Artificial Intelligence

Deep Learning and
Reinforcement Learning

Min-Yuh Day, Ph.D,
Associate Professor

Institute of Information Management, National Taipei University
https://web.ntpu.edu.tw/~myday

National Taipei University

OF 0
i
EI s

https://meet.google. rn/

my%fm

%

https://web.ntpu.edu.tw/~myday/
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday
https://meet.google.com/miy-fbif-max

Syllabus \ <

& 2 F I X B
National Taipei University

Week Date Subject/Topics

1 2022/09/14 Introduction to Artificial Intelligence

2 2022/09/21 Artificial Intelligence and Intelligent Agents
3 2022/09/28 Problem Solving

4 2022/10/05 Knowledge, Reasoning and Knowledge Representation;
Uncertain Knowledge and Reasoning

5 2022/10/12 Case Study on Artificial Intelligence |
6 2022/10/19 Machine Learning: Supervised and Unsupervised Learning

Syllabus o

National Taipei University

Week Date Subject/Topics

7 2022/10/26 The Theory of Learning and Ensemble Learning
8 2022/11/02 Midterm Project Report

9 2022/11/09 Deep Learning and Reinforcement Learning

10 2022/11/16 Deep Learning for Natural Language Processing
11 2022/11/23 Invited Talk: Al for Information Retrieval

12 2022/11/30 Case Study on Artificial Intelligence Il

Syllabus \ <

National Taipei University

Week Date Subject/Topics

13 2022/12/07 Computer Vision and Robotics

14 2022/12/14 Philosophy and Ethics of Al and the Future of Al
15 2022/12/21 Final Project Report |

16 2022/12/28 Final Project Report Il

17 2023/01/04 Self-learning

18 2023/01/11 Self-learning

Deep Learning and
Reinforcement
Learning

Outline

* Deep Learning (DL)
* Neural Networks (NN)
e Convolutional Neural Networks (CNN)
* Recurrent Neural Networks (RNN)
* Reinforcement Learning (RL)
* Markov Decision Processes (MDP)
* Deep Reinforcement Learning (DRL) Algorithms
 SARSA
* Q-Learning
* DQN, A3C, Rainbow

Stuart Russell and Peter Norvig (2020),
Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Russell EAFTicIal Intelligence
Norvig A Modern Approach

P Fourth Edition

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

N OO U A WN =

Artificial Intelligence:
A Modern Approach

. Artificial Intelligence

. Problem Solving

. Knowledge and Reasoning

. Uncertain Knowledge and Reasoning

. Machine Learning

. Communicating, Perceiving, and Acting
. Philosophy and Ethics of Al

Artificial Intelligence:
Machine Learning

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Artificial Intelligence:
5. Machine Learning
* Learning from Examples
* Learning Probabilistic Models
* Deep Learning

* Reinforcement Learning

Artificial Intelligence:
Reinforcement Learning

Learning from Rewards

Passive Reinforcement Learning

Active Reinforcement Learning

Generalization in Reinforcement Learning

Policy Search

Apprenticeship and Inverse Reinforcement Learning

Applications of Reinforcement Learning

11

Reinforcement Learning (DL)

Agent

{ EnvironmentJ

Reinforcement Learning (DL)

1 observation 2 action
Agent

3 reward T

Environment

13

Reinforcement Learning (DL)

Agent

0,
3 reward TRt

Environment

1 observation 2 action
A

t

14

Agents interact with environments
through sensors and actuators

/Px gent Sensors s

' Percepts

?

' Actions

\ Actuators -

JUSWIUOITAUH

Al Acting Humanly:

The Turing Test Approach
(Alan Turing, 1950)

Knowledge Representation

Automated Reasoning

Machine Learning (ML)

* Deep Learning (DL)

Computer Vision (Image, Video)

Natural Language Processing (NLP)

Robotics

SSSSSS : Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

16

Artificial Intelligence

Machine Learning & Deep Learning

ARTIFICIAL
INTELLIGENCE

\flint} HH gence

MACHINE
LEARNING

DEEP
LEARNING

1950’s 1960’s 1970’s 1980’s 1990’s 2000’s 2010’s

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.

Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

17

Al, ML, DL

4 Artificial Intelligence (Al))
4 Machine Learning (ML) A
Supervised Unsupervised
Learning Learning
Deep Learning (DL)
RNN LSTM GRU
\ GAN)

Semi-supervised l Reinforcement

L Learning Learning)

3 Machine Learning Algorithms

TEMPORAL

DIFFERENCE

RENFORCEMENT LEARNING

Q-LEARNING

K-MEANS

DEEP BELIEF
NETWORKS

CLUSTERING

UNSUPERVISED
LEARNING

PRINCIPAL
COMPONENT
ANALYSIS DIMENSIONALITY

REDUCTION

LINEAR
DISCRIMINANT

ANALYSIS
GENERALIZED

DISCRIMINANT
ANALYSIS

LEARNING

CONVOLUTIONAL
NEURAL NETWORK

REGRESSION

SUPERVISED
LEARNING

RANDOM
FOREST

LINEAR
REGRESSION

CLASSIFICATION NAIVE BAYES

CONDITIONAL
DECISION TREE

K-NEAREST NEIGHBORS

RECURSIVE NEURAL
NETWORK

MACHINE LEARNING
+
DEEP LEARNING

-1
B w

SOCIAL
MEDIA WEB LOGS SALES

ISCOVERY

19

Machine Learning (ML)

Meaningful
Compression

Structure Image

: - Customer Retention
Discovery Classification

Big daca Dimensionality Feature Idenity Fraud

isuali = lassi i Diagnostics
Visualistaion Reduction Elicitation Detection Classification en

Recommender : - Advertising Popularity
Systems Unsupervnsed SUPerV|Sed Prediction
Learning Learning Weather
Forecasting
Clustering . Regression

Machine W=

Marketing oo Foracasting
Prediction

Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning
st Skill Acquisition

Learning Tasks

20

Stock Market Movement Forecast:
ML Phases of the stock market modeling

Data-sourcing Data Pre-Processing Modelling Evaluation
Blogs Word2vec
TF-IDF Deep Learning WM
Social Network :>
Accurac
- :> Notural Language Graph Models Ensemble /
Processing E>
Unstructured nputs Decision Tree Fuzzy F-Measure
Economic Indicators ANN Genetic Algorithms
;,> PCA ::> Return
Market Information | Rough Sets
T Order Reduction
Technical Indicators
Structured Inputs

21

Machine Learning Tasks and Methods

Machine Learning
2
| e I ——— N s TP T
o ‘ _ i Semi-supervised Learning . i ’ Y . 0
Supervised Learning | Transfer Learning ' | UnsupervisedLearning | | ActiveLeaming | ReinforcementLearning)
Classical: Recent Development: Classical: Recent Development: - Multi-armed bandit
- K-Nearest Neighboxs - Ensemble Method = Clusteu'ng - Topic Models 7 Dynamic pmgmmming
o - Random Forest =3 x s =S
- Naive Bayes TOCAILS 2 arsa
¥ LY RS R Representation Learning .
- Support Vector Machine i DBSCAN - AutoEncoder - Q-learning
@ - Decision Tree - XGBoost i : LG - n-Step Temporal Difference
o - Dimensionality Reduction: - Network Embedding
_g - Artificial Neural - Probabilistic Graphical -PCA - Deep Q Nertwork
R
= Network Model -SVD |
- Deep Neural Network - Factor Analysis
- Convolutional Neural
Networks
- Recurrent Neural
Nertworks

Note: Several entries in the diagram, e.g. word embedding or multi-armed bandit, refer to specific problem formulations for which a collection of methods exist.

: Tasks that take input data as given C): Tasks that involve interactive data acquisition Dashed border: methods not elaborated in paper text

Bold type: highlights recent developments

Source: Liye Ma and Baohong Sun (2020), "Machine learning and Al in marketing — Connecting computing power to human insights." International Journal
of Research in Marketing, 37, no. 3, 481-504.

