
Security and Privacy; Reliable Programming;
Testing: Test-driven development, and Code reviews;
DevOps and Code Management: DevOps automation

Software Engineering

1

Min-Yuh Day, Ph.D,
Associate Professor

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

1112SE09
MBA, IM, NTPU (M5010) (Spring 2023)

Wed 2, 3, 4 (9:10-12:00) (B8F40)

2023-05-10

https://meet.google.com/
ish-gzmy-pmo

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/ish-gzmy-pmo
https://meet.google.com/ish-gzmy-pmo

Syllabus
Week Date Subject/Topics

1 2023/02/22 Introduction to Software Engineering

2 2023/03/01 Software Products and Project Management:
Software product management and prototyping

3 2023/03/08 Agile Software Engineering:
Agile methods, Scrum, and Extreme Programming

4 2023/03/15 Features, Scenarios, and Stories

5 2023/03/22 Case Study on Software Engineering I

6 2023/03/29 Software Architecture: Architectural design,
System decomposition, and Distribution architecture

2

Syllabus
Week Date Subject/Topics

7 2023/04/05 Tomb-Sweeping Day (Holiday, No Classes)

8 2023/04/12 Midterm Project Report

9 2023/04/19 Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service

10 2023/04/26 Cloud Computing and Cloud Software Architecture

11 2023/05/03 Microservices Architecture, RESTful services,
Service deployment

12 2023/05/10 Security and Privacy; Reliable Programming;
Testing: Test-driven development, and Code reviews;
DevOps and Code Management: DevOps automation

3

Syllabus
Week Date Subject/Topics

13 2023/05/17 Industry Practices of Software Engineering

[Agile Principles Patterns and Practices using AI and ChatGPT,
Invited Speaker: Shihyu (Alex) Chu, Division Director,
Software Industry Research Center, Market Intelligence & Consulting Institute (MIC)]

14 2023/05/24 Case Study on Software Engineering II

15 2023/05/31 Final Project Report I

16 2023/06/07 Final Project Report II

17 2023/06/14 Self-learning

18 2023/06/21 Self-learning
4

Security and Privacy;
Reliable Programming;

Testing:
Test-driven development, and Code reviews;

DevOps and Code Management:
DevOps automation

5

Software Engineering
and

Project Management

6

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation
and

unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Information Management (MIS)
Information Systems

7Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Organizations Technology

Management

Information
Systems

Fundamental MIS Concepts

8

Management

Organization

Technology

Information
System

Business
Challenges

Business
Solutions

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson.

Project-based software engineering

9

Problem

SoftwareRequirements

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

generates

implemented-by

helps-with

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

Product software engineering

10Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Opportunity

SoftwareProduct
features

DEVELOPER

DEVELOPER DEVELOPER

inspires

implemented-by

realizes

1

Software execution models

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User interface
Product functionality

User data

Stand-alone execution Hybrid execution

Product updates

User’s computer

Vendor’s servers

User interface
Partial functionality

User data

Additional functionality
User data backups
Product updates

User’s computer

Vendor’s servers

Software as a service

User interface
(browser or app)

Product functionality
User data

User’s computer

Vendor’s servers

Product management concerns

12Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

13Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

14

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

15

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
eq

ue
nc

y
of

 D
el

iv
er

y
Lo

w
Hi

gh

Low High

Predictive Life Cycle

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

18Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Analyze
Design

Build
Test Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

19Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

20Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

21

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

23Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

24Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application
software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application
software

Server
software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

25Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

26Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

27Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

28Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware
Data theft

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability

1 2

3

4

5

6

7

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing
Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

32Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

33Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

Development

Deployment Support

Multi-skilled DevOps team

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

Code
repository

DevOps automation

Code management system

DevOps measurement

Continuous
integration

Continuous
deployment

Continuous
delivery

Infrastructure
as code

Data
collection

Data
analysis

Report
generation

Recover
version

information

Save and
retrieve
versions

Branching and merging

Transfer code to/from developer’s filestore

Security
and

Privacy

35

Outline
• Security
• Privacy

36

• Software security should always be a high priority for product
developers and their users.

• If you don’t prioritize security, you and your customers will
inevitably suffer losses from malicious attacks.

• In the worst case, these attacks could can put product providers out
of business.
• If their product is unavailable or if customer data is compromised,

customers are liable to cancel their subscriptions.

• Even if they can recover from the attacks, this will take time and
effort that would have been better spent working on their software.

37Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software security

38Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware
Data theft

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

System infrastructure stack

Software Infrastructure

Operational Environment

Application

Frameworks and application libraries

Browsers and messaging

System libraries

Database

Operating system

Network

• Authentication and authorization
You should have authentication and authorization standards and procedures that ensure that
all users have strong authentication and that they have properly access permissions properly.

• System infrastructure management
Infrastructure software should be properly configured and security updates that patch
vulnerabilities should be applied as soon as they become available.

• Attack monitoring
The system should be regularly checked for possible unauthorized access. If attacks are
detected, it may be possible to put resistance strategies in place that minimize the effects of
the attack.

• Backup
Backup policies should be implemented to ensure that you keep undamaged copies of program
and data files. These can then be restored after an attack.

40Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Security management

• Operational security focuses on helping users to maintain security. User attacks
try to trick users into disclosing their credentials or accessing a website that
includes malware such as a key-logging system.

• Operational security procedures and practices

• Auto-logout, which addresses the common problem of users forgetting to
logout from a computer used in a shared space.

• User command logging, which makes it possible to discover actions taken
by users that have deliberately or accidentally damaged some system
resources.

• Multi-factor authentication, which reduces the chances of an intruder
gaining access to the system using stolen credentials.

41Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Operational security

• Injection attacks are a type of attack where a malicious user uses a
valid input field to input malicious code or database commands.

• These malicious instructions are then executed, causing some
damage to the system. Code can be injected that leaks system data
to the attackers.

• Common types of injection attack include buffer overflow attacks
and SQL poisoning attacks.

42Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Injection attacks

• SQL poisoning attacks are attacks on software products that
use an SQL database.

• They take advantage of a situation where a user input is
used as part of an SQL command.

• A malicious user uses a form input field to input a fragment
of SQL that allows access to the database.
• The form field is added to the SQL query, which is executed

and returns the information to the attacker.

43Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

SQL poisoning attacks

• Cross-site scripting attacks are another form of injection attack.

• An attacker adds malicious Javascript code to the web page that is
returned from a server to a client and this script is executed when the
page is displayed in the user’s browser.

• The malicious script may steal customer information or direct them
to another website.

• This may try to capture personal data or display advertisements.

• Cookies may be stolen, which makes a session hijacking attack
possible.

• As with other types of injection attack, cross-site scripting attacks
may be avoided by input validation.

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cross-site scripting attacks

45Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cross-site scripting attack

Browser

Product website1.
Introduce

malicious code

Victim

Website

Browser
2.

Data delivered and malware script
installed in victim’s browser

3.
Malware script sends

session cookie to
attacker

Attacker Malicious code
added to valid

data

Valid request for
data from website

• When a user authenticates themselves with a web application, a
session is created.

• A session is a time period during which the user’s
authentication is valid. They don’t have to re-authenticate for
each interaction with the system.

• The authentication process involves placing a session cookie on
the user’s device

• Session hijacking is a type of attack where an attacker gets hold of
a session cookie and uses this to impersonate a legitimate user.

46Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Session hijacking attacks

• There are several ways that an attacker can find out the
session cookie value including cross-site scripting attacks
and traffic monitoring.
• In a cross-site scripting attack, the installed malware

sends session cookies to the attackers.
• Traffic monitoring involves attackers capturing the traffic

between the client and server. The session cookie can
then be identified by analyzing the data exchanged.

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Session hijacking attacks

• Traffic encryption
Always encrypt the network traffic between clients and your server. This means setting
up sessions using https rather than http. If traffic is encrypted it is harder to monitor to
find session cookies.

