and the model is the standard linear model with fixed effects.

The transition function (2) with m = 1 or m = 2 is already a very flexible parametrization
since it allows different types of changes in the parameters. For example, if m = 2, c1 = c2 = c,
(2) implies that only the Euclidean distance between qit and c has an effect on yit. Moreover, if
γ →∞, transition function (2) defines a three-regime model whose outer regimes are identical
and different from the mid-regime. Finally, when m = 1, the model allows a single monotonic
smooth transition whose location is controlled by c1.

A possible generalization of the PSTR model is the general additive PSTR model

yit = µi + β′0xit +
r∑

j=1

β′jxitgj(q
(j)
it ; γj, cj) + uit (3)

where the transition functions are of type (2). If m = 1 for gj, j = 1, . . . , r, q
(j)
it ≡ qit and

γj → ∞, j = 1, . . . , r, (3) collapses into an (r + 1)-regime PTR model of Hansen (1999a).
Consequently, the general additive PSTR model can be used as an alternative to multiple-
regime PTR model. Additionally, when the larger model the investigator is willing to consider
is a PSTR model (1) with r = 1 and m = 1 or m = 2, model (3) can serve as an alternative in
the evaluation of the estimated PSTR model (1). This possibility will be discussed in Section
3.4.2

3 Building panel smooth transition regression models

3.1 Modelling cycle

The PSTR model is a nonlinear model, and its use requires a systematic modelling strategy.
Hansen (1999a) outlines a modelling cycle for the PTR model that consists of testing linearity
and selecting the number of regimes using statistical tests. The latter stage also implies maxi-
mum likelihood estimation of the parameters of at least two PTR models. Hansen assumes that
the threshold variable is given, but if it were not, his procedure could probably be extended to
include the possibility of choosing it from a set of candidate variables as in Hansen (1999b).

In this paper, we consider a modelling cycle for PSTR models consisting of specification,
estimation and evaluation stages. Specification includes testing linearity and, if it is rejected,
determining the form of the transition function (2), that is, choosing between m = 1 and m = 2.
At the evaluation stage the estimated model is subjected to misspecification tests to check
whether or not it can be considered an adequate description of the data. The null hypotheses
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to be tested include parameter constancy, no remaining nonlinearity and no autocorrelation in
the errors.

A similar cycle has been previously suggested for smooth transition autoregressive (STAR)
and smooth transition regression (STR) models; see, for example, Teräsvirta (1998) or van Dijk,
Teräsvirta, and Franses (2002) for description and discussion. It has inspired the techniques
developed in the present work.

3.2 Testing linearity against PSTR model

The first step of the specification stage is to test linearity against PSTR. This is important
for both statistical and economic reasons. Statistically, the PSTR model is not identified if
the data-generating process is linear, and a linearity test is necessary to avoid the estimation
of unidentified models. The PTR model has the same property. From the economics point of
view, a linearity test may account for testing some economic theory suggestions. For instance,
in the example on the access of firms to external financing, established theory suggests a linear
model, whereas a nonlinear model is required if there are credit restrictions that depend on the
degree of indebtedness of the firm.

Testing linearity in the PSTR model (1) can be carried out in two ways either by testing
H1

0 : β2 = 0 or H2
0 : γ = 0. In both cases the test will be nonstandard because under either null

hypothesis, the PSTR model contains unidentified nuisance parameters. In particular, (γ, c′)
are not identified under H1

0 and (β′2, c
′) under H2

0. The testing problem when unidentified
nuisance parameters are presented under the null was first studied by Davies (1977, 1987).
Luukkonen, Saikkonen, and Teräsvirta (1988), Andrews and Ploberger (1994) and Hansen
(1996) proposed alternative solutions to the problem. Recently, Hansen (1999a, 2000) applied
his testing procedure in the PTR framework. We follow Luukkonen, Saikkonen, and Teräsvirta
(1988) and test the linearity hypothesis as H0 : γ = 0. To circumvent the identification problem,
we replace g (qit; γ, c) by its first-order Taylor expansion around γ = 0 and test an equivalent
hypothesis in an auxiliary regression. After replacing g(qit; γ, c) in (1) by its Taylor expansion
and merging terms we obtain the following auxiliary regression,

yit = µi + β′∗1 xit + β′∗2 xitqit + · · ·+ β′∗mxitq
m
it + u∗it (4)

where the parameter vectors β∗2 ,. . . ,β
∗
m are multiples of γ and rit = uit + O (γm) β′2xit. Testing

H0 : γ = 0 in (1) is equivalent to testing H∗
0 : β∗2 = · · · = β∗m = 0 in (4). Note that under the

null hypothesis {u∗it} = {uit}, so the Taylor series approximation does not affect the asymptotic
distribution theory.

We make the following assumptions about model (1) under the null hypothesis:

Assumption L1: For each t, {yit, xit, qit} are independently distributed (i.d.) across i.

Assumption L2: For each i, uit is i.i.d over t and independent of {(xit, qit)
T
t=1},

and E(uit) = 0.

Assumption L3: E|xitsq
m
it |1+δ ≤ ∆1 < ∞, for i = 1, . . . , N, t = 1, . . . , T , s = 1, . . . , k, where

δ > 1.

Assumption L4: E|xitsq
m
it uit|2+δ ≤ ∆2 < ∞ for i = 1, . . . , N, t = 1, . . . , T , s = 1, . . . , k, where

δ > 1.
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Theorem 1 If assumptions L1 to L4 are satisfied, then the least squared estimator β̂ of β =
(β∗1 , . . . , β

∗
m)′ is consistent and asymptotically normal under the null hypothesis when N → ∞

with T fixed.

Proof. See Appendix A.1
Even though the null hypothesis H∗

0 can be tested using any of the three classical tests,
we restrict ourselves to the LM test because it only requires the estimation of (4) under the
null. The computation of the LM statistic involves two steps. First, eliminate the fixed effect
from (4). Second, compute the LM statistic for the transformed model. The LM test and its
F-version can be computed in three stages as follows:

1. Regress ỹit = yit −
∑

t yit/T on x̃it = xit −
∑

t xit/T and compute the sum of squared
residuals SSR0.

2. Regress ỹit on x̃it and (x′itqit−
∑

t x
′
itqit/T, . . . , x′itq

m
it −

∑
t x

′
itq

m
it /T ) and compute the sum

of squared residuals SSR1.

3. Compute,

LM = TN(SSR0 − SSR1)/SSR0 (5)

LMF = {(SSR0 − SSR1)/mk} / {SSR1/(TN −N −mk)} (6)

Under the null hypothesis, statistic (5) is asymptotically distributed as χ2
mk and the F-

statistic (6) has an approximate F [mk, TN −N −mk] distribution.

Suppose that the larger model the investigator is willing to consider is the PSTR model (1)
with m = 1 or 2 in (2). The linearity test can then be used to choose between m = 1 and m = 2.
Granger and Teräsvirta (1993) and Teräsvirta (1994) proposed the use of a sequence of linearity
tests for determining m. The testing sequence applied to the present situation is the following:
Using the auxiliary regression (4) with m = 3, test the null hypothesis H0 : β3 = β2 = β1 = 0.
If it is rejected, test H04 : β3 = 0, H03 : β2 = 0|β3 = 0 and H02 : β1 = 0|β3 = β2 = 0. Select
m = 2 if the rejection of H03 is the strongest one, and otherwise select m = 1. For the reasoning
behind this rule, see Teräsvirta (1994).

3.3 Estimation of parameters

Estimation of parameters of the PSTR model (1) is a relatively straightforward application of
the fixed effect estimator and nonlinear least squares [NLS]. One has to eliminate the individual
effects µi by removing individual-specific means and to apply NLS to the transformed model
to estimate the remaining parameters. This estimating procedure can be seen as maximum
likelihood where first the likelihood function is concentrated with respect to the fixed effects.