22

Machine
Learning

Machine Learning
Supervised Learning (Classification)
Learning from Examples

Machine Learning
Supervised Learning (Classification)
Learning from Examples

y f(x)
W 2 iy N = el + Sl T==1
Example 15.1,3.5,1.4,0. %»' Iris-setosa __ 1 _ .
14.9,3.0,1.4,0.2)Iris-setosa :
:4.7,3.2,1.3,0.2¢Irls -setosa l
I7.0,3.2,4.7,1.4ﬂIrlS Ver81color:

X :6.4,3.2,4.5,1.5HIrls ver31color: J)
:6.9,3.1,4.9,1.54Iris—versicolor|
16.3,3.3,6.0,2.5,Iris-virginica |
:5.8,2.7,5.1,1.9¢Irls virginica !
I7.1,3.0,5.9,2.1ﬂIrlS virgilinica :

25

[10,

20,

Time Series Data

30,

40,

X

50,

(10
[20
[30
[40
[50
[60

20
30
40
50
60
70

30]
40]
50]
60]
70]
80]

60,

Y

40
50
60
70
80
90

70,

80,

90]

Time Series Data

(100, 110, 120, 130, 140, 150]

0

X Y

[100 110 120 130 140] 150

CORNCYRCY ()

Linear function

Y =f(x)

Yy=wW X Tw,

hw(x) — WX T Wo

-~ £
S o=
2

) ~

afed =

e 'S

£ + £

Q x =

= !

c w = &

O

S (0]

(V] o

|

5
TP %

c A

m (%GWM/W@%-
m W °TRR ¢
S . s2s8888c¢

0001$ ur 2o1id asnoH

3000 3500

1000 1500 2000 2500

500

House size in square feet

y=0.232x + 246

Loss function for Weights (w;, wy)

29

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

Deep
Learning

Deep Learning
and
Neural Networks

L

Tensor

TensorFlow Playground

Tinker With a Neural Network Right Here in Your Browser.

Don't Worry, You Can't Break It. We Promise.

O lterations Learning rate Activation Regularization Regularization rate Problem type
>l
000,582 0.03 v Tanh v None v 0 v Classification =

DATA INPUT + — 3 HIDDEN LAYERS OUTPUT
Which dataset do Which properties Test loss 0.000
you want to use? do you want to Training loss 0.000
l feed in? = &) &= o = HETD h
3 ﬁ 4 neurons 2 neurons 2 neurons
Jil =811
/ ~ &
," K . &
s D '0
X E} ~~~~~~~~ _,___<|r - [| - }ﬁ'
Ratio of training to —
test data: 50% A K
_. . ’ ﬁ_r“: 1
Noise: 0 X
® \ 'Iv
Batch size: 10 o e e g
— '

htt;;://playgrou nd.tensorflow.org/

http://playground.tensorflow.org/

Tensor

Tensor

3

e # arank 0 tensor; this is a scalar with shape []
[1.,2., 3.]

e # arank 1 tensor; this is a vector with shape [3]
[[1., 2., 3.], [4., 5., 6.]]

e # arank 2 tensor; a matrix with shape [2, 3]

[{[1., 2., 3.1}, ([7., 8., 9.111
* # arank 3 tensor with shape [2, 1, 3]

https://www.tensorflow.org/

33

https://www.tensorflow.org/

Scalar

Vector

Matrix

Tensor

80

[50 60 70]

50 60 70]

[55 65 75]

50 60 70
55 65 75

[70 80 907

[75 85 95]

34

Deep Learning
and
Neural Networks

Deep Learning
Foundations:
Neural Networks

Deep Learning and

Neural Networks

Input Layer Hidden Layer Output Layer
(X) (H) (Y)

X1

X2

37

Deep Learning and

Neural Networks
Input Layer Hidden Layer Output Layer
(X) (H) (Y)

Input Layer
(X)

Deep Learning and

Neural Networks

Hidden Layers
(H)

Deep Neural Networks
Deep Learning

OO000O
0000
OO000O

Output Layer
(Y)

39

Deep Learning
and
Deep Neural Networks

© Backed ingut Cett
@ inputCet
@ Noisynput Call

Neural =

@ Probeblistic Hidden Cell
@ soiving Hiscen Call

Networks ::-...

. Recurrent Cell

(NN) =

A mostly complete chort of

Neural Networks

©2016 Floder van Veen - oy

Perceptron (P) Feed Forward (FF) Radiat Basis Network (REF)

o St &

Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)

Aecurrent Neural Network (RNN)

...
RIERIERS

v

t‘\‘ .l‘\’ .I.\

Auto Encoder (AE) Sparse AE (SAE)

BM (RBM) Deep Belief Network (D8N)

Deep Convolutionad Inverse Graphics Network (DOIGN)

Xa%0

N

W, 0"“ >‘"-
N\ \

X - \/

Generative Adversacial Network (GAN) Liquid State Maching (LSM) Extreme Learing Machine (ELM) Echo State Networek (ESN)

add \'l
~ U\

. 9.9 9.9
NG NG G NN NG
MM MRS,
VaVaVaVa Va2

e

Deep Residual Network (DRN) Kohonen Network (KN) Sepport Viector Machine (SVM) Newral Turing Machine (NTM)

s 46t 9 g

Source: http://www.asimovinstitute.org/neural-network-zoo/

41

© Backfed Input Cell

" Input Cell

Z} Noisy Input Cell

@ Hidden Cell

© rrobablistic Hidden Cell
@ spiking Hidden Cell

’ Output Cell

. Match Input Output Cell
. Recurrent Cell

. Memory Cell

. Different Memory Cell

. Kernel

O Convolution or Pool

A mostly complete chart of

Neural Networks ...

©2016 Fjodor van Veen - asimovinstitute.org
Perceptron (P) Feed Forward (FF) Radial Basis Network (RBF)

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)
- -~ - ~ - - ~

~—

P o

TR\ : T < TR\
, 0{4“;'?3;02 SXHEXSEXY 0{‘5;0?5;02
AR ' RERIR

Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)

Y/ \/

BB R BGR
RIS GORACRES

42

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

Generative Adversarial Network (GAN) Liquid State Machine (LSM) Extreme Learning Machine (ELM) Echo State Network (ESN)

N /.\’/‘\'/;\'/‘\'/“\'

ofy W

% \'()'(X
WA

R

Deep Residual Network (DRN) Kohonen Network (KN) Support Vector Machine (SVM) Neural Turing Machine (NTM)

sossasias 8 e g

Source: http://www.asimovinstitute.org/neural-network-zoo/

43

Convolutional Neural Networks

(CNN or Deep Convolutional Neural Networks, DCNN)

Recurrent Neural Networks
(RNN)

N
5
7

%
"%

P oaaar

S~

Long / Short Term Memory
(LSTM)

TN

P .

S

&
%

Gated Recurrent Units
(GRU)

TN

-~

X

N

Generative Adversarial Networks (GAN)

9.9.9.9.9
L X Ean XX S XL XS
NISINICRSEA SN,

\';‘\'/‘\')‘\';‘\"‘\

Support Vector Machines
(SVM)

S

Cortes, Corinna, and Vladimir Vapnik. “Support-vector networks.” Machine learning 20.3 (1995): 273-297.

Source: http://www.asimovinstitute.org/neural-network-zoo/

49

From image to text

Vision Language
Deep CNN Generating RNN
o q A group of people
O \ shopping at an outdoor
. .___,..--. ‘ market.
o "o There are many
. vegetables at the
® fruit stand.

-~

.: -
| SEER N e

-

A woman is throwing a frisbee in a park. A stop sign is on a rcad with a

mountain in the background

A little girl sitting on a bed with a teddy bear. A group of people sitting on a boat in the water. A giraffe standing in a forest with
trees in the background.