•Multi-factor authentication
Always use multi-factor authentication and require confirmation of new actions that
may be damaging. For example, before a new payee request is accepted, you could ask
the user to confirm their identity by inputting a code sent to their phone.

• Short timeouts
Use relatively short timeouts on sessions. If there has been no activity in a session for a
few minutes, the session should be ended and future requests directed to an
authentication page.

48Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Actions to reduce the
likelihood of hacking

• Authentication is the process of ensuring that a user of
your system is who they claim to be.

• You need authentication in all software products that
maintain user information, so that only the providers of
that information can access and change it.
• You also use authentication to learn about your users so

that you can personalize their experience of using your
product.

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authentication

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authentication approaches

Knowledge

Possession

Attribute

Password

Mobile
device

FingerprintAuthenticating
user

Authentication
approach Example

• Insecure passwords
Users choose passwords that are easy to remember.

• Phishing attacks
Users click on an email link that points to a fake site that tries to
collect their login and password details.

• Password reuse
Users use the same password for several sites.

• Forgotten passwords
Users regularly forget their passwords so that you need to set up a
password recovery mechanism to allow these to be reset.

51Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Weaknesses of
password-based authentication

• Federated identity is an approach to authentication where you use
an external authentication service.

• ‘Login with Google’ and ‘Login with Facebook’ are widely used
examples of authentication using federated identity.

• The advantage of federated identity for a user is that they have a
single set of credentials that are stored by a trusted identity
service.

• Instead of logging into a service directly, a user provides their
credentials to a known service who confirms their identity to the
authenticating service.

• They don’t have to keep track of different user ids and passwords.
52Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Federated identity

53Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Federated identity

Request
authentication

User Service Trusted
authenticator

Deliver Request

Request credentials

Provide credentials

Return authentication
token

Authentication
response

• Authentication involves a user proving their identity to a software system.

• Authorization is a complementary process in which that identity is used to
control access to software system resources.

• For example, if you use a shared folder on Dropbox, the folder’s owner
may authorize you to read the contents of that folder, but not to add new
files or overwrite files in the folder.

• When a business wants to define the type of access that users get to
resources, this is based on an access control policy.

• This policy is a set of rules that define what information (data and
programs) is controlled, who has access to that information and the type
of access that is allowed

54Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Authorization

• Explicit access control policies are important for both legal and
technical reasons.
• Data protection rules limit the access the personal data and this must

be reflected in the defined access control policy.
• If this policy is incomplete or does not conform to the data

protection rules, then there may be subsequent legal action in the
event of a data breach.

• Technically, an access control policy can be a starting point for setting
up the access control scheme for a system.
• For example, if the access control policy defines the access rights of

students, then when new students are registered, they all get these
rights by default.

55Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Access control policies

• Access control lists (ACLs) are used in most file and
database systems to implement access control policies.

• Access control lists are tables that link users with
resources and specify what those users are permitted to
do.
• If access control lists are based on individual permissions,

then these can become very large. However, you can
dramatically cut their size by allocating users to groups
and then assigning permissions to the group

56Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Access Control Lists (ACL)

• Encryption is the process of making a document unreadable by applying
an algorithmic transformation to it.

• A secret key is used by the encryption algorithm as the basis of this
transformation. You can decode the encrypted text by applying the
reverse transformation.

• Modern encryption techniques are such that you can encrypt data so
that it is practically uncrackable using currently available technology.

• History has demonstrated that apparently strong encryption may be
crackable when new technology becomes available.

• If commercial quantum systems become available, we will have to use a
completely different approach to encryption on the Internet.

57Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Encryption

58Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Encryption and decryption

EncryptPlain
text

Encrypted
text

Plain
textDecrypt

Secret
key

Secret
key

59Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Symmetric encryption

Encrypt

Secret
message

Decrypt

Encryption key

Encrypted
text

Secret
message

a7Dr6yYf9F…

Encryption key

a7Dr6yYf9F…

Alice Bob

60Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Asymmetric encryption

Encrypt

Secret
message

Decrypt

Bob’s public key

Encrypted
text

Secret
message

dr5ts3TR9dt
x4ztmRsYY…

Bob’s private key
hTr34BbfsDy
9r3g5HHt76…

Alice Bob

61Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Encryption for authentication

Encrypt

I am really
Bob

Decrypt

Encrypted
text

I am really
Bob

Bob

Bob’s private key
hTr34BbfsDy
9r3g5HHt76…

Bob’s public key
dr5ts3TR9dt
x4ztmRsYY…

Alice

• The https protocol is a standard protocol for securely exchanging
texts on the web.

• It is the standard http protocol plus an encryption layer called TLS
(Transport Layer Security).

• This encryption layer is used for 2 things:

• to verify the identity of the web server;

• to encrypt communications so that they cannot be read by an
attacker who intercepts the messages between the client and
the server

62Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

TLS and digital certificates

• TLS encryption depends on a digital certificate that is sent from
the web server to the client.

• Digital certificates are issued by a
certificate authority (CA), which is a trusted identity
verification service.

• The CA encrypts the information in the certificate using their
private key to create a unique signature. This signature is
included in the certificate along with the public key of the CA.
To check that the certificate is valid, you can decrypt the
signature using the CA’s public key.

63Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

TLS and digital certificates

• Key management is the process of ensuring that
encryption keys are securely generated, stored and
accessed by authorized users.
• Businesses may have to manage tens of thousands of

encryption keys so it is impractical to do key management
manually and you need to use some kind of automated
key management system (KMS).

64Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Key management

• Subject information
Information about the company or individual whose web site is
being visited. Applicants apply for a digital certificate from a
certificate authority who checks that the applicant is a valid
organization.

• Certificate authority information
Information about the certificate authority (CA) who has issued the
certificate.

• Certificate information
Information about the certificate itself, including a unique serial
number and a validity period, defined by start and end dates.

65Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Digital certificates

• Digital signature
The combination of all of the above data uniquely
identifies the digital certificate. The signature data is
encrypted with the CA’s private key to confirm that the
data is correct. The algorithm used to generate the digital
signature is also specified.
• Public key information

The public key of the CA is included along with the key size
and the encryption algorithm used. The public key may be
used to decrypt the digital signature.

66Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Digital certificates

• As a product provider you inevitably store information about your
users and, for cloud-based products, user data.

• Encryption can be used to reduce the damage that may occur
from data theft. If information is encrypted, it is impossible, or
very expensive, for thieves to access and use the unencrypted
data.

• Data in transit

• Data at rest

• Data in use

67Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Data encryption

68Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Encryption levels

Application

Database

Files

Media

• Key management is important because, if you get it wrong,
unauthorized users may be able to access your keys and so
decrypt supposedly private data. Even worse, if you lose
encryption keys, then your encrypted data may be permanently
inaccessible.

• A key management system (KMS) is a specialized database that is
designed to securely store and manage encryption keys, digital
certificates and other confidential information.

69Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Key management

70Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Using a KMS for
encryption management

Application

Calls

Keys

Key
management
system (KMS)

Encryption
engine

Stored
encrypted dataKey store

Unencrypted
data

API

• Business may be required by accounting and other regulations to keep copies
of all of their data for several years.

• For example, in the UK, tax and company data has to be maintained for at
least six years, with a longer retention period for some types of data. Data
protection regulations may require that this data be stored securely, so the
data should be encrypted.

• To reduce the risks of a security breach, encryption keys should be changed
regularly. This means that archival data may be encrypted with a different key
from the current data in your system.

• Therefore, key management systems must maintain multiple, timestamped
versions of keys so that system backups and archives can be decrypted if
required.

71Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Long-term key storage

• Privacy is a social concept that relates to the collection, dissemination and
appropriate use of personal information held by a third-party such as a
company or a hospital.

• The importance of privacy has changed over time and individuals have their
own views on what degree of privacy is important.

• Culture and age also affect peoples’ views on what privacy means.

• Younger people were early adopters of the first social networks and
many of them seem to be less inhibited about sharing personal
information on these platforms than older people.