In order to discuss the asymptotic properties of the ML estimator we write (1) for individual
i as,

Yi = ιµi + X1iβ1 + Wi(β3)β2 + Ui (2.1’)

where ι is a (T × 1) vector of ones, X1i = (x′i1, . . . , x
′
iT )′ and Wi(β3) = (g(X2iβ3) ¯ X1i) with

X2i = (ι′, q′i, . . . , q
′m
i )′ and β3 = γ(1, c∗1, . . . , c

∗
m)′. The dimensions of X1i, X2i are (T × k),

(T × (m + 1)), respectively.
We make the following assumptions for the PSTR model (1) or (2.1’):
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Assumption E1: {Yi, X1i, qi} is an independently identically distributed sequence of random
variables and Ui = Yi − E[Yi|µi, X1i, qi].

Assumption E2: g(x′2itβ3)β2 − g(x′2itβ
0
3)β

0
2 6= 0 when β2 6= β0

2 and/or β3 6= β0
3 .

Assumption E3: The parameter space Θ is a compact subset of RK and β0 ∈ Θ.

Assumption E4: E[|u2
it|2] ≤ ∆1 < ∞ for i = 1, . . . , n, t = 1, . . . , T .

Assumption E5: E[|x2it,jx2is,hxis,rxit,l|2] ≤ ∆ < ∞, for j, h = 1, . . . , m, r, l = 1, . . . , k and
i = 1, . . . , N , t = 1, . . . , T .

Assumption E6: E[|xjit,h|2] ≤ ∆ < ∞, for j = 1, 2, i = 1, . . . , N , h = 1, . . . , k and t =
1, . . . , T .

Assumption E7: V ≡ E

[
[X1i

...Wi(β
0
3)]

′QT [X1i
...Wi(β

0
3)]

]
is positive definite. QT = IT − 1

T
ιι′

is the within transformation matrix.

Theorem 2 If assumptions (E1) to (E7) are satisfied, the maximum likelihood estimator is
consistent and asymptotically normal when N →∞ and T is fixed.

Proof. See Appendix A.2
The only assumption that is not standard is (E2) which is an identification assumption,

assumptions (E1), (E3) to (E7) are standard in linear panel models with strictly exogenous
regressor. Even though we have assumed that the observations across individuals are i.i.d it
could be relaxed in order to allow for heterogeneity. Such a generalization would imply the
existence of higher-order moments. [see White (1980) and White (2000) for details].

As mentioned before, the estimation of the parameters in (1) is carried out in two steps.
First, we eliminate the fixed effects and then apply NLS to the transformed model. Even though
the first step is standard in linear models, equation (1) calls for a more careful treatment.
Specifically, note that the individual means in (1) have the form

ȳi = µi + β1xi + β2wi (γ, c) + ūi (7)

where ȳi, x̄i, w̄i and ūi are individual means. Subtracting equation (7) from equation (1) yields

ỹit = β′x̃∗it (γ, c) + ũit (8)

where ỹit = yit − ȳi, ũit = uit − ūi, β = (β′1, β
′
2)
′, x̃∗it(γ, c) = (x′it − x̄′i, x

′
itg (qit; γ, c)− w̄′

i(γ, c))′.
Consequently, the transformed vector x̃∗it(γ, c) in (8) depends on (γ, c′)′ through both the levels
and the individual means. For this reason, x̃∗it (γ, c) has to be recomputed at each iteration.

The iterations have the following form. First, given
(
γ(j), c(j)′)′ estimate β(j) by ordinary

least squares, which yields

β̂(j) =

(∑
i

∑
t

x̃∗it
(
γ(j), c(j)

)
x̃∗′it

(
γ(j), c(j)

))−1 ∑
i

∑
t

x̃∗it
(
γ(j), c(j)

)
y∗it (9)

Then, conditionally on β(j), estimate
(
γ(j+1), c′(j+1)

)′
by NLS. This amounts to solving

(
γ̂(j+1), ĉ′(j+1)

)′
= arg min

(γ,c)

∑
i=1

∑
t=1

(
ȳit − β′(j)x̃∗it (γ, c)

)2
(10)
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Leybourne, Newbold, and Vougas (1998) proposed a similar procedure for STAR models;
see also Teräsvirta (1998) and van Dijk, Teräsvirta, and Franses (2002) for discussion. Small-
sample properties of this procedure are investigated by simulation in Section 4.1.

An issue that deserves special attention in the estimation of the PSTR model is the selection
of starting-values. Good starting values may considerably facilitate the numerical optimization
or, conversely, inappropriate starting-values may cause problems. A feasible method for smooth
transition models is a grid search. It is seen that (8) is linear in parameters when parameters
(γ, c′)′ are fixed. This suggest the following algorithm. First, define an array of values for
(γ, c′)′ such that γ > 0, and cj max < max {qit} and cj min > min {qit}, j = 1, . . . , m . Calculate
(9) for all these values in turn and select the vector (γ∗, c′∗)′ minimizing the sum of squared
residuals as starting-values of the estimation algorithm. Hansen (1999a) also applied a form of
grid search in the estimation of the parameters of PTR model.

3.4 Evaluation of the estimated model

After estimating the parameters, the estimated PSTR model has to be evaluated. In this section
we consider a number of misspecification tests for this purpose. One of them, the test of no
remaining nonlinearity, may also be viewed as a specification test. In this test, the alternative
hypothesis is a multiple PSTR model, and the test is thus a smooth transition counterpart to
the test in Hansen (1999a) for determining the number of regimes in the PTR model.

The tests to be considered in this section resemble the ones that Eitrheim and Teräsvirta
(1996) derived for STAR models. It turns out that they can be modified to fit the present
framework. The new tests are the test of parameter constancy and that of no remaining
nonlinearity. Error autocorrelation is also an indicator of misspecification. Its presence can,
however, already be tested by applying the test by Baltagi and Li (1995).

3.4.1 Testing parameter constancy

Testing parameter constancy in panel data models has not received as much attention as in
the time series literature. A possible explanation is that in many applications T is relatively
small, which makes the assumption of parameter constancy difficult to test. However, with an
increasing number of panels with relatively large T the test for parameter constancy in fixed
effects models becomes feasible and important. Even though our test is developed for PSTR
models, after minor modifications it can be applied to linear fixed effects models.

Our alternative to parameter constancy is that the parameters in (1) change smoothly from
one regime to another. The model under the alternative may be called the Time Varying Panel
Smooth Transition regression [TV-PSTR] model. It can be written as follows:

yit = µi + [β′11xit + β′12xitg (qit; γ1, c1)]

+f (t/T ; γ2, c2) [β′21xit + β′22xitg (qit; γ1, c1)] + uit (11)

where g (qit; γ1, c1) and f (t/T ; γ2, c2) are transition functions as defined in (2) and (γ1, c
′
1)
′ and

(γ2, c
′
2)
′ are the parameter vectors. Equation (11) has a structure similar to the time-varying

STAR model discussed in Lundbergh, Teräsvirta, and van Dijk (2003). One may also write
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(11) as follows:

yit = µi + [β11 + β12f (t/T ; γ2, c2)]
′ xit

+ [β21 + β22f (t/T ; γ2, c2)]
′ xitg (qit; γ1, c1) + uit. (12)

Equation (12) shows how the parameters of the model vary between β11 and β11 + β12 and β21

and β21 + β22, respectively, smoothly and deterministically over time.
The alternative model (11) allows multiple alternatives to parameter constancy depending

on the specification of f (t/T ; γ2, c2) . The general specification of f (t/T ; γ2, c2) is

f (t/T ; γ2, c2) =

(
1 + exp

(
−γ2

h∏
j=1

(t/T − c2j)

))−1

, t = 1, . . . , T (13)

where c2 = (c21, . . . , c2h)
′ is an h-dimensional vector of location parameters. As before, the

value of h determines the alternative hypothesis. In particular, it controls the form of switches
in parameters. When h = 1, the TV-PSTR model allows monotonic change in parameters.
Equivalently, when h = 2, the parameters change symmetrically around (c21 + c22)/2. Finally,
γ2 measures the smoothness of the change: when γ2 → ∞ in (13), f (t/T ; γ2, c2) becomes a
step function, so structural breaks are included in the alternative as special cases. On the other
hand, when γ2 = 0 in (13), model (11) has constant parameters.

Note that it is assumed that the parameters in the transition function g(qit; γ, c1) are con-
stant over time. This assumption is a practical one: such ”second-order” nonconstancy is
considerably harder to detect than nonconstancy in the regression coefficients, in particular as
T may not be large in applications. We also assume a common transition function f (t/T ; γ2, c2)
for all individuals.