50

From image to text

Image: deep convolution neural network (CNN)
Text: recurrent neural network (RNN)

51

X1

X2

Neural Networks

Input Layer
(X)

Hidden Layer Output Layer
(H) (Y)

52

The Neuron

53

Neuron and Synapse

% Dendrites

° Microtubule

Neurofibrils
Neurotransmitte

Receptor

Synaptic vesicles
Synapse (Axoanick -
Synaptic cleft -
Axonal terminal

—
~
/

Rough ER
{Niss| body)

Polyribosomes Node of Ranvier

Ribosomes
Golgi apparatus

Myelin Sheath
|Schwann cell)
Nucleus

Nucleolus
Membrane
Microtubule &

ondrion

Smooth ER

I(Axodendritic h ‘ Dendntes

Synapse
\) »
A Y

Microfilament

Microtubule
Axon

54

The Neuron

>

y=F

F(x)=max(0,x)

55

y=max (0, -0.27T *x,+ 0.3 " x,+ 0.7 * x3)

Weights

-0.21

Inputs X2 O 0.3 > YV

56

Neural Networks

X1

X2

Neural Networks

Input Layer
(X)

Hidden Layer Output Layer
(H) (Y)

58

Input Layer
(X)

Neural Networks

Hidden Layers
(H)

Deep Neural Networks
Deep Learning

OO000O
0000
OO000O

Output Layer
(Y)

59

Neural Networks

Input Layer Hidden Layer Output Layer
(X) (H) (Y)

Neuron

Synapse

Synapse

» Neuron

X2

60

Hours
Sleep

Hours
Study

Neural Networks

Input Layer
(X)

Hidden Layer
(H)

Output Layer
(Y)

Score

61

Neural Networks

Input Layer Hidden Layer Output Layer
(X) (H) (Y)

https://www.youtube.com/watch?v=P2HPcj8lRJE&list=PLjJh1vlSEYgvGod9wWiydumYl8hOXixNu&index=2

X1

X2

Neural Networks

Input Layer
(X)

Hidden Layer Output Layer
(H) (Y)

63

X Y

Hours Hours
Sleep Study Score

3 5 |75
5 1 (82
10 2 |93

- - EE— EES S EEE S EEE B B B B B S EEe Eae S B B B B B e

X Y
Hours Hours
Sleep Study Score
3 5 |75
Training 5 1 (82
10 2 |93
Testing 8 3 |?

Y=WX+b

Outlput inptljt
Y=WX+b
T T

Weights bias
~— /

Trained

WX+b=Y

2.0

1.0

0.1

Scores

=1 0.7

- 0.2

- 0.1

> Probabilities

68

SoftMAX

WX+b=Y

Logits

2.0

1.0

0.1

Scores

S;) =

eyi

Zjeyj

0.7

0.2

0.1

> Probabilities

69

eYi e?0 2.71822:0

SO = Yjeri T eZ04el04e01 2718220+2.718210+2.718201 0.7
eYi el0 2.718210
SGi) = Yie?l e?0+el0+e0l 2.71822042.718210+2.718201 0.2
eVi ef1 2.718201
S(yi) = Yie'l e?0+el0+e0l 2718220+42.718210+2.718201 0.1
2.0 |-- =1 0.7
WX+b=Y
0-1 = - =P 001

Logits Scores > Probabilities

70

Training a Network

Minimize the Cost Function

Training a Network

Minimize the Cost Function
Minimize the Loss Function

100

75

50

25

Testl

Test2

Error = Predict Y - Actual Y
Error : Cost : LosSS

Test3

< <

73

100

75

50

25

Testl

Test2

Error = Predict Y - Actual Y
Error : Cost : LosSS

Test3

< <

74

100

75

50

25

Testl

Test2

Error = Predict Y - Actual Y
Error : Cost : LosSS

Test3

< <

75

Activation
Functions

Activation Functions

Sigmoid TanH RelU

(Rectified Linear Unit)

[0, 1] [-1, 1] J(x) = max(0, x)

77

12
1.0
08
0.6
04
0.2
0.0
-0.2

Sigmoid

1

Activation Functions

RelLU

0 for z<0
z for z>0

TanH

15 10
tanh(z) = 2 1 8

10 - 1+e—2z f(2)={
05 6
00 4
-0.5 2
-1.0 0
-15 -2

4 6 -6 -4 -2 0 2 4 6 -6 -4

78

Loss
Function

Binary Classification: 2 Class

Activation Function:
Sigmoid

Loss Function:
Binary Cross-Entropy

Multiple Classification: 10 Class

Activation Function:
SoftMAX

Loss Function:
Categorical Cross-Entropy

Dropout

Dropout: a simple way to prevent neural networks from overfitting

A

\‘;)ﬂ X/
.‘ X
C—Ch %«,
l‘\’ QM w’ “)\ A \v O‘
/XKL /XKL
/Qx RGO

-p?‘\#

AN
\\’dc‘

W
‘a\Ya\

(e
NIANY

—?Q?

./)‘4\“\

N

S,
BRKA

'.&16,4 \/

AVA

.i"ﬁ

(b) After applying dropout.

a) Standard Neural Net

82

Learning Algorithm

While not done:
Pick a random training example “(input, label)”
Run neural network on “input”

Adjust weights on edges to make output closer to
“label”

83

y=max (0, -0.27T *x,+ 0.3 " x,+ 0.7 * x3)

Weights

-0.21

Inputs X2 O 0.3 > YV

84

Inputs

Next time:
0,-0.23 *x,+0.37T *x,+ 0.65 * x3)

4*\1 lf\’)*\, In7*\l
/ A1TU.\) /\2' U. 7 /\3/

Weights
-0.23

85

Optimizer:
Stochastic Gradient Descent
(SGD)

J(w) Initial

Global cost
minimum

This shows a function of 2 variables: real neural nets
are functions of hundreds of millions of variables!

87

Neural Network and Deep Learning

28 X 28 =734

@ “Activation”

Full screen

IO0H0 0000006
)HOO0000000000

nx

' @

)

) 03

T

T
DO®
SO0
00
200

oy

@
44X
o0

DAL IS AT IS S A o

| S e
> > o) 332/1913 @ g O "

https://www.youtube.com/watch?v=aircAruvnKk

https://www.youtube.com/watch?v=aircAruvnKk

Gradient Descent
how neural networks learn

Average cost of What’s the “cos©®

all training data... of this difference?
Qo
@)
02
O3

a0

2
3
1
5

oo

F A+ L+

O
O
O
O
@6
@7
o
@

Utter trash §

https://www.youtube.com/watch?v=IHZWWFHWa-w

https://www.youtube.com/watch?v=IHZwWFHWa-w

Backpropagation

—
N
I
N’

o =
® OO
DN | =

OO00OO

Tl W

3
A\
70X
O d‘,
.
=~
:‘?:-,".
e
5 C.> ’
-
N 8874
e

- |

7
/e

) Full screen

2QQQQOQ) - - -

DO

()(

v —Q

: r"
LY 5

H

(=}

JI D ¢1;/1353

https://www.youtube.com/watch?v=Ilg3gGewQ5U

https://www.youtube.com/watch?v=Ilg3gGewQ5U

Convolutional
Neural Networks

(CNN)

Convolutional Neural Networks
(CNN)

C3: f. maps 16@10x10
C1. feature maps S4: f. maps 16@5x5

INPUT 6@28x28
S2: f. maps C5: layer F864 layer quPUT

32x32 6@14x14 rrr I'I_r 120
|T_ r
|

I ' Full conAection ’ Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Architecture of LeNet-5 (7 Layers)
(LeCun et al., 1998)

Source: http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf

Source: LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
"Gradient-based learning applied to document recognition." Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.

92

Convolutional Neural Networks
(CNN)
 Convolution
* Pooling

* Fully Connection (FC) (Flattening)

A friendly introduction to
Convolutional Neural Networks and Image Recognition

+ 4 -4 '
+ 414
111
1
111
- |+ 414
T 4_4—

Convolution Layer Pooling Layer

https://www.youtube.com/watch?v=2-017ZBOMmU

94

https://www.youtube.com/watch?v=2-Ol7ZB0MmU

Convolutional Neural Networks and Image Recognition

)

!

!

A friendly introduction to

)

https://www.youtube.com/watch?v=2-017ZBOMmU

—)

95

https://www.youtube.com/watch?v=2-Ol7ZB0MmU

A friendly introduction to
Convolutional Neural Networks and Image Recognition

) N [T T .

v

=e%

A\ J

\ 4

V.