• In some countries, the level of income earned by an individual is seen as
a private matter; in others, all tax returns are openly published.

72Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Privacy

• If you are offering a product directly to consumers and you fail to conform to
privacy regulations, then you may be subject to legal action by product
buyers or by a data regulator. If your conformance is weaker than the
protection offered by data protection regulations in some countries, you
won’t be able to sell your product in these countries.

• If your product is a business product, business customers require privacy
safeguards so that they are not put at risk of privacy violations and legal
action by users.

• If personal information is leaked or misused, even if this is not seen as a
violation of privacy regulations, this can lead to serious reputational damage.
Customers may stop using your product because of this.

73Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Business reasons for privacy

• In many countries, the right to individual privacy is protected by
data protection laws.

• These laws limit the collection, dissemination and use of personal
data to the purposes for which it was collected.
• For example, a travel insurance company may collect health

information so that they can assess their level of risk. This is legal
and permissible.

• However, it would not be legal for those companies to use this
information to target online advertising of health products, unless
their users had given specific permission for this.

74Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Data protection laws

75Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Data protection laws

Data protection law

Responsibilities of
the data controller

Rights of
the data subject

Data storage
Data use
Security

Subject access

Data access
Error correction

Data deletion
Consent

• Awareness and control
Users of your product must be made aware of what data is collected when
they are using your product, and must have control over the personal
information that you collect from them.

• Purpose
You must tell users why data is being collected and you must not use that data
for other purposes.

• Consent
You must always have the consent of a user before you disclose their data to
other people.

• Data lifetime
You must not keep data for longer than you need to. If a user deletes their
account, you must delete the personal data associated with that account.

76Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Data protection principles

• Secure storage
You must maintain data securely so that it cannot be tampered with or
disclosed to unauthorized people.

• Discovery and error correction
You must allow users to find out what personal data that you store. You
must provide a way for users to correct errors in their personal data.

• Location
You must not store data in countries where weaker data protection laws
apply unless there is an explicit agreement that the stronger data protection
rules will be upheld.

77Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Data protection principles

• You should to establish a privacy policy that defines how
personal and sensitive information about users is
collected, stored and managed.
• Software products use data in different ways, so your

privacy policy has to define the personal data that you will
collect and how you will use that data.
• Product users should be able to review your privacy policy

and change their preferences regarding the information
that you store.

78Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Privacy policy

• Your privacy policy is a legal document and it should be auditable
to check that it is consistent with the data protection laws in
countries where your software is sold.

• Privacy policies should not be expressed to users in a long
‘terms and conditions’ document that, in practice, nobody
reads.
• The General Data Protection Regulation (GDPR) now require

software companies to include a summary of their privacy policy,
written in plain language rather than legal jargon, on their website.

79Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Privacy policy

• Security is a technical concept that relates to a software system’s
ability to protect itself from malicious attacks that may threaten
its availability, the integrity of the system and/or its data, and the
theft of confidential information.

• Common types of attack on software products include

• injection attacks,

• cross-site scripting attacks,

• session hijacking attacks,

• denial of service attacks and

• brute force attacks.
80Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Authentication may be based on something a user knows,
something a user has, or some physical attribute of the user.

• Federated authentication involves devolving responsibility for
authentication to a third-party such as Facebook or Google, or to
a business’s authentication service.

• Authorization involves controlling access to system resources
based on the user’s authenticated identity. Access control lists are
the most commonly-used mechanism to implement authorization.

81Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Symmetric encryption involves encrypting and decrypting
information with the same secret key.

• Asymmetric encryption uses a key pair – a private key and a public
key. Information encrypted using the public key can only be
decrypted using the private key.

• A major issue in symmetric encryption is key exchange.

• The Transport Layer Security (TLS) protocol, which is used to secure
web traffic, gets around this problem by using asymmetric
encryption for transferring information used to generate a shared
key.

82Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• If your product stores sensitive user data, you should
encrypt that data when it is not in use.

• A key management system (KMS) stores encryption keys.
Using a KMS is essential because a business may have to
manage thousands or even millions of keys and may have
to decrypt historic data that was encrypted using an
obsolete encryption key.

83Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Privacy is a social concept that relates to how people feel
about the release of their personal information to others.
Different countries and cultures have different ideas on
what information should and should not be private.

• Data protection laws have been made in many countries
to protect individual privacy. They require companies who
manage user data to store it securely, to ensure that it is
not used or sold without the permission of users, and to
allow users to view and correct personal data held by the
system.

84Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

Reliable
Programming

85

Outline
• Software quality
• Programming for reliability
• Design pattern
• Refactoring

86

• Creating a successful software product does not simply
mean providing useful features for users.

• You need to create a high-quality product that people
want to use.

• Customers have to be confident that your product will
not crash or lose information, and users have to be able
to learn to use the software quickly and without
mistakes.

87Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software quality

88Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability

1 2

3

4

5

6

7

• There are three simple techniques for
reliability improvement that can be applied in any
software company.

1. Fault avoidance: You should program in such a way that you
avoid introducing faults into your program.

2. Input validation: You should define the expected format for
user inputs and validate that all inputs conform to that
format.

3. Failure management: You should implement your software
so that program failures have minimal impact on product
users.

89Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Programming for reliability

90Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Underlying causes of program errors

Program

Programmers make mistakes
because they don’t properly
understand the problem or

the application domain

Problem Technology

Programmers make mistakes
because they use unsuitable

technology or they don’t properly
understand the technologies used

Programming language,
libraries, database, IDE,

etc.

Programmers make mistakes because they
make simple slips or they do not completely

understand how multiple program components
work together the program’s state.

91Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software complexity

The shaded node interacts, in some ways, with
the linked nodes shown by the dotted line

• Complexity is related to the
number of relationships between elements
in a program and the type and nature of these
relationships

• The number of relationships between entities is called the
coupling. The higher the coupling, the more complex the
system.
• The shaded node has a relatively high coupling because it has

relationships with six other nodes.

92Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Program complexity

• A static relationship is one that is stable and does not
depend on program execution.
• Whether or not one component is

part of another component is a static relationship.

• Dynamic relationships, which change over time, are more
complex than static relationships.
• An example of a dynamic relationship is

the ‘calls’ relationship between functions.

93Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software complexity

94Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of complexity

Reading
complexity

Structural
complexity

Data
complexity

Decision
complexity

This reflects how hard it is to
read and understand the program.

This reflects the number and types of
relationship between the structures

(classes, objects, methods or functions) in your program.

This reflects the representations of
data used and relationships between
the data elements in your program.

This reflects the complexity of
the decisions in your program

95Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Complexity reduction guidelines
Structural complexity

• Functions should do one thing and one thing only

• Functions should never have side-effects

• Every class should have a single responsibility

• Minimize the depth of inheritance hierarchies

• Avoid multiple inheritance

• Avoid threads (parallelism) unless absolutely necessary

96Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Complexity reduction guidelines
Data complexity

• Define interfaces for all abstractions
• Define abstract data types

• Avoid using floating-point numbers
• Never use data aliases

97Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Complexity reduction guidelines
Conditional complexity

• Avoid deeply nested conditional statements
• Avoid complex conditional expressions

• You should design classes so that there is only
a single reason to change a class.
• If you adopt this approach, your classes will be smaller and

more cohesive.

• They will therefore be less complex and easier to understand
and change.

• The single responsibility principle
• Gather together the things that change for the same reasons.

• Separate those things that change for different reasons

98Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Ensure that every class
has a single responsibility

99Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The DeviceInventory class
DeviceInventory

laptops
tablets
phones
device_assignment
addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

DeviceInventory

laptops
tablets
phones
device_assignment
addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment
printInventory

(a) (b)

• One way of making this change is to
add a printInventory method
• This change breaks the single responsibility principle as it then

adds an additional ‘reason to change’ the class.

• Instead of adding a printInventory method
to DeviceInventory,
it is better to
add a new class to represent the printed report.

100Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Adding a printInventory method

101Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The DeviceInventory and InventoryReport classes

DeviceInventory

laptops
tablets
phones
device_assignment
addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

InventoryReport

report_data
report_format

updateData
updateFormat
print

• Deeply nested conditional (if) statements are used when you
need to identify which of a possible set of choices is to be made.

• For example, the function ‘agecheck’ is a short Python function
that is used to calculate an age multiplier for insurance
premiums.

• The insurance company’s data suggests that the age and
experience of drivers affects the chances of them having an
accident, so premiums are adjusted to take this into account.

• It is good practice to name constants rather than using
absolute numbers, so Program names all constants that are
used.

102Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Avoid deeply
nested conditional statements

103Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

YOUNG_DRIVER_AGE_LIMIT = 25
OLDER_DRIVER_AGE = 70
ELDERLY_DRIVER_AGE = 80
YOUNG_DRIVER_PREMIUM_MULTIPLIER = 2
OLDER_DRIVER_PREMIUM_MULTIPLIER = 1.5
ELDERLY_DRIVER_PREMIUM_MULTIPLIER = 2
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER = 2
NO_MULTIPLIER = 1
YOUNG_DRIVER_EXPERIENCE = 2
OLDER_DRIVER_EXPERIENCE = 5

def agecheck(age, experience):
Assigns a premium multiplier depending on the age and experience of the driver multiplier =

NO_MULTIPLIER
if age <= YOUNG_DRIVER_AGE_LIMIT:

if experience <= YOUNG_DRIVER_EXPERIENCE:

multiplier = YOUNG_DRIVER_PREMIUM_MULTIPLIER * YOUNG_DRIVER_EXPERIENCE_MULTIPLIER
else:

multiplier = YOUNG_DRIVER_PREMIUM_MULTIPLIER
else:

if age > OLDER_DRIVER_AGE and age <= ELDERLY_DRIVER_AGE:

if experience <= OLDER_DRIVER_EXPERIENCE:
multiplier = OLDER_DRIVER_PREMIUM_MULTIPLIER

else:
multiplier = NO_MULTIPLIER

else:

if age > ELDERLY_DRIVER_AGE:
multiplier = ELDERLY_DRIVER_PREMIUM_MULTIPLIER

return multiplier

Deeply nested if-then-else
statements

104Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

def agecheck_with_guards(age, experience):

if age <= YOUNG_DRIVER_AGE_LIMIT and experience <= YOUNG_DRIVER_EXPERIENCE:
return YOUNG_DRIVER_PREMIUM_MULTIPLIER * YOUNG_DRIVER_EXPERIENCE_MULTIPLIER

if age <= YOUNG_DRIVER_AGE_LIMIT:
return YOUNG_DRIVER_PREMIUM_MULTIPLIER

if (age > OLDER_DRIVER_AGE and age <= ELDERLY_DRIVER_AGE) and experience <= OLDER_DRIVER_EXPERIENCE:
return OLDER_DRIVER_PREMIUM_MULTIPLIER

if age > ELDERLY_DRIVER_AGE:
return ELDERLY_DRIVER_PREMIUM_MULTIPLIER

return NO_MULTIPLIER

Using guards to
make a selection

• Inheritance allows the attributes and methods of a class,
such as RoadVehicle, can be inherited by sub-classes,
such as Truck, Car and MotorBike.

• Inheritance appears to be an effective and efficient way of
reusing code and of making changes that affect all subclasses.
• However, inheritance increases the structural complexity of code as it

increases the coupling of subclasses.
• The problem with deep inheritance is that if you want to make changes to a

class, you have to look at all of its superclasses to see where it is best to make
the change.
• You also have to look at all of the related subclasses to check that the change

does not have unwanted consequences. It’s easy to make mistakes when you
are doing this analysis and introduce faults into your program.

105Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Avoid deep inheritance hierarchies

106Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Part of the inheritance
hierarchy for hospital staff

Hospital staff

Technicians Paramedics Clinical staff Scientist Ancillary staff Admin staff

Doctor Nurse Physiotherapist

Midwife Ward nurse Nurse
Manager

•Definition
•A general reusable solution to a
commonly-occurring problem
within a given context in software design.

107Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Design pattern definition

• Design patterns are object-oriented and describe solutions
in terms of objects and classes.

• They are not off-the-shelf solutions that can be directly
expressed as code in an object-oriented language.

• They describe the structure of a problem solution but
have to be adapted to suit your application and the
programming language that you are using.

108Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Design pattern

• Separation of concerns
• This means that each abstraction in the program (class,

method, etc.) should address a separate concern and that all
aspects of that concern should be covered there.

• Separate the ‘what’ from the ‘how
• If a program component provides a particular service, you

should make available only the information that is required to
use that service (the ‘what’). The implementation of the
service (‘the how’) should be of no interest to service users.

109Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Programming principles

• Creational patterns
• These are concerned with class and object creation. They define ways of

instantiating and initializing objects and classes that are more abstract than the
basic class and object creation mechanisms defined in a programming language.

• Structural patterns
• These are concerned with class and object composition. Structural design patterns

are a description of how classes and objects may be combined to create larger
structures.

• Behavioural patterns
• These are concerned with class and object communication. They show how

objects interact by exchanging messages, the activities in a process and how these
are distributed amongst the participating objects.

110Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Common types of design patterns

• Design patterns are usually documented in the stylized
way. This includes:

• a meaningful name for the pattern and a brief
description of what it does;

• a description of the problem it solves;
• a description of the solution and its implementation;
• the consequences and trade-offs of using the pattern

and other issues that you should consider.

111Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Pattern description

• Refactoring means changing a program to reduce its
complexity without changing the external behaviour of
that program.
• Refactoring makes a program more readable (so reducing

the ‘reading complexity’) and more understandable.
• It also makes it easier to change, which means that you

reduce the chances of making mistakes when you
introduce new features.

112Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Refactoring

• The reality of programming is that as you make changes
and additions to existing code, you inevitably increase its
complexity.
• The code becomes harder to understand and change.

• The abstractions and operations that you started with become
more and more complex because you modify them in ways
that you did not originally anticipate.

113Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Refactoring

114Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

• The starting point for refactoring should be to identify
code ‘smells’.

• Code smells are indicators in the code that there might
be a deeper problem.
• For example, very large classes may indicate that the class is

trying to do too much. This probably means that its structural
complexity is high.

115Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code smells

• Large classes
Large classes may mean that the single responsibility
principle is being violated. Break down large classes into
easier-to-understand, smaller classes.

• Long methods/functions
Long methods or functions may indicate that the function
is doing more than one thing. Split into smaller, more
specific functions or methods.

116Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of code smells

• Duplicated code
Duplicated code may mean that when changes are needed, these
have to be made everywhere the code is duplicated. Rewrite to
create a single instance of the duplicated code that is used as
required

•Meaningless names
Meaningless names are a sign of programmer haste. They make
the code harder to understand. Replace with meaningful names
and check for other shortcuts that the programmer may have
taken.

117Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of code smells

• Unused code
This simply increases the reading complexity of the code.
Delete it even if it has been commented out. If you find
you need it later, you should be able to retrieve it from
the code management system.

118Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of code smells

• Reading complexity
You can rename variable, function and class names
throughout your program to make their purpose more
obvious.

• Structural complexity
You can break long classes or functions into shorter units
that are likely to be more cohesive than the original large
class.

119Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of refactoring for
complexity reduction

• Data complexity
You can simplify data by changing your database schema
or reducing its complexity. For example, you can merge
related tables in your database to remove duplicated data
held in these tables.
• Decision complexity

You can replace a series of deeply nested if-then-else
statements with guard clauses.

120Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Examples of refactoring for
complexity reduction

• Exceptions are events that disrupt the normal flow of
processing in a program.

•When an exception occurs, control is automatically
transferred to exception management code.