The null hypothesis of constant parameters in model (11) can be stated as H0 : γ2 = 0.
However, under this hypothesis (β′12, β

′
22, c

′
2)
′ are not identified. To circumvent this problem

we follow Eitrheim and Teräsvirta (1996) and replace (13) in (11) by its first-order Taylor
expansion around γ2 = 0. After merging terms we get the following auxiliary regression

yit = µi + x′itβ
∗
11 + x′it(t/T )β∗1 + · · ·+ x′it(t/T )hβ∗h (14)

+
{
x′itβ

∗
21 + x′it(t/T )β∗h+1 + · · ·+ x′it(t/T )hβ∗2h

}
g (qit; γ1, c1) + u∗it

where u∗it = uit + R (t/T, γ2, c2) and R (t/T, γ2, c2) is the approximation error in the Taylor
expansion. In (14), β∗j = γ2βj for j = 1, 2, . . . , h, h + 1, h + 2, . . . , 2h. Then the original
null hypothesis, H0 : γ2 = 0 can be tested in the auxiliary regression (14) as H′

0 : β∗j = 0
for j = 1, 2, . . . , h, h + 1, h + 2, . . . , 2h. Finally, note that under H′

0 u∗it = uit, i = 1, . . . , N ,
so the Taylor series approximation does not affect the distribution assumptions. Therefore,
under the null hypothesis and standard regularity conditions, the NLS estimator of b =
(β∗′11, β

∗′
1 , . . . , β∗′21, β

∗′
h+1, . . . , β2h, γ, c′)′ is consistent and asymptotically normal for fixed T and

N →∞.
In this context it is convenient to use the LM test because it only requires the estimation

of (14) under the null hypothesis. In order to compute the LM statistic and its F-version we
need to define the following vectors:
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v̂it =
(
w̃′

it, z̃
′
it, (∂z̃it/∂γ1)

′ β̂12, (∂z̃it/∂c11)
′ β̂12, . . . , (∂z̃it/∂c1m)′ β̂12

)′

ξ̂it =(x̃′it, ψ̃
′
it, (∂ψ̃it/∂γ1)

′, (∂ψ̃it/∂c11)
′, . . . , (∂ψ̃it/∂c1m)′)′

ψ̃it =xitg (qit, γ1, c1)− 1/T
T∑

t=1

xitg(qit, γ1, c1)

w̃it =xit(t/T )j − 1/T
T∑

t=1

xit(t/T )j, j = 1, . . . , h

and

z̃′it = xitg (qit; γ1, c1) (t/T )j − 1/T
T∑

t=1

xitg (qit; γ1, c1) (t/T )j, j = 1, . . . , h

The χ2 and F version of the test can be computed in three stages as follows2:

1. Estimate the PSTR model and compute the residual sum of squares SSR0.

2. Regress ỹit on v̂it and ξ̂it and compute the residual sum of squares SSR1.

3. Compute the χ2 and F-versions of the tests as follows;

LM = TN(SSR0 − SSR1)/SSR0

LMF = {(SSR0 − SSR1)/2hk} / {SSR1/(TN −N − 2hk)} (15)

Under the null hypothesis LM is asymptotically distributed as χ2
(2hk) and LMF is approx-

imately distributed as F (2hk, TN −N − 2hk).

Small-sample properties of LMF will be investigated by simulation in Section 4.2.2.

3.4.2 Testing the hypothesis of no remaining nonlinearity

The purpose of this test is twofold. First, if the basic PSTR model (1) with (2) is the largest
model that one wants to consider, the test is a misspecification test. A rejection indicates
that the specification is not satisfactory. If the investigator is willing to consider a multiple
PSTR model, the test serves as a test for the number of transition functions in the model.
When the test is carried out, it is not necessary to assume that the new transition function
in the alternative has the same transition variable as the one in the estimated model. As
already mentioned, the test bears resemblance to the test of a similar hypothesis in Eitrheim
and Teräsvirta (1996).

The model we consider in this subsection is the general additive PSTR model

yit = µi + x′itβ0 +
r∑

j=1

gj(q
(j)
it ; γj, cj)x

′
itβj + uit (16)

2See Appendix C for the mathematical derivation of the test.
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where r is the number of regimes. This model can be written in a way that resembles the
Multiple Regime Threshold model presented by Hansen (1999a). In fact, after adding and
subtracting the appropriate elements, (16) becomes an (r + 1)-regime STR panel model,

yit = µi +

(
1−

r∑
j=1

g
(
q
(j)
it ; γj, cj

))
x′itβ0 +

r∑
j=1

x′it (β0 + βj) g
(
q
(j)
it ; γj, cj

)
+ uit

where g
(
q
(j)
it ; γj, cj

)
are transition functions as defined in (2) with m = 1.

Consider the case in which r = 2 and q
(j)
it = qit for j = 1, 2. Equation (16) then becomes

three regime STR panel model of the form:

yit = µi + (1− g1 − g2) x′itβ0 + g1x
′
it (β0 + β1) + g2x

′
it (β0 + β2) + uit (17)

Two regimes in (17) are associated with g1 = g2 = 0 and g1 = g2 = 1, respectively, and there is
an intermediate regime associated with g1 = 0 and g2 = 1 or g1 = 1 and g2 = 0. When γj →∞,
j = 1, 2, model (17) collapses into a three-regime PTR model of Hansen (1999a).

The test of no remaining nonlinearity can also be used as a test for determining the number
of transition functions in the PSTR model. In applications a linear panel model is often applied
by estimating several models into which the observations are allocated by a classifier qit. In
general, the number of models or regimes and the values of qit that define the different models
are selected on an ad hoc basis. Here we show how one can select the number of regimes
sequentially.

In order to demonstrate the procedure, we assume that a PSTR model (16) with r = 1 has
been estimated and adding another transition function is considered. The extended model can
be written as follows:

yit = µi + x′itβ0 + g1 (qit; γ1 , c1) x′itβ1 + g2 (qit; γ2, c2) x′itβ2 + uit (18)

and the null hypothesis of no additional transition in (18) is H0 : γ2 = 0. Under H0, the
parameters in (18) cannot be estimated consistently because the model is not identified. As
before, the identification problem can be circumvented by replacing g2 (qit; γ2, c2) in (18) by a
Taylor expansion around γ2 = 0. Choosing a first-order Taylor approximation leads to testing
the hypothesis H′

0 : β∗22 = · · · = β∗2m = 0 in the following auxiliary regression:

yit = µi + x′itβ
∗
0 + g1 (qit; γ̂1 , ĉ1) x′itβ1

+ (xitqit)
′ β∗22 + · · ·+ (xitq

m
it )

′ β∗2m + e∗it (19)

where (γ1, c
′
1)
′ is the parameter vector estimated under the null hypothesis.

In order to compute the χ2 and F-versions of the test we set ˆ̃zit = (x̃′it, ω̃
′
it (γ1, c1))

′ and

ṽit = (x̃′itqit, . . . , x̃′itq
m
it )

′ where w̃it(.) = xitg(qit, γ, c) −∑
t xitg(qit, γ, c)/T and x̃itq

j
it = xitq

j
it −∑T

t=1 xitq
j
it/T , j = 1, . . . , m. The test can be computed in three stages as follows:

1. Estimate the PSTR model (1) and compute the residual sum of squares SSR0.

2. Regress ỹit on ˆ̃zit and ṽit, and compute the residual sum of squares SSR1.
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3. Compute the χ2 and F-versions of the test as follows:

LM = TN(SSR0 − SSR1)/SSR0

LMF = {(SSR0 − SSR1)/mk} / {SSR1/(TN −N −mk)}

Statistic LM has an asymptotic χ2
mk distribution under H0, whereas LMF is approximately

F [mk, TN −N − 2mk], when H′
0 holds.

This testing procedure can be used to determine the number of regimes in the general
additive PSTR model. The selection can be done by using the following sequence of hypothesis:
Given an estimated PSTR model with r = r∗, test the null hypothesis H0 : r = r∗ against
H1 : r = r∗ + 1. If H0 is not rejected, the testing procedure ends. Otherwise, the null
hypothesis H0 : r = r∗ + 1 is tested against the model with r = r∗ + 2. The testing procedure
continues until the first acceptance of H0.