+
A 4
o
LI
L ==
-
-+-

.+.

o) .‘.

’ ' A . o)

+

Convolution Layer Pooling Layer Fully Connected Layer

Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition,
https://www.youtube.com/watch?v=2-017ZBOMmU

96

https://www.youtube.com/watch?v=2-Ol7ZB0MmU

A friendly introduction to
Convolutional Neural Networks and Image Recognition

- 3
- +
; 1 X |8
+ + - 8
+ + e
+
: T / |4
|
- + + \ 4
Convolution Layer Pooling Layer Fully Connected Layer

Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition,
https://www.youtube.com/watch?v=2-017ZBOMmU

97

https://www.youtube.com/watch?v=2-Ol7ZB0MmU

CNN Architecture

Conv

Pool

Conv

Pool

Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,

https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134cle2

FC

FC Softmax

98

CNN Convolution Layer

Convolution is a mathematical operation to merge two sets of information
3x3 convolution

0 [1 1 110 T 101
O] 0|1 1 1 0 | 1 0
O] 0|1 110 T 101

[nput Filter / Kernel

99

CNN Convolution Layer
Input x Filter --> Feature Map

receptive field: 3x3

1x1

1x0

1x1

0x0

1x1

1x0

Ox1

0x0

1x1

0

0

1

0

1

1

Input x Filter

Feature Map

CNN Convolution Layer
Input x Filter --> Feature Map

receptive field: 3x3

1x1

1x0

Ox1

1x0

1x1

1x0

Ox1

1x0

1x1

0

1

1

1

1

0

Input x Filter

Feature Map

101

CNN Convolution Layer

1x1

1x0

1x1

0x0

1x1

1x0

Ox1

0x0

1x1

Example convolution operation shown in 2D using a 3x3 filter

102

32

CNN Convolution Layer

10 different filters 10 feature maps of size 32x32x1

V=

5x5x3

32

final output of the convolution layer:
a volume of size 32x32x10

\
—————=
1x1x1
32x32x1
10

32

32

103

CNN Convolution Layer
Sliding operation at 4 locations

L/;—o

CNN Convolution Layer

two feature maps

/

105

CNN Convolution Layer

Stride specifies how much
we move the convolution filter at each step

Stride 1 Feature Map

106

CNN Convolution Layer

Stride specifies how much
we move the convolution filter at each step

Stride 2 Feature Map

107

CNN Convolution Layer
Stride 1 with Paddmg

Stride 1 with Padding

—————

—————

—————

—————

Feature Map

108

CNN Pooling Layer

Max Pooling

max pool with 2x2
window and stride 2

— | | »nl| ~

D DD | O\ | —

W =]

| O] 0| &

109

10

CNN Pooling Layer

32

32

pooling

>

10

16

16

110

CNN Architecture
4 convolution + pooling layers,
followed by 2 fully connected layers

~
-
~-o —
-
-
S~
-
-
-~
-
-~
.
-~
-~
~
~
-~
~
~ M
~
~
~
~
~
~
~
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
--"
-
-
-
-
-
-
-

Conv + Conv + Conv + Conv +
Maxpool Maxpool Maxpool Maxpool

Input FC FC Output

111

model

model.

model

model

model

CNN Architecture
4 convolution + pooling layers,
followed by 2 fully connected layers

https://gist.github.com/ardendertat/0fc5515057c47e7386fe04e9334504¢e3

= Sequential()
add(Conv2D(32, (3, 3), activation='relu', padding='same', name='conv 1',
input shape=(150, 150, 3)))

.add(MaxPooling2D((2, 2), name='maxpool 1'))
model.
model.
model.
model.

add(Conv2D(64, (3, 3), activation='relu', padding='same', name='conv 2'))
add (MaxPooling2D((2, 2), name='maxpool 2'))
add(Conv2D(128, (3, 3), activation='relu', padding='same', name='conv_3'))
add (MaxPooling2D((2, 2), name='maxpool 3'))

.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='conv 4'))
model.
model.
model.
model.

add (MaxPooling2D((2, 2), name='maxpool 4'))
add(Flatten())

add (Dropout (0.5))
add(Dense (512, activation='relu', name='dense 1'))

.add(Dense (128, activation='relu', name='dense 2'))
model.

add(Dense(1l, activation='sigmoid', name='output'))

112

https://gist.github.com/ardendertat/0fc5515057c47e7386fe04e9334504e3

Dropout

< e

No Dropout With Dropout

Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134cle2 113

Model Performance

Train Loss: 0.054, Val Loss: 1.345

14
= Train Loss
1o = Valloss
Starts Overfitting
1.0
08
06
04
02
0.0
0 5 10 15 20 25
Train Accuracy: 0.981, Val Accuracy: 0.732
1.0
—— Train Acc
—— Val Acc
09
08
0.7
06
05
0 5 10 15 20 25

114

Visual Recognition
Image Classification

DEEP

emral.

NETINORNAK

P

o

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016

Convolutional Neural Networks

(CNNs / ConvNets)

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

A regular 3-layer Neural Network

iInput layer

hidden layer 1 hidden layer 2

http://cs231n.github.io/convolutional-networks/

http://cs231n.github.io/convolutional-networks/

A ConvNet arranges its neurons in

three dimensions
(width, height, depth)

depth

ST HA) height

QOOQOK
0/0/0/0/0)! ¢ gl W
LLLOOP width

http://cs231n.github.io/convolutional-networks/ 119

-

http://cs231n.github.io/convolutional-networks/

The activations of an
example ConvNet architecture.

RELU RELU RELU RELU RELU RELU
CONV |CONV CONV CONVl CONVlCONVl

4

| -—

truck
airplane
ship

horse

RN

A EEERIVE BN

+—
——
=
.r:_:‘.
=
=
E
T
(=
E’E::
=
=

http://cs231n.github.io/convolutional-networks/ 120

http://cs231n.github.io/convolutional-networks/

ConvNets

32x32x3 CIFAR-10 image first Convolutional layer

—~50000]

)

http://cs231n.github.io/convolutional-networks/ 121

http://cs231n.github.io/convolutional-networks/

ConvNets

synapse
woLo

axon from a neuron

dendrite

cell body

i (Zwixi +b)
Zwiwi + b :

|
output axon

activation
function

w121

f

http://cs231n.github.io/convolutional-networks/ 122

http://cs231n.github.io/convolutional-networks/

Input Volume (+pad 1) (7x7x3)

X[:,:,0]

Convolution Demo

Filter WO (3x3x3)

wl0[:,:,0]

%

ilﬂ
BE
&

0
2
2
1
2

S © © O
S NN

(= o s

0
2
2
2
0

s

S © © © (=] | =]
O-—-NOG-—O‘:
ONNONOOL’ONN'—NN
S O N -

S\C N O|= N O

C = o= O

= ===

S N NN = O O\O

S\ © O|lC © O

o O 0 O O O O

———

Filter W1 (3x3x3)

wl[:,:,0]
18 =18 10

OB i il
O =18

wlls,s,1]
-1 1 0

-1 -1 1
0 0 0

wilf:,2,2)
-1

— O e

S o O
'
—

Bias bl (1x1x1)

bl[:,:,0]
0

Output Volume (3x3x2)

of:,:,0)

E36

7 -1 -2
25 S0 0

Of[s,t,1]
i =18 =3

a5 B3 2
-1 0 -1

toggle movement

http://cs231n.github.io/convolutional-networks/

123

http://cs231n.github.io/convolutional-networks/

ConvNets

input volume of size [224x224x64]
is pooled with filter size 2, stride 2
into output volume of size [112x112x64]

224x224x64
112x112x64

pool

e

> e 112
224 downsampling
112

224

http://cs231n.github.io/convolutional-networks/

124

http://cs231n.github.io/convolutional-networks/

ConvNets

max pooling
Single depth slice

1112)| 4
apmeN /7 | 8
3 | 2 .
112 |3 | 4

y

max pool with 2x2 filters
and stride 2

-

http://cs231n.github.io/convolutional-networks/

125

http://cs231n.github.io/convolutional-networks/

Convolutional Neural Networks (CNN) (LeNet)