•Most modern programming languages include a
mechanism for exception handling.
• In Python, you use **try-except** keywords to indicate

exception handling code;
in Java, the equivalent keywords are **try-catch.**

121Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Exception handling

122Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Exception handling

Executing code

Exception-handling
block

Exception raised

Normal processing

Normal processing

Exit

Exception re-raised or
abnormal exit

Exception-handling code

123

try:
f = open(”file1.txt")
f.write(”Hello World")

except:
print(”writing file error!")

finally:
f.close()

Python
try: except: finally:

Source: Python Try Except: https://www.w3schools.com/python/python_try_except.asp

124Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Auto-save and activity logging

Auto-save Command
logger

Crash
recovery

Last
saved state

Command
executed

Restored
state

• The most important quality attributes for most software products
are reliability, security, availability, usability, responsiveness and
maintainability.

• To avoid introducing faults into your program, you should use
programming practices that reduce the probability that you will
make mistakes.

• You should always aim to minimize complexity in your programs.
Complexity makes programs harder to understand. It increases
the chances of programmer errors and makes the program more
difficult to change.

125Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Design patterns are tried and tested solutions to commonly
occurring problems. Using patterns is an effective way of
reducing program complexity.
• Refactoring is the process of reducing the complexity of an

existing program without changing its functionality. It is good
practice to refactor your program regularly to make it easier to
read and understand.
• Input validation involves checking all user inputs to ensure that

they are in the format that is expected by your program. Input
validation helps avoid the introduction of malicious code into
your system and traps user errors that can pollute your
database.

126Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Regular expressions are a way of defining patterns that can
match a range of possible input strings. Regular expression
matching is a compact and fast way of checking that an input
string conforms to the rules you have defined.

• You should check that numbers have sensible values depending
on the type of input expected. You should also check number
sequences for feasibility.

• You should assume that your program may fail and to manage
these failures so that they have minimal impact on the user.

127Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Exception management is supported in most modern
programming languages. Control is transferred to your own
exception handler to deal with the failure when a program
exception is detected.

• You should log user updates and maintain user data snapshots as
your program executes. In the event of a failure, you can use
these to recover the work that the user has done. You should
also include ways of recognizing and recovering from external
service failures.

128Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

Testing:
Functional testing,
Test automation,

Test-driven development,
and Code reviews

129

Outline
• Software testing
• Functional testing
• Test automation
• Test-driven development
• Code reviews

130

• Software testing is a process in which you execute your program
using data that simulates user inputs.
• You observe its behaviour to see whether or not your program is

doing what it is supposed to do.
• Tests pass if the behaviour is what you expect.

Tests fail if the behaviour differs from that expected.
• If your program does what you expect, this shows that for the

inputs used, the program behaves correctly.
• If these inputs are representative of a larger set of inputs, you can

infer that the program will behave correctly for all members of this
larger input set.

131Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software testing

• If the behaviour of the program does not match the behaviour
that you expect, then this means that there are bugs in your
program that need to be fixed.

• There are two causes of program bugs:

• Programming errors
• You have accidentally included faults in your program code.

For example: ‘off-by-1’ error

• Understanding errors
• You have misunderstood or have been unaware of some of the details

of what the program is supposed to do.

132Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Program bugs

133Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of testing
Functional

testing

User testing

Performance
and

load testing

Security
testing

Test the functionality of the overall system.

Test that the software product is useful to
and usable by end-users.

Test that the software works quickly and
can handle the expected load placed

on the system by its users.

Test that the software maintains its integrity
and can protect user information

from theft and damage.

• Functional testing involves developing a large set of
program tests so that, ideally, all of a program’s code is
executed at least once.
• The number of tests needed obviously depends on the

size and the functionality of the application.
• For a business-focused web application, you may have to

develop thousands of tests to convince yourself that your
product is ready for release to customers.

134Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing

• Functional testing is a staged activity in which you initially
test individual units of code.
You integrate code units with other units to create larger
units then do more testing.

• The process continues until you have created a complete
system ready for release.

135Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing

136Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing
Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

137Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A name checking function
def namecheck(s):

Checks that a name only includes alphabetic characters, - or
a single quote. Names must be between 2 and 40 characters long
quoted strings and -- are disallowed

namex = r"^[a-zA-Z][a-zA-Z-']{1,39}$"
if re.match(namex, s):

if re.search("'.*'", s) or re.search("--", s):
return False

else:
return True

else:
return False

• Correct names 1
The inputs only includes alphabetic characters and are between 2 and
40 characters long.
• Correct names 2

The inputs only includes alphabetic characters, hyphens or
apostrophes and are between 2 and 40 characters long.
• Incorrect names 1

The inputs are between 2 and 40 characters long but include
disallowed characters.
• Incorrect names 2

The inputs include allowed characters but are either a single
character or are more than 40 characters long.

138Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Equivalence partitions for the
name checking function

• Test edge cases
If your partition has upper and lower bounds (e.g. length of
strings, numbers, etc.) choose inputs at the edges of the range.

• Force errors
Choose test inputs that force the system to generate all error
messages. Choose test inputs that should generate invalid outputs.

• Fill buffers
Choose test inputs that cause all input buffers to overflow.

• Repeat yourself
Repeat the same test input or series of inputs several times.

139Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Unit testing guidelines (1)

• Overflow and underflow
If your program does numeric calculations, choose test inputs that cause it
to calculate very large or very small numbers.

• Don’t forget null and zero
If your program uses pointers or strings, always test with null pointers
and strings.
• Keep count

When dealing with lists and list transformation, keep count of the
number of elements in each list and check that these are consistent
after each transformation.
• One is different

If your program deals with sequences, always test with sequences that
have a single value.

140Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Unit testing guidelines (2)

• Features have to be tested to show that the functionality
is implemented as expected and that the functionality
meets the real needs of users.
• For example, if your product has a feature that allows users to

login using their Google account, then you have to check that
this registers the user correctly and informs them of what
information will be shared with Google.

• You may want to check that it gives users the option to sign up
for email information about your product.

141Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature testing

• Normally, a feature that does several things is
implemented by multiple, interacting, program units.

• These units may be implemented by different developers
and all of these developers should be involved in the
feature testing process.

142Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature testing

• Interaction tests
• These test the interactions between the units that implement the

feature. The developers of the units that are combined to make up the
feature may have different understandings of what is required of that
feature.
• These misunderstandings will not show up in unit tests but may only

come to light when the units are integrated.

• The integration may also reveal bugs in program units, which were not
exposed by unit testing.

• Usefulness tests
• These test that the feature implements what users are likely

to want.

143Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of feature test

• User registration
As a user, I want to be able to login without creating a new
account so that I don’t have to remember another login id and
password.
• Information sharing

As a user, I want to know what information you will share with
other companies. I want to be able to cancel my registration if I
don’t want to share this information.
• Email choice

As a user, I want to be able to choose the types of email that I’ll
get from you when I register for an account.

144Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories for the
sign-in with Google feature

• Initial login screen
Test that the screen displaying a request for Google account
credentials is correctly displayed when a user clicks on the ‘Sign-in
with Google’ link. Test that the login is completed if the user is
already logged in to Google.

• Incorrect credentials
Test that the error message and retry screen is displayed if the
user inputs incorrect Google credentials.

145Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature tests for
sign-in with Google

• Shared information
Test that the information shared with Google is displayed, along
with a cancel or confirm option. Test that the registration is
cancelled if the cancel option is chosen.

• Email opt-in
Test that the user is offered a menu of options for email
information and can choose multiple items to opt-in to emails.
Test that the user is not registered for any emails if no options are
selected.

146Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature tests for
sign-in with Google

•System testing involves testing the
system as a whole, rather than the
individual system features.

147Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

System and release testing

• System testing should focus on four things:
• Testing to discover if there are unexpected and unwanted

interactions between the features in a system.

• Testing to discover if the system features work together
effectively to support what users really want to do with the
system.

• Testing the system to make sure it operates in the expected way
in the different environments where it will be used.

• Testing the responsiveness, throughput, security and other
quality attributes of the system.

148Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

System testing

• The best way to systematically test a system is to start with
a set of scenarios that describe possible uses of the system
and then work through these scenarios each time a new
version of the system is created.