The sequence of tests for specifying a general additive PSTR model can be carried out as
follows:

1. Estimate the linear model and test linearity at significance level α.

2. If linearity is rejected, estimate a single transition PSTR model.

3. Test the hypothesis of no remaining nonlinearity for this model. If the hypothesis of
no remaining nonlinearity is rejected at significance level τα, 0 < τ < 1, estimate a
double-transition model. The significance level is reduced by a factor τ in order to favour
parsimony. Estimation of this model can be carried out in two stages. First, use a grid
search of (γ2, c2) to find the initial values and then estimate the model by NLS. The
grid search is conditional on the estimated values (γ̂1, ĉ

′
1)
′ from the previous stage of the

process.

4. Continue until the first acceptance of the hypothesis of no remaining nonlinearity.

We investigate by simulation the small sample properties of the algorithm. The results
indicate that the algorithm works well in small samples when the noise to signal ratio is small
and/or the sample size is relatively large, N ≥ 40 and T ≥ 10. In other cases, the results
indicate that the algorithm tends to identify a lower number of regimes than the true one and
only rarely it selects a larger model3.

Eitrheim and Teräsvirta (1996) pointed out potential numerical problems in the computation
of the misspecification tests. In particular, when the estimates of γj are relatively large, such
that the transition between regimes is rapid, the partial derivatives of the transition functions
gj (qit; γ̂j, ĉj), j = 1, . . . , r, with respect to

(
γ̂j, ĉ

′
j

)′
obtain about the same value with few

exceptions. As a result, the moment matrix of the auxiliary regression becomes near-singular.
However, the contribution of the terms involving these partial derivatives to the test statistic
is negligible at large values of γj. They can simply be omitted from the auxiliary regression
without influencing the empirical size (and power) of the test statistic.

3The simulation results not presented here are available upon request
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4 Simulation study

In this section we investigate the small-sample properties of the specification strategy for the
PSTR model by simulation. The section is divided in three subsections. The first subsection
deals with small sample properties of the NLS estimators. In the second subsection we in-
vestigate the size and power properties of the tests of linearity, parameter constancy and no
remaining nonlinearity.

The design of the Monte Carlo experiment is the following. The number of replications
equals 1000. Every experiment is carried out for the following sample sizes: N = 10, 40, 160
and T = 5, 10. The vector of exogenous variables (x′it, qit)

′ is generated independently for each
individual following a VAR(1) model. The first 100 observations for each generated sample are
discarded to avoid initialization effects. The endogenous variable is generated from

yit = µi + x′itβ0 +
r∑

j=1

g (qit; γj, cj) x′itβi + eit (20)

where g (qit; γj, cj) is defined as in (2), µi = σµui with σµ = 10, ui and eit are a standard normal
variables. The values of r, m and (γj, c

′
j)
′ vary from one design to another and (β′0, . . . , β

′
r)
′,

is obtained as follows: β0 = (1.0, 3.0)′, and βj = 0.7β0 for j = 1, . . . , r in Section 4.1 and
βj = 0.1β0 for j = 1, . . . , r in Section 4.2.

4.1 Estimation of the PSTR model

In order to investigate small-sample properties of our estimation algorithm we carry out two
experiments. In the first one, we simulate model (20) with r = 1 and m = 1. We set the value
of location vector equal c =E(qi) = 3.5 where E(qi) is the unconditional mean of the transition
variable. In the second experiment we generate the data from model (20) with r = 1 and
m = 2, with location vector c = (3, 4)′. Finally, to find out the effect of γ on the estimation we
consider values γ = 4, 50. In all cases the estimation is carried out as described in Section 3.3.

The results for the experiments where m = 1 are in Table 1 and the ones where m = 2 in
Table 2. The reported statistics are Monte Carlo mean and standard deviation of (γ̂, ĉ)′ and
the bias in estimating (β′0, β

′
1)
′. The tables are divided in two panels the upper one contains

the results for γ = 4, whereas the results of the second experiment with γ = 50 can be
found in the lower panel. The results indicate that the parameter estimates (β′0, β

′
1)
′ and c

of the PSTR model can be estimated with reasonable accuracy. However, by comparing the
estimated standard deviations of c between the panels in each table, it is seen that the accuracy
is higher when γ is large than when it is small. In particular, for γ = 4 and m = 1 the average
σ̂c equals 0.04, whereas for γ = 50 the average σ̂c is 0.02. This may be due to the fact that for
γ = ∞ the elements of c are estimated superconsistently. Consequently, when γ is finite but
sufficiently large, c is estimated more accurately than is the case when γ is small. This result
contrasts with the fact that small values of γ can be estimated with greater accuracy than large
values. For example, for N = 160 and T = 5, σ̂γ equals 0.26 while for γ = 50 is 7.2. But then,
when γ is large the magnitude of the σ̂γ does not play a role because as long as the estimate
is also large the estimation error does not matter very much. At the other end, if γ is close to
zero estimation may be difficult because then the model is close to being unidentified and the
sequence of estimates may not converge. A similar conclusion holds for models that are close
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Table 1: Small sample properties of the estimating procedure for the Panel LSTR model

γ = 4, c1 = 3.5
N T γ̂ σ̂γ ĉ1 σ̂c1 bias(β)× 10−2

10 5 4.517 3.054 3.501 0.084 0.400
10 4.088 0.757 3.500 0.049 0.054

40 5 4.027 0.541 3.501 0.036 0.793
10 4.011 0.337 3.500 0.023 0.243

160 5 4.014 0.257 3.499 0.018 0.179
10 4.005 0.166 3.500 0.011 0.425

γ = 50, c1 = 3.5
N T γ̂ σ̂γ ĉ1 σ̂c1 bias(β)× 10−2

10 5 140.44 290.8 3.500 0.027 0.342
10 94.92 172.0 3.500 0.014 0.029

40 5 58.17 54.7 3.500 0.007 0.887
10 52.03 10.3 3.500 0.004 0.327

160 5 51.43 7.2 3.500 0.003 0.272
10 50.37 4.5 3.500 0.002 0.260

to be linear, that is models in which β1 in (20) is relatively small.
Finally, by comparing σ̂γ across values of N for given T , one can notice the gains from the

panel in estimating γ. For instance, when m = 1, T = 10 and γ = 4; σ̂γ for N = 10, 40, 160
equal 0.75, 0.33 and 0.16, respectively. This is not an unexpected outcome because the accuracy
of the estimate should increase with the number of observed transitions.

4.2 Small-sample properties of the misspecification tests

In this section we investigate the small-sample properties of our misspecification tests. In
particular, we investigate the size and power of these tests for different values of N and T. The
section is divided in three subsections and each subsection contains the results for a particular
test.

4.2.1 Linearity test

Previous studies have documented that the F-version of the test has better size properties
in small samples than the asymptotic χ2-based statistic. For this reason, we only report the
results for the F-version. [See Eitrheim and Teräsvirta (1996) and van Dijk, Teräsvirta, and
Franses (2002) for details]. Additionally, since the auxiliary regression (4) with m = 3 has
power against the alternative model (1) with m = 1 and 2 in (2), we compute the test statistic
using m = 1, 2, 3 in (4)4. We denote by m∗ the maximum power of qit in the auxiliary regression

4The test based on the auxiliary regression (4) assuming m∗ = 3 has power against the alternative models
with m = 1 and m = 2 because it can be interpreted as having been derived by replacing the transition (2)
in (1) by its second order Taylor expansion. When m = 1 in (2) the second order Taylor expansion yields an
auxiliary regression with m∗ = 2, and when m = 2 the second order Taylor expansion of transition function
yields an auxiliary regression with m∗ = 4. Consequently, the test based on m∗ = 3 has power against both
alternative models, m = 1 and m = 2.