Input layer (S1) 4 feature maps

(C1) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

| convolution layer l sub-sampling layer | convolution layer | sub-sampling layer | fully connected MLP |

http://deeplearning.net/tutorial/lenet.html 126

http://deeplearning.net/tutorial/lenet.html

Recurrent
Neural Networks

(RNN)

Recurrent Neural Networks (RNN)

TrTrTIOY

hidden

Input

Recurrent Neural Networks (RNN)

Time Series Forecasting
110 150

120 130 140

hidden

Input @

100 110 120 130 140

Recurrent Neural Networks (RNN)

output

hidden

?
LT

Recurrent Neural Networks (RNN)
Sentiment Analysis

:
S99

This movie is very good

output

hidden

Input

Recurrent Neural Networks (RNN)
Sentiment Analysis
:\/‘i

!
DR

This movie IS very boring

output

hidden

Input

Recurrent Neural Network (RNN)

o

O ol- I 0' og.[

/] o]

s o W Osz—l Os t Osul

—_— () —() ——() —

S = Q5 0%
T Unfold T T T

U U U U
X xr-l xr x‘. i

RNN

b o

7,
D

&

m ©+—<+—®
d A

anu @AlAAl@
* 1

()

d @AIAAl@
£ q

..nuw @TAA1®
mb i

o @<+
2

P

oc

@—<}—@
oo

@TWT®
e<}-o
o]
0@

Source

Vanishing Gradient
Exploding Gradient

Error

"“X

V%

/N

x1

W /“

\l[r <\\

‘,« v, ‘\N,\

W/ \' 5 4", '(W
«‘\\)0; \,‘ Q\ /40 i\

x3 vi \r "«‘ L

R \ ‘,;»;” :;:" A
x4)\"/

@ <0 <ol

Vanishing Gradient

e

Exploding Gradient

N

x2

Gradient

: https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-Istm-long-short-term-memory-networks-with-math-21477f8e4235

136

Input

Recurrent Neural Networks (RNN)

RNN
Vanishing Gradient problem
Exploding Gradient problem

Error

output

hidden

Input

if |W| <1 (Vanishing)
if |W| > 1 (Exploding)

138

RNN
Vanishing Gradient problem

Error
output
V V Vv
. 0.9 0.9 0.9
hidden
U U U
Input @

W = 0.9 < 1 (Vanishing)

139

RNN
Exploding Gradient problem

Error
output
V V Vv
. 1.1 1.1 1.1
hidden
U U U
Input @

W =1.1>1 (Exploding)

140

RNN LSTM

RNN A * _’

A A
Ve N\ ™
— (%) ®
@nb>
A b o
LSTM il (oAl (i
\ J_’ 4

Long Short Term Memory
(LSTM)

N N >
»>——o————» >
5 7= ¥- l i 5
)—’T /_’\)_’

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

142

Long Short Term Memory
(LSTM)

& , ®

forget input output
T gate gate gate T T
N PG)
»—— — > —+
Gani>
A I 8 r»ﬂ A
Ric:lcaloR SRR R
J T J =

Neural Network Pointwise Vector

Layer Operation Transfer Concatenate Copy

143

Gated Recurrent Unit

(GRU)
hy
(B
O,
o B

Gated Recurrent Unit

(GRU)
reset update h,
gate gate
& €
@
T+t Zt ht
(9] (9) tanh
)

Inputs:

Input vector
Memory from
previous block

Output of
previous block

outputs:
Memory from
current block
Output of
current block

Nonlinearities: Vector operations:

@ Sigmoid
Hyperbolic +
tangent £
Bias: o

Element-wise
multiplication

Element-wise
Summation /
Concatenation

Source: Shi Yan (2016), Understanding LSTM and its diagrams, https://medium.com/mireview/understanding-Istm-and-its-diagrams-37e2f46f1714

146

LSTM vs GRU

— IN

> OUT

LSTM

i, fand o are the input, forget and output

gates, respectively.
c and ¢~ denote the memory cell and the

new memory cell content.

=
A

r
)OU,

GRU

r and z are the reset and update gates,
and h and h™ are the activation and the

candidate activation.

147

Long Short Term Memory

(LSTM)
h, T

¢,

Ct 1 3 c
Ctanh>
i I ~ O (X
¢

ht_] 0] 0] tanh 0} ht

148

Long Short Term Memory
(LSTM)

forget input output
h,
gate gate gate T

Ct—] 3 c Ct
CGtanh>
i I ~ Oy 3
¢
ht_] 0] 0] tanh 0} ht

149

LSTM
Memory state (C)

LSTM
forget gate (f)

ft! ft - O'(Wf‘[ht_l,xt] + bf)
ht—1

LSTM
input gate (i)

’it = O'(Wi'[ht_l,l't] -+ bz)
C~'t =tanh(WC-[ht_1,:13t] + bC)

152

LSTM
Memory state (C)

ftT it('%% Ci = frxCy1 + i+ Cy

LSTM
output gate (0)

Ot = O'(WO [ht_l,xt] + bo)
hy = 04 * tanh (C})

154

LSTM
forget (f), input (i), output (o) gates

A 4 "!_silf_)rt: : fo =0 Wy [Cor,hi—1,] + by)
| " (<) "' | X it =0 (Wz . [Ct—]_, ht_]_ , :L't] + b’l,)
| (Cl)-/(lj ‘ tanh |1 l 0 = O (WO . [Ct7 ht—l? xt] —+ bO)

Gated Recurrent Unit
(GRU)
update (z), reset (r) gates

2t = 0 (Wz ' [ht—laxt])
re =0 (Wr ' [ht—l,fﬂt])
he = tanh (W - [ry % hy_1, 2¢])

htz(l—zt)*ht_1+zt*ﬁt

156

LSTM Recurrent Neural Network

one to one one to many many to one many to many many to many

Traditional Music Sentiment Name Machine
Neural Generation Classification Entity Translation
Network Recognition

157

Long Short Term Memory (LSTM)
for Time Series Forecasting

[

LSTM LSTM LSTM LSTM LSTM

TTTT0

Time Series Data

(100, 110, 120, 130, 140, 150]

0

X Y

[100 110 120 130 140] 150

CORNCYRCY ()

[10,

20,

Time Series Data

30,

40,

X

50,

(10
[20
[30
[40
[50
[60

20
30
40
50
60
70

30]
40]
50]
60]
70]
80]

60,

Y

40
50
60
70
80
90

70,

80,

90]

1F TensorFlow

TensorFlow

1r TensorFlow Install Learn ¥ APl ¥ Resources v More ¥ Q Search Language ~ GitHub Signin

An end-to-end open
source machine

learning platform

TensorFlow For Mobile & loT For Production

For JavaScript

The core open source library to help you develop and train ML models. Get
started quickly by running Colab notebooks directly in your browser.

[Get started with TensorFlow]

https://www.tensorflow.org/

161

https://www.tensorflow.org/

PyTorch

PyTOI‘Ch Get Started Ecosystem Mobile Blog Tutorials Docs v Resources v GitHub o]

FROM
RESEARCH TO
PRODUCTION

An open source machine learning framework that accelerates the path from
research prototyping to production deployment.

Introducing PyTorch Profiler - the new and improved performance tool

KEY FEATURES 8(See all Features >

https://pytorch.org/ 162

https://pytorch.org/

1F TensorFlow

TensorFlow

* An end-to-end open source
machine learning platform.