• Using the scenario, you identify a set of
end-to-end pathways that users might follow when using
the system.

• An end-to-end pathway is a sequence of actions from
starting to use the system for the task, through to
completion of the task.

149Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scenario-based testing

1. User inputs departure airport and chooses to see only direct flights.
User quits.

2. User inputs departure airport and chooses to see all flights. User quits.

3. User chooses destination country and chooses to see all flights. User
quits.

4. User inputs departure airport and chooses to see direct flights. User
sets filter specifying departure times and prices. User quits.

5. User inputs departure airport and chooses to see direct flights. User
sets filter specifying departure times and prices. User selects a
displayed flight and clicks through to airline website. User returns to
holiday planner after booking flight.

150Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Choosing a holiday destination
End-to-end pathways

• Release testing is a type of system testing where a system
that’s intended for release to customers is tested.

• Preparing a system for release involves packaging that
system for deployment (e.g. in a container if it is a cloud
service) and installing software and libraries that are used
by your product.
• You must define configuration parameters such as the

name of a root directory, the database size limit per user
and so on.

151Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Release testing

• The fundamental differences between
release testing and system testing are:
• Release testing tests the system in its real operational

environment rather than in a test environment. Problems
commonly arise with real user data, which is sometimes more
complex and less reliable than test data.

• The aim of release testing is to decide if the system is good
enough to release, not to detect bugs in the system. Therefore,
some tests that ‘fail’ may be ignored if these have minimal
consequences for most users.

152Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Release testing and System testing

• Automated testing is based on the idea that
tests should be executable.

• An executable test includes the input data to the unit that
is being tested, the expected result and a check that the
unit returns the expected result.
• You run the test and the test passes if the

unit returns the expected result.

• Normally, you should develop hundreds or thousands of
executable tests for a software product.

153Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test automation

154Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Automated testing

Test
runner

Testing
framework

Code
being tested

Test
Report

Files of executable tests

155Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

TestInterestCalculator inherits attributes and methods from the class
TestCase in the testing framework unittest

class TestInterestCalculator(unittest.TestCase):
Define a set of unit tests where each test tests one thing only
Tests should start with test_ and the name should explain what is being tested

def test_zeroprincipal(self):
#Arrange - set up the test parameters
p = 0; r = 3; n = 31
result_should_be = 0
#Action - Call the method to be tested

interest = interest_calculator (p, r, n)
#Assert - test what should be true
self.assertEqual(result_should_be, interest)

def test_yearly_interest(self):
#Arrange - set up the test parameters

p = 17000; r = 3; n = 365
#Action - Call the method to be tested
result_should_be = 270.36
interest = interest_calculator(p, r, n)
#Assert - test what should be true
self.assertEqual(result_should_be, interest)

Test methods for an interest calculator

• It is good practice to
structure automated tests into three parts:

1. Arrange
• You set up the system to run the test. This involves defining the test

parameters and, if necessary, mock objects that emulate the functionality of
code that has not yet been developed.

2. Action
• You call the unit that is being tested with the test parameters.

3. Assert
• You make an assertion about what should hold if the unit being tested

has executed successfully.
AssertEquals: checks if its parameters are equal.

156Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Automated tests

157Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

import unittest
from RE_checker import namecheck

class TestNameCheck (unittest.TestCase):

def test_alphaname (self):

self.assertTrue (namecheck ('Sommerville'))

def test_doublequote (self):
self.assertFalse (namecheck ("Thisis'maliciouscode'"))

def test_namestartswithhyphen (self):

self.assertFalse (namecheck ('-Sommerville'))

def test_namestartswithquote (self):
self.assertFalse (namecheck ("'Reilly"))

def test_nametoolong (self):

self.assertFalse (namecheck ('Thisisalongstringwithmorethen40charactersfrombeginningtoend'))

def test_nametooshort (self):
self.assertFalse (namecheck ('S'))

Executable tests for the namecheck function (1)

158Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

def test_namewithdigit (self):
self.assertFalse (namecheck('C-3PO'))

def test_namewithdoublehyphen (self):
self.assertFalse (namecheck ('--badcode’))

def test_namewithhyphen (self):
self.assertTrue (namecheck ('Washington-Wilson'))

def test_namewithinvalidchar (self):
self.assertFalse (namecheck('Sommer_ville'))

def test_namewithquote (self):
self.assertTrue (namecheck ("O'Reilly"))

def test_namewithspaces (self):
self.assertFalse (namecheck ('Washington Wilson'))

def test_shortname (self):
self.assertTrue ('Sx')

def test_thiswillfail (self)
self.assertTrue (namecheck ("O Reilly"))

Executable tests for the namecheck function (2)

159Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

import unittest

loader = unittest.TestLoader()

#Find the test files in the current directory

tests = loader.discover('.')

#Specify the level of information provided by the test
runner

testRunner = unittest.runner.TextTestRunner(verbosity=2)

testRunner.run(tests)

Code to run unit tests from files

160Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The test pyramid

System
tests

Feature tests

Unit tests

Increased automation
Reduced costs

161Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature editing through an API

APIFeature
tests

Browser or
mobile app interface

Feature 1

Feature 3

Feature 2

Feature 4

162Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Interaction recording and playback

Interaction
session records

User action
recording

Browser or
mobile app interface

System API

User action
playback

System being tested

• Test-driven development (TDD) is an approach to program development
that is based around the general idea that you should write an executable
test or tests for code that you are writing before you write the code.

• It was introduced by early users of the Extreme Programming agile method,
but it can be used with any incremental development approach.

• Test-driven development works best for the development of individual
program units and it is more difficult to apply to system testing.

• Even the strongest advocates of TDD accept that it is challenging to use this
approach when you are developing and testing systems with graphical user
interfaces.

163Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)

164Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

1. Identify partial implementation
Break down the implementation of the functionality required into smaller
mini-units. Choose one of these mini-units for implementation.

2. Write mini-unit tests
Write one or more automated tests for the mini-unit that you have chosen
for implementation. The mini-unit should pass these tests if it is properly
implemented.

3. Write a code stub that will fail test
Write incomplete code that will be called to implement the mini-unit. You
know this will fail.

4. Run all existing automated tests
All previous tests should pass. The test for the incomplete code should fail.

165Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Stages of test-driven development

5. Implement code that should cause the failing test to pass
Write code to implement the mini-unit, which should cause it to operate
correctly

6. Rerun all automated tests
If any tests fail, your code is probably incorrect. Keep working on it until all
tests pass.

7. Refactor code if necessary
If all tests pass, you can move on to implementing the next mini-unit. If
you see ways of improving your code, you should do this before the next
stage of implementation.

166Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Stages of test-driven development

• It is a systematic approach to testing in which tests are clearly linked to sections of
the program code.

• This means you can be confident that your tests cover all of the code that has
been developed and that there are no untested code sections in the delivered
code.

• The tests act as a written specification for the program code. In principle at least, it
should be possible to understand what the program does by reading the tests.

• Debugging is simplified because, when a program failure is observed, you can
immediately link this to the last increment of code that you added to the system.

• TDD leads to simpler code as programmers only write code that’s necessary to pass
tests. They don’t over-engineer their code with complex features that aren’t
needed.

167Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of test-driven development

• TDD discourages radical program change
• I focused on the tests rather than the problem I was trying

to solve
• I spent too much time thinking about implementation

details rather than the programming problem
• It is hard to write ‘bad data’ tests

168Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Reasons for not using TDD

• Security testing aims to find vulnerabilities that may be
exploited by an attacker and to provide convincing evidence
that the system is sufficiently secure.
• The tests should demonstrate that the system can resist

attacks on its availability, attacks that try to inject malware
and attacks that try to corrupt or steal users’ data and
identity.

• Comprehensive security testing requires specialist
knowledge of software vulnerabilities and approaches to
testing that can find these vulnerabilities.

169Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Security testing

• A risk-based approach to security testing involves identifying
common risks and developing tests to demonstrate that the system
protects itself from these risks.