12



Table 2: Small sample properties of the estimating procedure for the Panel LSTR model with
m = 2

γ = 4, c1 = 3, c1 = 4
N T γ̂ σ̂γ ĉ1 σ̂c1 ĉ2 σ̂c2 bias(β)× 10−2

10 5 10.932 56.670 3.095 0.270 3.906 0.273 0.674
10 4.547 1.808 3.083 0.232 3.917 0.231 2.558

40 5 4.238 1.147 3.066 0.194 3.935 0.196 2.554
10 4.099 0.763 3.039 0.143 3.960 0.143 2.741

160 5 4.032 0.592 3.026 0.106 3.974 0.106 2.936
10 4.012 0.391 3.008 0.051 3.992 0.051 2.157

γ = 50, c1 = 3, c1 = 4
N T γ̂ σ̂γ ĉ1 σ̂c1 ĉ2 σ̂c2 bias(β)× 10−2

10 5 114.25 221.85 2.999 0.037 4.002 0.041 0.181
10 72.65 95.98 3.000 0.014 4.000 0.013 0.124

40 5 54.80 21.59 3.000 0.008 4.000 0.008 1.266
10 51.30 8.03 3.000 0.005 4.000 0.005 0.085

160 5 50.57 5.40 3.000 0.003 4.000 0.003 0.327
10 50.39 3.50 3.000 0.002 4.000 0.002 0.229

Table 3: Empirical size of the linearity test at 0.05 nominal level

N T m∗ = 1 = 2 = 3
10 5 0.053 0.054 0.056

10 0.059 0.052 0.052
40 5 0.039 0.050 0.054

10 0.042 0.054 0.059
160 5 0.048 0.050 0.052

10 0.048 0.046 0.042

The m∗ in the name of the columns indicates the maximum value
of m in the auxiliary regression (4)

(4). The order m∗ of the auxiliary regression (4) may affects both the size and power of the
test. For instance, approximations to the alternative model based on large values of m∗ imply
a loss of degrees of freedom which may cause problems, but they may add power to the test
because the approximation to the nonlinear component improves with increasing m∗.

In order to investigate the empirical size of our linearity test we generate 1000 samples of
a linear panel with fixed effects. The results are based on the nominal significance level 0.05
and can be found in Table 3. Each column contains results for the test statistic based on one
auxiliary regression with m∗ =1, 2, 3. It is seen that the empirical size of the test is close to
the nominal size at all sample sizes. The loss of degrees of freedom associated with large values
of m∗ compared to small ones does not seem to affect the size of the test.

To investigate the power of the test we generate samples from the PSTR model (20) with
r = 1 and for m = 1, 2. The model under the alternative is thus a standard PSTR model
with either a monotonically increasing (m = 1) or symmetric (m = 2) transition function. To
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Table 4: Empirical power of the linearity test at the 5% significance level

γ = 2, c = 3.5 γ = 4, c = 3.5
N T m∗ = 1 = 2 = 3 = 1 = 2 = 3
10 5 0.16 0.12 0.10 0.23 0.16 0.14

10 0.35 0.26 0.24 0.53 0.43 0.40
40 5 0.54 0.43 0.37 0.75 0.65 0.63

10 0.92 0.85 0.81 1.00 0.98 0.98
160 5 0.99 0.99 0.98 1.00 1.00 1.00

10 1.00 1.00 1.00 1.00 1.00 1.00

γ = 2, c = (3, 4) γ = 4, c = (3, 4)
N T m∗ = 1 = 2 = 3 = 1 = 2 = 3
10 5 0.06 0.08 0.08 0.06 0.10 0.09

10 0.07 0.15 0.14 0.07 0.20 0.19
40 5 0.06 0.24 0.19 0.06 0.32 0.28

10 0.06 0.49 0.41 0.06 0.64 0.60
160 5 0.05 0.75 0.69 0.05 0.88 0.85

10 0.05 0.99 0.97 0.05 1.00 1.00
The m∗ in the name of the columns indicates the maximum value
of m in the auxiliary regression (4)

find out the extent to which the value of γ affects the power we set γ = 2 and γ = 4. Table
4 contains the estimated powers of the test. The upper panel shows the power for the PSTR
model with m = 1. The results for m = 2 appear in the lower panel. In all cases, we report the
power of the test based on three auxiliary regressions (4) with m∗ = 1, 2, 3. It is seen that the
test based on the auxiliary regression with m∗ = m has best power for both alternative models
m = 1 and m = 2. Moreover, from the right-hand panel it appears that when m = 2 the test
based on m∗ = 1 does not have power, while the test based on m∗ = 3 has only little less power
than the test based on m∗ = 2. The results from this section indicate, not unexpectedly, that
the test based on the auxiliary regression with m∗ = 2 is preferable to the others, especially in
situations where the transition is symmetric around (c1 + c2)/2 (m = 2). Finally, the power of
the test seems to depend positively on the value of γ.

4.2.2 Parameter constancy test

Next we investigate the size and power properties of a parameter constancy test. To estimate the
size of test we generate the replications with the PSTR model (20) with constant parameters,
setting r = 1, m = 1, γ1 = 3 and c1 = 3.5, (β′11, β

′
12)

′ = (1.0, 3.0, 2.0, 1.0)′. For easy of
presentation we denote by h∗ the maximum power of (t/T ) in the auxiliary regression (14).
As before, the auxiliary regression (14) with h∗ = 3 has power against alternative models with
h = 1 and h = 2 because it nests the ones based on h∗ = 1 and h∗ = 2.

The power of the test is computed by simulating the model under the alternative hypothesis
(11). We consider two alternative models. In the first one, we allow one transition in the
parameters in the middle of the sample: h = 1 and c2 = 0.5. In the second one, the transition
is symmetric around (c21 + c22)/2 = 0.5 with c21 = 0.3 and c22 = 0.7. In both cases γ2 = 4
in (13) and (β′21, β

′
22)

′ = 0.1(β′11, β
′
12)

′. We assume that the transition occurs at the same time
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Table 5: Empirical size and power of the parameter constancy test at the 0.05 level of signifi-
cance

Size h = 1 h = 2
N T h∗ = 1 = 2 = 3 = 1 = 2 = 3 = 1 = 2 = 3
10 5 0.061 0.057 0.039 0.098 0.084 0.073 0.062 0.052 0.051

10 0.056 0.053 0.049 0.169 0.148 0.122 0.081 0.101 0.087
40 5 0.044 0.049 0.046 0.342 0.245 0.188 0.050 0.093 0.089

10 0.044 0.035 0.049 0.697 0.580 0.485 0.125 0.229 0.201
160 5 0.054 0.050 0.045 0.948 0.902 0.835 0.096 0.316 0.246

10 0.050 0.053 0.058 1.000 1.000 0.997 0.484 0.850 0.792

for all N individuals and that the change in the parameters is the same for all of them. This
setup is consistent with the alternative hypothesis but it excludes other interesting options also
nested within the alternative model as is the case in which only a proportion of units present
non constancy in parameters. If this is the case, the power of the test may be affected and
in particular it may have no power if this proportion is small. But then, in this situation the
model for all units can be characterized by a PSTR model with constant parameters.

Table 5, with three panels, contains the estimated size and power of the test. The leftmost
panel contains the empirical size of the test, the other two have the power results. All three
panels are divided in three columns, one for each value of h∗. The results indicate that the
F-version of the test has the correct size for all sample sizes and values of h∗. Similarly, with
the results in linearity test the test based on h∗ = h has better power that the others. However,
in contrast to the results in the linearity test, the test based on the auxiliary regression with
h∗ = 1 when h = 2 has not trivial power. In this situation, it seems more appropriate to base
the decision about h as suggested in Granger and Teräsvirta (1993) and Teräsvirta (1994).

4.2.3 Test of no remaining nonlinearity and properties of the procedure for de-
termining the number of regimes in a multiple regime PSTR panel

The size simulations of the test of no remaining nonlinearity are carried out using (20) and
setting r = 1, m = 1, γ1 = 4 and c1 = 3.5. In order to estimate the power of the test we
generate the samples from the same model with r = 2. The parameters in the first transition
function are the same as in the size simulations. The second transition function is of type (2)
with m = 1 and γ = 4, c = 2.3. As before, we consider only the F-version of the test and use
three different auxiliary regressions (19) with m∗ = 1, 2, 3. The estimated size and power at
the 0.05 nominal level are shown in Table 6. The results indicate that the test based on the
auxiliary regression with m∗ = 2 has the best properties. First, its size is close to the nominal
size and second, it has better power than the other alternatives.