* The core open source library to help you develop and
train VIL models.

e Get started quickly by running
Colab notebooks directly in your browser.

https://www.tensorflow.org/ 163

https://www.tensorflow.org/

T TensorFlow TensorFlow 2.0

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(16, activation='softmax')

1)

model.compile(optimizer="adam',
loss="sparse_categorical_crossentropy’,
metrics=["accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

https://www.tensorflow.org/overview/ 164

https://www.tensorflow.org/overview/

1F TensorFlow

1F TensorFlow

TensorFlow tutorials
Quickstart for beginners
Quickstart for experts

BEGINNER

ML basics with Keras
Basic image classification
Text classification with TF Hub

Text classification with
preprocessed text

Regression
Overfit and underfit
Save and load

Load and preprocess data

Estimator
ADVANCED

Customization
Distributed training
Images

Text

TensorFlow
Image Classification

Install Learn ¥ APl = Resources ¥ More ~ Q Search Language ~

N TensorFlow > Leam > TensorFlow Core > Tutorials Px @ r Ak kg

Basic classification: Classify images of clothing

. Runin Google View source on Download
“ Colab GitHub == notebook

|

This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's
okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow
program with the details explained as you go.

This guide uses tf keras, a high-level API to build and train models in TensorFlow.

© 0D

from __future__ import absolute_import, division, print_function, unicode_literals
TensorFlow and tf.keras

import tensorflow as tf

from tensorflow import keras

Helper libraries

import numpy as np

import matplotlib.pyplot as plt

print(tf.__version__)

2.0.0

https://www.tensorflow.org/tutorials/keras/classification

GitHub Signin

Contents

Import the Fashion
MNIST dataset

Explore the data

Preprocess the
data

Build the model
Set up the layers

Compile the
model

Train the model
Evaluate accuracy
Make predictions

165

https://www.tensorflow.org/tutorials/keras/classification

1F TensorFlow

Ank

Image Classification

Fashion MINIST dataset

8

I

Coat 99% (Coat)

Sneaker 100% (Sneaker

=5

Trouser 100% (Trouser)

le boot 99% (Ankle boot)

)

Sneaker 57% (Sneaker)

0123456789

0123456789

0123456789

0123456789

Pullover 100% (Pullover;

Shirt 64% (Shirt)

Shirt 100% (Shirt)

L]

Coat 72% (Coat)

Dress 100% (Dress)

)

0123456789

e

0123456789

il

0123456789

ne

0123456789

Trouser 100% (Trouser)

Trouser 100% (Trouser)

-

Sandal 100% (Sandal

)

Sandal 100% (Sandal

)

Coat 93% (Coat)

0123456789

I

0123456789

0123456789

https://www.tensorflow.org/tutorials/keras/classification

166

https://www.tensorflow.org/tutorials/keras/classification

1F TensorFlow

Text Classification with TF Hub

1F TensorFlow Install Learn ¥ APl v Resources v More ¥ Q_ Search Language ~

Overview Tutorials Guide TF1

TensorFlow tutorials
Quickstart for beginners
Quickstart for experts

BEGINNER

ML basics with Keras
Basic image classification
Text classification with TF Hub

Text classification with
preprocessed text

Regression
Overfit and underfit
Save and load

Load and preprocess data
csv
NumPy
pandas.DataFrame
Images
Text
Unicode
TF.Text
TFRecord and tf Example
Additional formats with tf.io [/

TensorFlow > Learn > TensorFlow Core > Tutorials PX kb dh kdh kg

Text classification with TensorFlow Hub: Movie
reviews

. Runin Google View source on Download
“" Colab GitHub = notebook

This notebook classifies movie reviews as positive or negative using the text of the review. This is
an example of binary—or two-class—classification, an important and widely applicable kind of
machine learning problem.

The tutorial demonstrates the basic application of transfer learning with TensorFlow Hub and Keras.

We'll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie
Database. These are split into 25,000 reviews for training and 25,000 reviews for testing. The
training and testing sets are balanced, meaning they contain an equal number of positive and
negative reviews.

This notebook uses tf keras, a high-level API to build and train models in TensorFlow, and
TensorFlow Hub, a library and platform for transfer learning. For a more advanced text classification
tutorial using tf.keras, see the MLCC Text Classification Guide.

€ 0

from __future__ import absolute_import, division, print_function, unicode_literals

https://www.tensorflow.org/tutorials/keras/text classification with hub

GitHub Signin

Contents

Download the
IMDB dataset

Explore the data
Build the model

Loss function
and optimizer

Train the model
Evaluate the model
Further reading

167

https://www.tensorflow.org/tutorials/keras/text_classification_with_hub

1F TensorFlow

Text Classification with Pre Text

1F TensorFlow Install Learn ¥ APl ~ Resources ¥ More ¥ Q_ Search Language ~ GitHub Signin
TensorFlow > Learn > TensorFlow Core > Tutorials ﬁ fr ﬁ ﬁ' ﬁ
TensorFlow tutorials Contents
Quickstart for beginners 1= H H . H Setup
4 Text classification with preprocessed text: Movie
Quickstart for experts Download the
1 IMDB dataset
reviews
BEGINNER Try the encoder
Explore the data
ML basics with Keras Prepare the data
Basic image classification ¢y Runin Google View source on Download for training
Text classification with TF Hub Colab GitHub = notebook Build the model
Text classification with Hidden units
rocessed text . 5 i i ¥ A . g Ry :
L This notebook classifies movie reviews as positive or negative using the text of the review. This is Loss function
Regression . R and optimizer
an example of binary—or two-class—classification, an important and widely applicable kind of
Overfit and underfit ; v Train the model
machine learning problem.
Save and load Evaluate the model
We'll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Create a orasf::'
et T pis = . accuracy an 3
Load and preprocess data ' Database. These are split into 25,000 reviews for training and 25,000 reviews for testing. The over ﬁm‘;
csv training and testing sets are balanced, meaning they contain an equal number of positive and
NumPy negative reviews.

pandas.DataFrame

This notebook uses tf keras, a high-level API to build and train models in TensorFlow. For a more

Images

Text advanced text classification tutorial using tf.keras, see the MLCC Text Classification Guide.
Unicode

TF.Text

TFRecord and tf Example Setup

Additional formats with tf.io [/

Estimator

€0

from __future__ import absolute_import, division, print_function, unicode_literals

https://www.tensorflow.org/tutorials/keras/text classification

168

https://www.tensorflow.org/tutorials/keras/text_classification

1F TensorFlow

1F TensorFlow Install

TensorFlow tutorials
Quickstart for beginners
Quickstart for experts

BEGINNER

ML basics with Keras
Basic image classification
Text classification with TF Hub

Text classification with
preprocessed text

Regression
Overfit and underfit
Save and load

Load and preprocess data

Estimator
ADVANCED

Customization
Distributed training
Images

Text

Learn ¥ APl =

Regression

Resources v More v Q, Search

TensorFlow > Learn > TensorFlow Core > Tutorials

7
Basic regression: Predict fuel efficiency

Run in Google View source on Download
Colab GitHub == notebook

4
J

In a regression problem, we aim to predict the output of a continuous value, like a price or a
probability. Contrast this with a classification problem, where we aim to select a class from a list of
classes (for example, where a picture contains an apple or an orange, recognizing which fruit is in
the picture).

This notebook uses the classic Auto MPG Dataset and builds a model to predict the fuel efficiency
of late-1970s and early 1980s automobiles. To do this, we'll provide the model with a description of
many automobiles from that time period. This description includes attributes like: cylinders,
displacement, horsepower, and weight.

This example uses the tf.keras API, see this guide for details.

© D
Use seaborn for pairplot
!pip install -q seaborn

€D

from __future__ import absolute_import, division, print_function, unicode_literals

import pathlib

https://www.tensorflow.org/tutorials/keras/regression

Language ~

GitHub Signin

Contents

The Auto MPG
dataset

Get the data
Clean the data

Split the data
into train and
test

Inspect the data

Split features
from labels

Normalize the
data

The model
Build the model

Inspect the
model

Train the model
Make predictions

Conclusion

169

https://www.tensorflow.org/tutorials/keras/regression

1F TensorFlow

1" TensorFlow

Overview Tutorials
Quickstart tor beginers

Quickstart for experts

BEGINNER

ML basics with Keras

Load and preprocess data

Estimator
ADVANCED

Customization

Distributed training

Images

Text

Structured data

Classify structured data with

feature columns

TensorFlow 2.0

Time Series Forecasting

Install

Guide

Classification on imbalanced data

Time series forecasting

Learn ¥ APl ¥ Resources ¥ More ¥ Q_ Search
TF1
TensorFlow > Learn > TensorFlow Core > Tutorials Ex @ Ak bk d
Time series forecasting
. Runin Google View source on Download
“ Colab GitHub — notebook

This tutorial is an introduction to time series forecasting using Recurrent Neural Networks (RNNs).
This is covered in two parts: first, you will forecast a univariate time series, then you will forecast a
multivariate time series.