• You may also use automated tools that scan your system to check for
known vulnerabilities, such as unused HTTP ports being left open.

• Based on the risks that have been identified, you then design tests
and checks to see if the system is vulnerable.

• It may be possible to construct automated tests for some of these
checks, but others inevitably involve manual checking of the system’s
behaviour and its files.

170Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Risk-based security testing

• Once you have identified security risks, you then analyze
them to assess how they might arise.
• The user has set weak passwords that can be guessed by an

attacker.

• The system’s password file has been stolen and passwords
discovered by attacker.

• Develop tests to check some of these possibilities.
• For example, you might run a test to check that the code that

allows users to set their passwords always checks the strength
of passwords.

171Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Risk analysis

• Code reviews involve one or more people examining the code to
check for errors and anomalies and discussing issues with the
developer.

• If problems are identified, it is the developer’s responsibility to
change the code to fix the problems.

• Code reviews complement testing. They are effective in finding bugs
that arise through misunderstandings and bugs that may only arise
when unusual sequences of code are executed.

• Many software companies insist that all code has to go through a
process of code review before it is integrated into the product
codebase.

172Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code reviews

173Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code reviews

Discussion

Setup
review

Prepare
code

Distribute
code/tests

Make code
Changes

Check
code

Write review
report

Prepare
to-do list

Review
preparation

Code
checking Review Follow-up

Reviewer

ReviewerProgrammer Programmer

• The aim of program testing is to find bugs and to show that a
program does what its developers expect it to do.

• Four types of testing that are relevant to
software products are
functional testing, user testing,
load and performance testing and security testing.

• Unit testing involves testing program units such as functions or
class methods that have a single responsibility.

• Feature testing focuses on testing individual system features.

174Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• System testing tests the system as a whole to check for
unwanted interactions between features and between the
system and its environment.

• Identifying equivalence partitions, in which all inputs have
the same characteristics, and choosing test inputs at the
boundaries of these partitions, is an effective way of
finding bugs in a program.

• User stories may be used as a basis for deriving feature
tests.

175Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Test automation is based on the idea that tests should be
executable. You develop a set of executable tests and run
these each time you make a change to a system.
• The structure of an automated unit test should be

arrange-action-assert. You set up the test parameters,
call the function or method being tested, and make an
assertion of what should be true after the action has
been completed.

176Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Test-driven development is an approach to development
where executable tests are written before the code. Code
is then developed to pass the tests.
• A disadvantage of test-driven development is that

programmers focus on the detail of passing tests rather
than considering the broader structure of their code and
algorithms used.

177Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Security testing may be risk driven where a list of security
risks is used to identify tests that may identify system
vulnerabilities.
• Code reviews are an effective supplement to testing. They

involve people checking the code to comment on the code
quality and to look for bugs.

178Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

DevOps and
Code Management:
Code management

and
DevOps automation

179

Outline
• Source code management
• DevOps automation
• DevOps measurement

180

DevOps

181Source: The DevOps Institute (2022), https://thedevopsinstitute.com/?page_id=22

Dev Ops

https://thedevopsinstitute.com/?page_id=22

182Source: Yetiştiren, Burak, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. "Evaluating the Code Quality of AI-Assisted Code Generation Tools: An Empirical Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT.”
arXiv preprint arXiv:2304.10778 (2023).

Evaluating the Code Quality of
AI-Assisted Code Generation Tools:

An Empirical Study on
GitHub Copilot,

Amazon CodeWhisperer,
and ChatGPT

AI-Assisted Code Generation Tools:
GitHub Copilot, Amazon CodeWhisperer, and ChatGPT

• RQ1 What is the quality of the code generated by the code generation tools?
• RQ1.1 How valid are the code generation tools’ code suggestions?
• RQ1.2 How correct are code generation tools’ code suggestions?
• RQ1.3 How secure are code generation tools’ code suggestions?
• RQ1.4 How reliable are code generation tools’ code suggestions?
• RQ1.5 How maintainable are code generation tools’ code suggestions?

• RQ2 What is the impact of using the docstrings on the generated code quality?
• RQ3 What is the impact of using meaningful function names on the generated

code quality?
• RQ4 How did the code generation tools evolve over time?

183Source: Yetiştiren, Burak, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. "Evaluating the Code Quality of AI-Assisted Code Generation Tools: An Empirical Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT.”
arXiv preprint arXiv:2304.10778 (2023).

184Source: Yetiştiren, Burak, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. "Evaluating the Code Quality of AI-Assisted Code Generation Tools: An Empirical Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT.”
arXiv preprint arXiv:2304.10778 (2023).

AI-Assisted
Code

Generation
Tools:

GitHub Copilot,
Amazon

CodeWhisperer
, and ChatGPT

185Source: Yetiştiren, Burak, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. "Evaluating the Code Quality of AI-Assisted Code Generation Tools: An Empirical Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT.”
arXiv preprint arXiv:2304.10778 (2023).

AI-Assisted Code Generation Tools: Experiment Setup

186Source: Yetiştiren, Burak, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. "Evaluating the Code Quality of AI-Assisted Code Generation Tools: An Empirical Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT.”
arXiv preprint arXiv:2304.10778 (2023).

AI-Assisted Code Generation Tools: Experiment Workflow

187Source: Yetiştiren, Burak, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. "Evaluating the Code Quality of AI-Assisted Code Generation Tools: An Empirical Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT.”
arXiv preprint arXiv:2304.10778 (2023).

AI-Assisted Code Generation Tools: Code Correctness

188Source: Yetiştiren, Burak, Işık Özsoy, Miray Ayerdem, and Eray Tüzün. "Evaluating the Code Quality of AI-Assisted Code Generation Tools: An Empirical Study on GitHub Copilot, Amazon CodeWhisperer, and ChatGPT.”
arXiv preprint arXiv:2304.10778 (2023).

AI-Assisted Code Generation Tools: Code Correctness

ChatGPT

GitHub
Copilot

Code
Generation

Models:
BERT,

T5,
GPT-3,

CodeBERT
CodeGPT,

CodeX
189Source: Zezhou Yang, Sirong Chen, Cuiyun Gao, Zhenhao Li, Ge Li, Rongcong Lv (2023), Deep Learning Based Code Generation Methods: A Literature Review, https://arxiv.org/abs/2303.01056

Pretrained
Model

Backbone Parameter Pretrained
Dataset

Size of
Dataset

Trained
Language

https://arxiv.org/abs/2303.01056

• Traditionally, separate teams were responsible software
development, software release and software support.

• The development team passed over a ‘final’ version of the
software to a release team.
• Built a release version, tested this and prepared release documentation

before releasing the software to customers.

• A third team was responsible for providing customer support.
• The original development team were sometimes also responsible for

implementing software changes.

• Alternatively, the software may have been maintained by a separate
‘maintenance team’.

190Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software support

191Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software Development,
release and support

Software
Development

Problem and bug
reports

Software
Release

Software
Support

Tested software
ready for release

Deployed software
ready for use

•There are inevitable delays and overheads in
the traditional support model.
•To speed up the release and support processes,
an alternative approach called
DevOps (Development + Operations)
has been developed.

192Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

• Three factors led to the development and widespread
adoption of DevOps:
• Agile software engineering reduced the development time for

software, but the traditional release process introduced a bottleneck
between development and deployment.

• Amazon re-engineered their software around services and introduced
an approach in which a service was developed and supported by the
same team. Amazon’s claim that this led to significant improvements
in reliability was widely publicized.

• It became possible to release software as a service, running on a
public or private cloud. Software products did not have to be released
to users on physical media or downloads.

193Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

194Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

Development

Deployment Support

Multi-skilled DevOps team

• Everyone is responsible for everything
All team members have joint responsibility for developing, delivering
and supporting the software.

• Everything that can be automated should be automated
All activities involved in testing, deployment and support should be
automated if it is possible to do so. There should be minimal manual
involvement in deploying software.