5 An application: Investment and financial constraints

In this section we present an application of the modelling cycle for PSTR models. We choose the
same economic problem and data set as Hansen (1999a)5 and compare our results to the ones

5The data set is available in Bruce Hansen web page http://www.ssc.wisc.edu/∼bhansen/
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Table 6: Empirical size and power of the test for no remaining nonlinearity at the 0.05 level of
significance

Size h = 1 h = 2
N T h∗ = 1 = 2 = 3 = 1 = 2 = 3 = 1 = 2 = 3
10 5 0.051 0.059 0.060 0.069 0.068 0.066 0.062 0.073 0.080

10 0.052 0.054 0.049 0.123 0.114 0.119 0.061 0.085 0.071
40 5 0.043 0.054 0.052 0.226 0.217 0.192 0.067 0.132 0.104

10 0.049 0.051 0.052 0.508 0.510 0.470 0.084 0.244 0.210
160 5 0.050 0.047 0.042 0.716 0.756 0.742 0.134 0.459 0.375

10 0.056 0.053 0.050 0.973 0.992 0.990 0.248 0.806 0.750

in that article. The economic question under investigation is whether firms that are financially
constrained behave differently from financially unconstrained firms when it comes to financing
investment. Fazzari, Hubbard, and Petersen (1988) argued that when the capital market is
imperfect, the firm’s financial structure is not irrelevant to its investment decisions because
internal and external funds are not perfect substitutes. In their view, when a firm is facing
credit constraints, investment may depend upon the availability of internal funds, such as the
firm’s cash flow. For instance, in presence of asymmetric information between the firm and
the provider of external finance, the cost of external funding is higher than the cost of internal
funding, which favours the use of internal resources to finance investment. Furthermore, when
the debt level is high the firm is likely to be financially constrained and consequently, its cash
flow will be positively correlated with the investment rate.

This situation calls for a PSTR model such that the transition variable measures the financial
position of each firm and period. A natural candidate, and the one Hansen (1999a) used, is
the debt-to-asset ratio. It measures the existing debt level and can be treated as a proxy for
availability of external funds to the firm. This is because external providers of financing may be
reluctant to lend capital to strongly indebted firms. The data set is extracted from the one used

Figure 1: Scatter plot of the cash flow and investment pairs for the complete sample

by Hall and Hall (1993) and consists of 565 firms observed from 1973 to 1987. The variables
include the ratio of investment to capital Iit, the ratio of total market value to assets Qit, the
ratio of long-term debt to assets Dit and the ratio of cash flow to assets CFit. We delete two
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firms from the original sample because they have atypical investment-cash flow relationship.
Figure 1 shows the scatter plot of investment versus cash flow. The observations for the deleted
firms are represented by solid circles. As is seen, these firms have either extremely large levels
of cash flow with low levels of investment or extremely large levels of investment with very low
levels of cash flow.

An application of the PSTR modelling strategy Our starting point is that investment
can be characterized by a Multiple Regime PSTR model (16). Our maintained model for
investment thus has the form

Iit = µi + θ1Qit−1 + θ2Q
2
it−1 + θ3Q

3
it−1 + θ4Dit−1

+θ5Qit−1Dit−1 + β0CFit−1 +
r∑

j=1

βjCFit−1g (Dit−1; θj) + eit (21)

where the transition functions g (Dit−1; θj) j = 1, . . . , r are of type (2) with m = 1. Following
Hansen (1999a) we include the terms Qj

it−1 for j = 2, 3, Dit−1 and Qit−1Dit−1 to account for
possible omitted variables.

The multiple-regime PSTR model is specified as suggested in Section 3.4.2. The results of
the linearity test are presented in Table 7. Since linearity is rejected at 5% significance level we
estimate a Multiple PSTR model with r = 1 and m = 1 and test whether another transition
is required. The next null hypothesis of r = 1 is not rejected, so our final model has a single
transition.

Table 7: Determining the number of regimes using the test for no remaining nonlinearity

H0 : r = 0 vs H0 : r = 1
Actual Significance level: α = 0.05

F2 8.58 2× 10−10

F3 6.00 4× 10−11

H0 : r = 1 vs H0 : r = 2
Actual Significance level: α = 0.025

F2 2.31 0.10
F3 2.27 0.08
We use 0.05 as significance level and assume that τ = 0.5.

Table 8 contains the parameter estimates of the single transition model. It is seen from the
table and Figure 2 that the transition is quite sharp and the model thus is close to a two-regime
PTR model. The first regime contains the firms with low debt levels, Dit−1 < 0.0154 and the
second regime the more strongly indebted firms, Dit−1 ≥ 0.0154.

The combined ”parameter” of the cash flow as a function of the debt level equals

βCF (Dit−1) = β1 + β2g (Dit−1; γ1, c1)

where β1 and β2, are the coefficients of the cash flow variable CFit−1 in Table 8. Figure 2 shows
the estimated parameter of the cash flow as a function of the debt level. Our results suggest
a positive relationship between cash flow and investment which conforms to the prediction of
Fazzari, Hubbard, and Petersen (1988).
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Table 8: Parameter estimates for the final PSTR model
Regressor Coefficient estimate Standard error
Qit−1 0.0118 0.0010
Q2

it−1/103 -0.2602 0.0365
Q3

it−1/106 1.4500 0.2700
Dit−1 -0.0218 0.0026
Qit−1Dit−1 0.0017 0.0016
CFit−1 0.0539 0.0054
CFit−1g (Dit−1; γ1, c1) 0.0355 0.0047

Transition Functions
Parameter Coefficient estimate Standard error
γ1 0.508× 105 139.28
c1 0.01554 0.0055

In order to compare the results of our methodology with those obtained following Hansen’s
approach we estimate (21) as a multiple PTR model. To determine the number of thresholds
we apply Hansen’s sequential procedure which is similar to ours. The difference is that the
candidate models are PTR models. The procedure works as follows. First, estimate a linear
model and test it against a model with one threshold (two regimes). If the null hypothesis
is rejected, estimate a single-threshold model and test it against a double-threshold one. The
procedure is continued until the hypothesis no additional threshold is not rejected.

Table 9 contains the results of the linearity test. They indicate that a two-regime model is
enough to characterize the nonlinearity in the data. The final estimated PTR model is reported
in Table 10. The threshold value c1 = 0.0157, which is very close to the estimated one in the
PSTR model. This is expected since the estimate of γ in the PSTR model is large. Figure 2
contains the coefficient of the cash flow as a function of the debt level in the estimated PTR
model. The resulting graph is similar to the one obtained with the PSTR model.

Table 9: Test for threshold effects using Hansen (1999a)

Test a for single threshold
F1 44.3
P-value 0.0000
(10%,5%,1% critical values) (13.9,18.4,25.8)
Test a for double threshold
F2 9.1
P-value 0.26
(10%,5%,1% critical values) (12.4 ,15.5 ,19.7)

Figure 2 also contains the coefficient of the cash flow as a function of the debt level in the
original PTR model of Hansen (1999a). Hansen used the complete data set and concludes that a
three-regime threshold model characterized the data. His results indicated that the relationship
between investment and cash flow is nonmonotonic in the sense that the connection between
these variables is weaker for very highly indebted firms. He argued that there is considerable
uncertainty in the estimate of the cash flow coefficient in the last regime. From our results it
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Figure 2: Estimates of the cash flow parameter as a function of the lagged debt level, Dit−1

Dotted line: PSTR.
Dashed line: Panel threshold estimates with restricted sample.
Solid line: Panel threshold estimates with complete sample.

becomes clear that this uncertainty is due to the presence of the two outliers in the original
sample. When they are removed, our results agree with the ones obtained using the PTR
approach.