€0
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf

import matplotlib as mpl

import matplotlib.pyplot as plt
import numpy as np

import os

import pandas as pd

mpl.rcParams| ' figure.figsize'] = (8, 6)
mpl.rcParams|'axes.grid'] = False

https://www.tensorflow.org/tutorials/structured data/time series

Language ~

GitHub Signin

Contents

The weather
dataset

Part 1: Forecast a
univariate time
series

Baseline

Recurrent neural
network

Part 2: Forecast a
multivariate time
series

Single step
model

Multi-Step model
Next steps

170

https://www.tensorflow.org/tutorials/structured_data/time_series

Basic Classification
Fashion MINIST Image Classification

https://colab.research.google.com/drive/19PJOJilvnlkjcutlzNHjRSLbeVI4kd5z

& tf01_basic_classification.ipynb '+ BY COMMENT &% SHARE °
.
File Edit View Insert Runtime Tools Help

CODE B3 TEXT 4 CELL ¥ CELL CONNECT = 2 EDITING A

Table of contents Code snippets Files X

» Copyright 2018 The TensorFlow Authors.

Copyright 2018 The TensorFlow Authors.
e L 2 cells hidden

Licensed under the Apache License, Version 2.0

(the "License");
o - Train your first neural network: basic classification
icense
Trai first | network: basic classificatio
rain your neura 0l C class n ? - ; Qv)

Import the Fashion MNIST dataset
This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all

Explore the data the details, this is a fast-paced overview of a complete TensorFlow program with the details explained as we go.
This guide uses tf keras, a high-level API to build and train models in TensorFlow.

Preprocess the data
Build the model ° 1 # memory footprint support libraries/code :
2 Iln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
Ipip install gputil
Setup the layers Ipip install psutil

oAU w

Ipip install humanize
import psutil
Compile the model 7 m&n gmnize
g import os
9 import GPUtil as GPU
Train the model 10 GPUs = GPU.getGPUs()
11 gpu = GPUs[0)

Evaluate accuracy 12 def printm():

13 process = psutil.Process(os.getpid())

14 print("Gen RAM Free: " + humanize.naturalsize(psutil.virtual_memory().available), " | Pro
Make predictions 15 print("GPU RAM Free: {0:.0£}MB | Used: {1:.0£}MB | Util {2:3.0£}% | Total {3:.0f}MB".format

16 printm()

SECTION
171

Source: https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/basic_classification.ipynb

https://colab.research.google.com/drive/19PJOJi1vn1kjcutlzNHjRSLbeVl4kd5z
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/basic_classification.ipynb

Text Classification
IMDB Movie Reviews

https://colab.research.google.com/drive/1x16h1GhHsLIrLYtPCvCHaoO1W-i gror
m & tf02_basic-text-classification.ipynb 7 S GiEe R o

File Edit View Insert Runtime Tools Help

CODE @ TEXT 4 CELL ¥ CELL CONNECT ~ # EDITING A

Table of contents Code snippets Files X

» Copyright 2018 The TensorFlow Authors.
Copyright 2018 The TensorFlow Authors.

L 2 cells hidden
Licensed under the Apache License,
Version 2.0 (the "License”);
e ~ Text classification with movie reviews

Text classification with movie reviews .‘u- 0
View on TensorFlow.org Run in Google Colab View source on GitHub
Download the IMDB dataset
This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—
Explore the data classification, an important and widely applicable kind of machine learning problem.

We'll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Database. These are split into 25,000

Eotn U isgers back fo reviews for training and 25,000 reviews for testing. The training and testing sets are balanced, meaning they contain an equal number of

words
positive and negative reviews.
Prepare the data This notebook uses tf.keras, a high-level AP to build and train models in TensorFlow. For a more advanced text classification tutorial using
tf.keras, seethe M T lassificati ide.
Build the model
, 1 # memory footprint support libraries/code :
Hidden units ° 2 1ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
3 lpip install gputil
f imi 4 lpip install psutil
Loss function and optimizer 5 lpip install humanize
6 import psutil

import humanize
import os

import GPUtil as GPU
GPUs = GPU.getGPUs()
11 gpu = GPUs[0]

12 def printm():

2 mwnnnns = meankdi]l Neanannlinan sntenidioy 172

Create a validation set

O @

Train the model

- o

Evaluate the model
Source: https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/basic_text classification.ipynb

https://colab.research.google.com/drive/1x16h1GhHsLIrLYtPCvCHaoO1W-i_gror
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/basic_text_classification.ipynb

Basic Regression
Predict House Prices

https://colab.research.google.com/drive/1v4c8ZHTnRtgd2 25K AURjR6SCVBRAIj

& tf03_basic-regression.ipynb 7 B} COMMENT 2% SHARE o
-
File Edit View Insert Runtime Tools Help

CODE TEXT 4 CELL ¥ CELL CONNECT /‘ EDITING A

Table of contents Code snippets Files X
» Copyright 2018 The TensorFlow Authors.

C ight 2018 The TensorFlow Authors.
o L 2 cells hidden

Predict house prices: regression

The Boston Housing Prices dataset ~ Predict house prices: regression

Examples and features
Labels ' Vi TensorFl (+] Run In Google Colab OVI w Hi
Normalize features In a regression problem, we aim to predict the output of a continuous value, like a price or a probability. Contrast this with a classification
problem, where we aim to predict a discrete label (for example, where a picture contains an apple or an orange).
Create the model This notebook builds a model to predict the median price of homes in a Boston suburb during the mid-1970s. To do this, we'll provide the
model with some data points about the suburb, such as the crime rate and the local pr tax rate.
Train the model ol propem:
This example uses the t£ . keras AP, see this guide for details.
Predict
° 1 # memory footprint support libraries/code :
Conclusion 2 11ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
3 lpip install gputil
4 lpip install psutil
SECTION 5 1pip install humanize

6 import psutil

7 import humanize

8 import os

9 import GPUtil as GPU

10 GPUs = GPU.getGPUs()

11 gpu = GPUs([0])

12 def printm():

13 process = psutil.Process(os.getpid())

14 print(“"Gen RAM Free: " + humanize.naturalsize(psutil.virtual memory().available), " | Proc size: "

15 print("GPU RAM Free: {0:.0f)}MB | Used: {1:.0f)}MB | Util {2:3.0f)}% | Total {3:.0f}MB".format(gpu.memo
Source: https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/basic_regression.ipynb

173

https://colab.research.google.com/drive/1v4c8ZHTnRtgd2_25K_AURjR6SCVBRdlj
https://colab.research.google.com/github/tensorflow/docs/blob/master/site/en/tutorials/keras/basic_regression.ipynb

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4z)1zTuniMgf2RkCrT

Co & python1Olipynb » B e s o

File Edit View Insert Runtime Tools Help All changes saved
RAM ¥

= 7 of X 4+ Code + Text v Dk = - Z Editing A
Machine Learning with scikit-leam . Deep Leaming
= Classification and Prediction
<> Support Vector Machine (SVM)
R e ~ Image Classification
= PR L——— * Source: hitps:/www.tensorflow.org/overview/
Deep Learning
Image Classification ° 1 import tensorflow as tf
Text Classification: IMDB Movie e o AR GR RS
Review 3
4 (x_train, y_train),(x_test, y test) = mnist.load_data()
Deep Learning for Financial Time Series 5 x_train, x_test = x_train / 255.0, x_test / 255.0
Forecasting 6
Portfolio Optimization and Algorithmic 7 model = tf.keras.models.Sequential(|
Trading 8 tf.keras.layers.Flatten(input_shape~=(28, 28)),
9 tf.keras.layers.Dense(128, activation='relu’),
Investment Portfolio Optimisation 10 tf.keras.layers.Dropout(0.2),
with Python 11 tf.keras.layers.Dense(10, activation='softmax')
Efficient Frontier Portfolio 12 1)
Optimisation in Python 13
14 model. i - ¢
Investment Portfolio Optimization ! conpue(opthi..:or- s :
15 loss='sparse_categorical crossentropy’,
Text Analytics and Natural Language 16 metrics=['accuracy'))
Processing (NLP) 17
18 model.fit(x_train, y_train, epochs=5)
Python for Natural Language p =
Processing 19 model.evaluate(x_test, y test)
= spaCy Chinese Model C» Epoch 1/5
187571875 |] - 48 2ms/step ~ loss: 0.4790 - accuracy: 0.8606