• Measure first, change later
DevOps should be driven by a measurement program where you
collect data about the system and its operation. You then use the
collected data to inform decisions about changing DevOps processes
and tools.

195Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps principles

196Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of DevOps
Faster

deployment

Reduced
risk

Faster
repair

More
productive

teams

Software can be deployed to production more quickly
because communication delays between the people

involved in the process are dramatically reduced.

The increment of functionality in each release is small
so there is less chance of feature interactions and
other changes causing system failures and outages.

DevOps teams work together to get the
software up and running again as soon as possible.

DevOps teams are happier and more productive
than the teams involved in the separate activities.

• Code management is a set of software-supported practices
that is used to manage an evolving codebase.

• During the development of a software product, the
development team will probably create tens of thousands
of lines of code and automated tests.
• These will be organized into hundreds of files. Dozens of

libraries may be used, and several, different programs may
be involved in creating and running the code.

197Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management

• You need code management to ensure that changes made
by different developers do not interfere with each other,
and to create different product versions.
• Code management tools make it easy to create an

executable product from its source code files and to run
automated tests on that product.

198Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management

• Source code management, combined with automated system
building, is essential for professional software engineering.

• In companies that use DevOps, a modern code management
system is a fundamental requirement for ‘automating
everything’.

• Not only does it store the project code that is ultimately
deployed, it also stores all other information that is used in
DevOps processes.

• DevOps automation and measurement tools all interact with
the code management system

199Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

200Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

Code
repository

DevOps automation

Code management system

DevOps measurement

Continuous
integration

Continuous
deployment

Continuous
delivery

Infrastructure
as code

Data
collection

Data
analysis

Report
generation

Recover
version

information

Save and
retrieve
versions

Branching and merging

Transfer code to/from developer’s filestore

• Code management systems provide a set of features that support four
general areas:
• Code transfer

• Developers take code into their personal file store to work on it then return it to the shared
code management system.

• Version storage and retrieval
• Files may be stored in several different versions and specific versions of these files can be

retrieved.

• Merging and branching
• Parallel development branches may be created for concurrent working. Changes made by

developers in different branches may be merged.

• Version information
• Information about the different versions maintained in the system may be stored and

retrieved

201Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management fundamentals

• All source code management systems have the general
form with a shared repository and a set of features to
manage the files in that repository:
• All source code files and file versions are stored in the

repository, as are other artefacts such as configuration files,
build scripts, shared libraries and versions of tools used.

• The repository includes a database of information about the
stored files such as version information, information about
who has changed the files, what changes were made at what
times, and so on.

202Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code repository

• Files can be transferred to and from the repository
and information about the different versions of
files and their relationships may be updated.
• Specific versions of files and information about

these versions can always be retrieved from the
repository.

203Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code repository

204Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Features of
code management systems

Version and release identification

Change history recording

Independent development

Project support

Storage management

• In 2005, Linus Torvalds, the developer of Linux, revolutionized
source code management by developing a distributed version
control system (DVCS) called Git to manage the code of the Linux
kernel.

• This was geared to supporting large-scale open source
development. It took advantage of the fact that storage costs had
fallen to such an extent that most users did not have to be
concerned with local storage management.

• Instead of only keeping the copies of the files that users are
working on, Git maintains a clone of the repository on every user’s
computer

205Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Git

206Source: https://git-scm.com/

207Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Benefits of
distributed code management

Resilience

Speed

Flexibility

• Branching and merging are fundamental ideas that are
supported by all code management systems.

• A branch is an independent, stand-alone version that is
created when a developer wishes to change a file.

• The changes made by developers in their own branches may
be merged to create a new shared branch.

• The repository ensures that branch files that have been
changed cannot overwrite repository files without a merge
operation.

208Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Branching and merging

209Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Branching and merging

Alice

Bob

Bug fix branch

Merge
Master branch

Feature experiment branch

• By using DevOps with automated support, you can dramatically
reduce the time and costs for integration, deployment and
delivery.

• Everything that can be, should be automated is a fundamental
principle of DevOps.

• As well as reducing the costs and time required for integration,
deployment and delivery, process automation also makes these
processes more reliable and reproducible.

• Automation information is encoded in scripts and system models
that can be checked, reviewed, versioned and stored in the
project repository.

210Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps automation

211Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Aspects of DevOps automation
Continuous
integration

Continuous
delivery

Continuous
deployment

Infrastructure
as code

Each time a developer commits a change to the
project’s master branch, an executable version

of the system is built and tested.

A simulation of the product’s operating environment
is created and the executable software version is tested.

A new release of the system is made available
to users every time a change is made to the

master branch of the software.

Machine-readable models of the infrastructure
(network, servers, routers, etc.)

on which the product executes are used by configuration
management tools to build the software’s execution platform.

212Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Characteristics of
infrastructure as code

Visibility

Reproducibility

Reliability

Recovery

• After you have adopted DevOps, you should try to
continuously improve your DevOps process to achieve
faster deployment of better-quality software.
• There are four types of

software development measurement:
• Process measurement
• Service measurement

• Usage measurement
• Business success measurement

213Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps measurement

• As far as possible, the DevOps principle of automating everything
should be applied to software measurement.

• You should instrument your software to collect data about itself
and you should use a monitoring system to collect data about
your software’s performance and availability.

• Some process measurements can also be automated.

• However, there are problems in process measurement because
people are involved. They work in different ways, may record
information differently and are affected by outside influences
that affect the way they work.

214Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Automating measurement

215Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Metrics used in the
DevOps scorecard

DevOps
metrics

Deployment
frequency

Change
volume

Lead time from
development to

deployment

Percentage
increase in

customer numbers

Number of customer
complaints

Availability

Performance

Percentage of
failed deployment

Mean time
to recovery

Process metrics

Service metrics

• DevOps is the integration of software development and the
management of that software once it has been deployed for use.
The same team is responsible for development, deployment and
software support.

• The benefits of DevOps are faster deployment, reduced risk, faster
repair of buggy code and more productive teams.

• Source code management is essential to avoid changes made by
different developers interfering with each other.

216Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• All code management systems are based around a shared code
repository with a set of features that support code transfer,
version storage and retrieval, branching and merging and
maintaining version information.

• Git is a distributed code management system that is the most
widely used system for software product development. Each
developer works with their own copy of the repository which may
be merged with the shared project repository.

217Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• DevOps is the integration of software development and the
management of that software once it has been deployed for use.
The same team is responsible for development, deployment and
software support.

• The benefits of DevOps are faster deployment, reduced risk,
faster repair of buggy code and more productive teams.

• Source code management is essential to avoid changes made by
different developers interfering with each other.

218Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Continuous integration means that as soon as a change is
committed to a project repository, it is integrated with existing
code and a new version of the system is created for testing.

• Automated system building tools reduce the time needed to
compile and integrate the system by only recompiling those
components and their dependents that have changed.

• Continuous deployment means that as soon as a change is made,
the deployed version of the system is automatically updated. This
is only possible when the software product is delivered as a
cloud-based service.

219Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• Infrastructure as code means that the infrastructure (network,
installed software, etc.) on which software executes is defined as a
machine-readable model. Automated tools, such as Chef and
Puppet, can provision servers based on the infrastructure model.

• Measurement is a fundamental principle of DevOps. You may
make both process and product measurements. Important process
metrics are deployment frequency, percentage of failed
deployments, and mean time to recovery from failure.

220Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

References
• Ian Sommerville (2019), Engineering Software Products: An Introduction to

Modern Software Engineering, Pearson.

• Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

• Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software Engineering at
Google: Lessons Learned from Programming Over Time, O'Reilly Media.

• Project Management Institute (2021), A Guide to the Project Management Body of
Knowledge (PMBOK Guide) – Seventh Edition and The Standard for Project
Management, PMI.

• Project Management Institute (2017), A Guide to the Project Management Body of
Knowledge (PMBOK Guide), Sixth Edition, Project Management Institute.

• Project Management Institute (2017), Agile Practice Guide, Project Management
Institute.

221