Table 10: Parameter estimates for the two-regime model of Hansen (1999a)

Regressor Coefficient estimate Standard errors
Qit−1 0.0117 0.0009
Q2

it/103 -0.2540 0.0285
Q3

it/106 1.4028 0.2151
Dit−1 -0.0268 0.0046
Qit−1Dit−1 0.0022 0.0014
CFit−1I (Dit−1 ≤ c1) 0.0582 0.008
CFit−1I (Dit−1 ≥ c1) 0.0938 0.007
Threshold Values
Parameter Coefficient estimate
c1 0.0157
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6 Conclusions

We introduce a panel model in which the parameters can change as a function of an exogenous
variable. The model is thus an alternative to the Panel Threshold model by Hansen (1999a). In
the present context however, standard asymptotic theory can be used as the likelihood function
in the PSTR model is a continuous function of the parameters. We present tests for linearity,
parameter constancy and remaining non linearity. These tests, serve as both specification and
misspecification tests. The small sample properties of the proposed statistics was investigated
by simulation and the results indicate that they behave well even in panels with small N and
T.
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Lundbergh, S., T. Teräsvirta, and D. van Dijk (2003): “Time-varying smooth transition
autoregressive model,” Journal of Business and Economic Statistics, 21, 104–121.
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A Asymptotic properties

This Appendix contains the proof of Theorem 1. The following Lemma is a standard result but
it is stated to clarify the notation in this section and Appendix B.

Lemma 1 Let Wi = (w′
i1, . . . , w

′
iT )′ be a (T × k) matrix of random variables and let QT =

(c1, . . . , cT ) = IT − 1
T
ιι′ be the within transformation matrix where ι is a (T × 1) vector of ones.

Then W ′
iQ

′
T QT Wi =

∑T
s=1

∑T
t=1 cstwitw

′
is where cst = c′sct is finite non random function of T.

A.1 Linearity test: Consistency and asymptotic normality of the
auxiliary regression

As explained in Section 3.2, the linearity test is based on the auxiliary regression (4) which for
observation i can be written as

Yi = µiι + X∗
i β + Ri (1)

where Yi = (yi1, . . . , yiT )′, X∗
i is a (T × km) matrix with X∗

i = (Xi, (Xi ¯ qit), . . . , (Xi ¯ qm
i ))

and Ri is the error vector. After eliminating the fixed effects, the least squares estimator of β
has the form

β̂ = (
N∑

i=1

X∗′
i QT X∗

i )−1

N∑
i=1

X∗′
i QT Yi

= β0 + (
N∑

i=1

X∗′
i QT X∗

i )−1

N∑
i=1

X∗′
i QT Ri (2)

Under the null hypothesis, Ri = Ui for i = 1, . . . , N . Moreover, some elements of β0 equal
zero under H0, but the idea behind the linearity test is that these elements can be estimated
consistently. Thus, under H0,

β̂ = β0 + (
N∑

i=1

X∗′
i QT X∗

i )−1

N∑
i=1

X∗′
i QT Ui

= β0 +

(
N∑

i=1

T∑
t=1

T∑
s=1

ctsx
∗
itx

∗′
is

)−1 N∑
i=1

T∑
t=1

T∑
s=1

ctsx
∗
ituis (3)
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The second equality follows from Lemma 1. Formula (3) provides a convenient form for
analyzing the asymptotic properties of β̂ when N → ∞ and T is fixed. In fact, consistency
and asymptotic normality can be established in the usual way by applying the Markov law of
large numbers and the Lyapunov central limit theorem; See Theorems 3.15 and 5.13 in White
(2000).

B Consistency and asymptotic normality of the maxi-

mum likelihood estimator in the Panel Smooth Tran-

sition model

In this appendix we sketch the proof of Theorem 2 in the paper.

B.1 Logarithmic likelihood, score and Hessian

As described in Section 3.3 the estimation of PSTR models is carried out in two steps. First,
the fixed effects are eliminated by multiplying (2.1’) with the within transformation matrix
QT . In the second step, the log-likelihood, after eliminating the fixed effects, is maximized with
respect to β = (β′1, β

′
2, β

′
3)
′. The concentrated log-likelihood can be written as follows:

LN(β) = c− 1

2N

N∑
i

(Yi −Xiβ1 −Wi(β3)β2)
′QT (Yi −Xiβ1 −Wi(β3)β2). (4)

The elements in score vector SN(β) for (4), evaluated at the true value β = β0, are,

∂L(β)

∂β1

|β=β0 =
1

N

N∑
i=1

X ′
iQT Ui

∂L(β)

∂β2

|β=β0 =
1

N

N∑
i=1

W (β0
3)
′QT Ui

∂L(β)

∂β3j

|β=β0 =
1

N

N∑
i=1

β0′
2

∂Wi(β
0
3)

∂β3j

′
QT Ui j = 1, . . . , m
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The elements of the Hessian matrix have the form

∂2L(β)

∂β1β′1
= − 1

N

N∑
i=1

X ′
iQT Xi (5)

∂2L(β)

∂β1β′2
= − 1

N

N∑
i=1

X ′
iQT Wi(β3) (6)

∂2L(β)

∂β1β3j

= − 1

N

N∑
i=1

X ′
iQT

∂Wi(β3)

∂β3j

; j = 1, . . . , m (7)

∂2L(β)

∂β2β′2
= − 1

N

N∑
i=1

Wi(β3)
′QT Wi(β3) (8)

∂2L(β)

∂β2β3j

= − 1

N

N∑
i=1

[
β′2

∂Wi(β3)

∂β3j

′
QT Wi(β3)− β′2

∂Wi(β3)

∂β3j

′
QT Ui

]
, j = 1, . . . , m (9)

∂2L(β)

∂β3jβ3h

= − 1

N

N∑
i=1

[
β′2

∂Wi(β3)

∂β3j

′
QT

∂Wi(β3)

∂β3j

β2 − β′2
∂2Wi(β3)

β3jβ3h

′
QT Ui

]
, (10)

j, h = 1, . . . , m.

B.2 Consistency

In order to proof consistency of the maximum likelihood estimator β̂ we apply Theorem 4.1.1
in Amemiya (1985). The maximum likelihood estimator is consistent if (i) the parameter space
Ω is compact, (ii) the objective function is continuous in β ∈ Ω and (iii) the objective function
converges to a nonstochastic function uniformly in probability in β ∈ Ω as N →∞. Conditions
(i) and (ii) are satisfied given assumptions (E1) to (E7). In what follows we verify that (iii) is
also satisfied.

Using Assumption (E1) and the equality

Wi(β
0
3)β

0
2 −Wi(β3)β2 = −Wi(β3)(β2 − β0

2)− (Wi(β3)−Wi(β
0
3)β

0
2

one can write the likelihood function (4) in deviations from the mean as,
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LN =
1

N

N∑
i=1

(β1 − β0
1)
′X ′

iQT Xi(β1 − β0
1)

− 2

N

N∑
i=1

(β1 − β0
1)
′X ′

iQT Wi(β3)(β2 − β0
2)

− 2

N

N∑
i=1

(β1 − β0
1)
′X ′

iQT (Wi

(
β3)−Wi(β

0
3)

)
β2

− 2

N

N∑
i=1

(β1 − β0
1)
′X ′

iQT Ui

+
1

N

N∑
i=1

(β2 − β0
2)
′Wi(β3)

′QT Wi(β3)(β2 − β0
2)

− 2

N

N∑
i=1

(β2 − β0
2)
′Wi(β3)

′QT (Wi

(
β3)−Wi(β

0
3)

)
β2

− 2

N

N∑
i=1

(β2 − β0
2)
′Wi(β3)

′QT Ui

+
1

N

N∑
i=1

β′2
(
Wi(β3)−Wi(β

0
3)

)′
QT

(
Wi(β3)−Wi(β

0
3)

)

− 2

N

N∑
i=1

β′2
(
Wi(β3)−Wi(β

0
3)

)′
QT Ui

+
1

N

N∑
i=1

U ′
iQT Ui

In a compact parameter space uniform convergence of the likelihood function follows from
uniform convergence of the following moment matrices:

1
N

∑N
i=1 X ′

iQT Xi → E [X ′
iQT Xi] (11)

1
N

∑N
i=1 X ′

iQT Wi(β3) → E [X ′
iQT Wi(β3)] (12)

1
N

∑N
i=1 Wi(β3)

′QT Wi(β3) → E [Wi(β3)
′QT Wi(β3)] . (13)

Convergence in probability as N → ∞ of (11) follows from Assumption (E6) and the law
of large numbers for i.i.d random variables. In order to proof convergence in probability of
the moment matrices (12) and (13) we use the uniform law of large number for i.i.d processes
(Theorem 4.5.2 in Amemiya). We have to show that there exists a dominant function h(X1, X2)
such that the absolute value of the elements of the moment matrices (12) and (13) are less than
h(X1, X2) for all β ∈ Ω and that E [h(X1, X2)] < ∞.

In order to find the dominant function it is convenient to write explicitly the typical (j, h)-
element of (12) and (13). Using Lemma 1, it is seen that the (j,h)-element, j, h = 1, . . . , k in
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(12) can be written as,

1

N

N∑
i=1

z
(j,h)
i (β3) (14)

where

z
(j,h)
i (β3) =

T∑
t=1

T∑
s=1

cstg(x′2tβ3)xis,hxit,j. (15)

One dominant function h(X1, X2) for z
(j,h)
i (β3) is supβ∈Ω |z(j,h)

i (β3)|. In fact, given that
g(x′2tβ3) < η, η ∈ [0, 1]. We have that, for any T < T0 < ∞,

E[sup
β∈Ω

|zi(β3)|] ≤ η

T∑
s=1

|cst||xis,hxit,j|

≤η

T∑
s=1

T∑
t=1

|cst|E[|xis,hxit,j|]

≤η

T∑
s=1

T∑
t=1

|cst|(E[|xis,h|2])1/2(E[|xit,j|2]])1/2

≤η∆
T∑

s=1

T∑
t=1

|cst| < ∞.

where ∆ < ∞. A similar argument can be used to show that the sample moment (13) converges
uniformly to its population moment.

Consequently, conditions (i),(ii) and (iii) of the Theorem 4.1.1 in Amemiya (1985) are
satisfied and the maximum likelihood estimator is consistent for N →∞ and fixed T .

B.3 Asymptotic normality

To prove asymptotic normality we apply Theorem 4.1.3 in Amemiya (1985). It states that
if (i) β̂ is consistent, (ii) the score vector evaluated at the true value of the parameters is
asymptotically normal (iii) the Hessian matrix is continuous and (iv) the average Hessian

converges in probability to a nonsingular matrix for any estimator β∗ → β0 then
√

N(β̂−β0)
d→

N[0, σ2V −1].
Normality of the score evaluated at β0 follows from the central limit theorem for i.i.d random

variables and assumptions (E1) - (E7). The continuity condition (iii) is satisfied given the
specification for the panel smooth transition model. To prove the convergence in probability of
the average Hessian we apply Theorem 4.2.1 in Amemiya (1985). That is, convergence of the
Hessian follows from uniform convergence of its elements and the fact that β̂ is consistent.

The proof of uniform convergence of the elements (5) -(8) of Hessian is the same as the
proof of uniform convergence of the likelihood function. In order to prove uniform convergence

26



of (9) and (10), use Lemma 1 and write (9) extensively for each element as,

1

N

N∑
i=1

[
β∗′2

∂Wi(β
∗
3)

∂β3j

′
QT Wi(β

∗
3)− β∗′2

∂Wi(β
∗
3)

∂β3j

′
QT U∗

i

]

=
1

N

N∑
i=1

[
z

(j,h)
1i (β∗)− z

(j,h)
2i (β∗)

]
(16)

where

z
(j,h)
1i (β∗) =

T∑
t=1

T∑
s=1

cstλis(β
∗
3)g(x′2tβ

∗
3)β

∗
2kx2is,jxis,kxit,h (17)

z
(j,h)
2i (β∗) =

T∑
t=1

T∑
s=1

cstλis(β
∗
3)β

∗
2kx2is,jxis,ku

∗
it (18)

for j = 1, . . . , m; h, k = 1, . . . , K. The term λit(β3) denotes the first derivative of g(υ) with
respect to υ ≡ x′2tβ3, where x2t = (1, qit, q

2
it, . . . , q

m
it )

′. λit(β3) = (1− g(x′2tβ3))g(x′2tβ3).
The uniform convergence of (16) requires the existence of a dominant function for (17) and

(18). For (17) one such dominant functions is supβ∈Ω |z1i(β
∗)| which is well defined because the

parameter space is compact and the function λit(β3) takes values in the interval [0,1]. Moreover,

E[supβ∈Ω |z(j,h)
1i (β∗)|] is finite. In fact,

E[sup
β∈Ω

|z(j,h)
1i (β∗)|] ≤

T∑
t=1

T∑
s=1

|cst|E[|λis(β
∗
3)g(x′2tβ

∗
3)||β∗2k||x2is,jxis,kxit,h|]

≤∆1

T∑
t=1

T∑
s=1

|cst|(E[|x2is,jxis,kxit,h|2])1/2(E[|λis(β
∗
3)g(x′2tβ

∗
3)|2)1/2

≤∆1∆2∆3

T∑
t=1

T∑
s=1

|cst| < ∞

where |β2k| ≤ ∆1 and E[|λis(β
∗
3)g(x′2tβ

∗
3)|2] ≤ ∆2 and E[|x2is,jxis,kxit,h|2] ≤ ∆3. ∆i,i = 1, 2, 3

are finite constants. Uniform convergence of z2i(β
∗) in (16) follows from similar arguments.

The proof of uniform convergence of (10) is the same but one needs additional moments
and notation. In fact, writing the second partial derivative of Wi(β3) as

∂2Wi(β3)

∂β3jβ3h

= [1− 2g(x′2tβ3)]λit(β3)x2it,jx2it,h (19)

one can see that the dominant function for (10) exist because the summands of (10) are bounded
by the supβ∈Ω. Moreover, the supreme is well defined because, the parameter space is compact
and the function |[1 − 2g(x′2tβ3)]λit(β3)| only takes values in the interval [0,0.1]. For uniform
convergence then one needs that E[|x2it,jx2ist,hxis,rxit,l|2] ≤ ∆ < ∞ for j, h = 1, . . . ,m, r, l =
1, . . . , k and t, s = 1, . . . , T .

Given that conditions (i) to (iv) of the Theorem 4.1.3 in Amemiya (1985) are satisfied then
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we have that √
N(β̂ − β0)

d→ N[0, σ2V −1] (20)

C Derivation of the LM test for parameter constancy in

PSTR models

We derived the LM statistic by using the local approximation of the concentrated pseudo-
likelihood function. That is, we first eliminated the fixed effect from (14) and then test the
constancy of the remaining parameters. The concentrated pseudo-log likelihood function for
observation i is,

L = c− 1

σ2NT

N∑
i=1

e∗′i QT e∗i (21)

where e∗i = (Yi − ιµ−Xiβ11 −Xi(γ1, ci)β2i − Zi(γ1, c1)β
∗), Xi(γ1, c1) = Xi ¯ g(qi, γ1, c1) ,

Zi(γ1, c1) = [Wi
...Wi ¯ g(qi, γ1, c)], Wi = Xi ¯ Si, Si = (1/T, . . . , T/T )′ and Xi = (x′i1, . . . , x

′
iT )′.

As before, QT denotes the within transformation matrix. The null hypothesis of parameter
constancy is H0 : β∗ = 0.

The average score evaluated at the null can be written as,

SN =
1

NTσ̂2

N∑
i=1

[V̂i
...Zi(γ̂1, ĉ1)]

′QT ê∗i

=
1

NTσ̂2

N∑
i=1

[0
...Zi(γ̂1, ĉ1)

′QT ê∗i ]
′ (22)

where V̂i = [Xi
...Xi(γ̂1, ĉi)

... ∂Xi(γ̂1,ĉ1)
∂γ1

β̂21
... ∂Xi(γ̂1,ĉ1)

∂c1
β̂21].

Using the OP estimator for the covariance matrix the LM test is,

LM =
1

σ̂2

N∑
i=1

ê′iQT Zi(γ̂1, ĉ1)Σ̂
−1Zi(γ̂1, ĉ1)QT êi (23)

where

Σ̂ =
1

NT

N∑
i=1

[Zi(γ̂1, ĉ1)
′QT Zi(γ̂1, ĉ1)− Zi(γ̂1, ĉ1)

′QT V̂i(V
′
i QT Vi)

−1V ′
i QT Zi(γ̂1, ĉ1)] (24)
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