~ e - . PN TN

https://tinyurl.com/aintpupython101 174

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/aintpupython101

Reinforcement
Learning

Reinforcement Learning (RL)

Computer Science

Engineering Machine

Optimal Learning Reward

ContrOI System
Reinforcement

Learning
Operations Classical/Operant
Research Conditioning

Neuroscience

Mathematics Bounded Psychology
Rationality

Economics

176

Branches of Machine Learning (ML)
Reinforcement Learning (RL)

No Labels
Labeled data « No feedback
Direct feedback * Find hidden structure

Predict

Supervised Unsupervised

Learning Machi Learning
achine

Learning

Reinforcement

Learning - Decision process
Reward system
Learn series of actions

177

David Silver (2015),
Introduction to reinforcement learning

* Elementary Reinforcement Learning
* 1:Introduction to Reinforcement Learning
 2: Markov Decision Processes
* 3:Planning by Dynamic Programming
 4: Model-Free Prediction
e 5: Model-Free Control
* Reinforcement Learning in Practice
6: Value Function Approximation
7: Policy Gradient Methods
8: Integrating Learning and Planning
9: Exploration and Exploitation
10: Case Study: RL in Classic Games

178

Reinforcement Learning
AlphaZero (AZ) and AlphaGo Zero (AZ0)

* AlphaZero (Silver et al., 2018)

* A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. (Science)

* AlphaGo Zero (Silver et al., 2017)

* Mastering the game of Go without human knowledge (Nature)

179

AlphaZero:
Shedding new light on the grand
games of chess, shogi and Go

AL Bauft Al Embs O

https://www.youtube.com/watch?v=7L2sUGcOgh0

180

https://www.youtube.com/watch?v=7L2sUGcOgh0

A general reinforcement learning algorithm
that maste{s chess, shogi, and Go through self-play

AlphaZero

Chess Shogi Go
AlphaZero vs. Stockfish AlphaZero vs. Eimo AlphaZero vs. AGO
Eas¥diani shmEEwane ¥ T
AAAAAAAL C} w

“mEm AOOROGG00
WEm BB B(B|B BB BB
ARARABAL A Om
BOEWE L 5 2| LD
W:200% 0:706% L:04% W:s42% 0:22% L:13a6% W:689% L3
o] | Ea——— | e
o | P | e
W:20% D:972% L:08% W:82% D:00% L:18% W 3™ L 463%
B Chess Shogi
1100tme o™ e
130 tme o L —
110tme ¢ - f——————— ey
13eme o8 j———————————————=.
samo time ¢ N j———————————————.
c Latest Stocksh Aperyphapeq
o j—"
 Opering Book CSA time control
o — ay—
D Human openings o [Eee— j—————————————
—

TOEG aperings o E—

W Axrazeco wos

Source: David Silver et al. (2018), "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play." Science 362, no. 6419 (2018): 1140-1144.

AghaZero daws [l AphaZerooses O AphaZerowhine @) AphaZeso black

181

AlphaZero’s search procedure

K 2 v
A4 KA
AAal
AR
) A

b TEEEOLOHH

182

Self-play reinforcement learning in
AIphaGo Zero

a Self-play s

183

Richard S. Sutton & Andrew G. Barto (2018),

Reinforcement Learning: An Introduction,
2nd Edition, A Bradford Book

{

Reinforcement
Learning

An Introduction
second edition

184

Reinforcement learning

* Reinforcement learning is
learning what to do
—how to map situations to actions
—s0 as to maximize a numerical reward signal.

185

Two most important distinguishing features of
reinforcement learning

e trial-and-error search

* delayed reward

Reinforcement Learning (DL)

Agent

{ EnvironmentJ

Reinforcement Learning (DL)

1 observation 2 action
Agent

3 reward T

Environment

188

Reinforcement Learning (DL)

Agent

0,
3 reward TRt

Environment

1 observation 2 action
A

t

189

Agent and Environment

* At each step t the agent:

* Executes action A,

* Receives observation O,

* Receives scalar reward R,
* The environment:

* Receives action A;

* Emits observation O,,;

* Emits scalar reward R,

* tincrements at env. step

observation

O,

Agent

action

4,
reward TRt

Environment

190

History and State

The history is the sequence of observations, actions, rewards
Ht = 01, AI’ RI""’At-I’Ot’Rt

i.e. all observable variables up to time t
i.e. the sensorimotor stream of a robot or embodied agent

What happens next depends on the history:
* The agent selects actions

* The environment selects observations/rewards
State is the information used to determine what happens next
Formally, state is a function of the history:

S, =f(H)

191

Information State

An information state (a.k.a. Markov state) contains all useful
information from the history.

Definition
A state S, is Markov if and only if
P[Sii1 | S = P[S11 | Sp--.84/
“The future is independent of the past given the present”
H;,— S, — Hy.jp..,

Once the state is known, the history may be thrown away
i.e. The state is a sufficient statistic of the future

The environment state S,¢ is Markov
The history H, is Markov

192

Fully Observable Environments

* Full observability:

e agent directly observes

environment state state Agent action

 Agent state = > g
environment state = reward TRt
information state

. . Environment
* Formally, thisis a

Markov decision process
(MDP)

193

Partially Observable Environments

Partial observability: agent indirectly observes environment

A robot with camera vision isn’t told its absolute location
e A trading agent only observes current prices
* A poker playing agent only observes public cards

Now agent state # environment state

Formally this is a partially observable Markov decision process
(POMDP)

Agent must construct its own state representation §%, e.g.
* Complete history: 8, = H,

* Beliefs of environment state: S, = (P[S¢, = s4/,...,P[S5¢, = s,])

* Recurrent neural network: S =ao(8*_ W, + 0O, W,)

194

Reinforcement Learning (DL)

The Agent-Environment Interaction
in @ Markov Decision Process (MDP)

Agent

reward action

R, A
PR
' ¢S+ | Environment

195

Characteristics of
Reinforcement Learning

* No supervisor, only a reward signal
* Feedback is delayed, not instantaneous

* Time really matters
(sequential, non i.i.d data)

* Agent’s actions affect the subsequent data it
receives

196

Examples of Reinforcement Learning

* Make a humanoid robot walk
* Play may different Atari games better than humans

 Manage an investment portfolio

197

Examples of Rewards

* Make a humanoid robot walk
* +ve reward for forward motion
e -ve reward for falling over

* Play may different Atari games better than humans
* +/-ve reward for increasing/decreasing score

* Manage an investment portfolio

* +ve reward for each S in bank

198

Sequential Decision Making

Goal: select actions to maximize total future reward
Actions may have long term consequence
Reward may be delayed

It may be better to sacrifice immediate reward to gain
more long-term reward

Examples:
* A financial investment (may take months to mature)

* Blocking opponent moves (might help winning chances
many moves from now)

199

Elements of Reinforcement Learning

* Agent

* Environment
* Policy
 Reward signal
* Value function
* Model

200

Elements of Reinforcement Learning

Policy
* Agent’s behavior
* Itis a map from state to action

Reward signal
* The goal of a reinforcement learning problem

Value function
* How good is each state and/or action
* A prediction of future reward

Model

* Agent’s representation of the environment

201

Major Components of an RL Agent

1. Policy: agent’s behaviour function
2. Value function: how good is each state and/or action

3. Model: agent’s representation of the environment

202

Policy

* A policy is the agent’s behaviour
* Itis a map from state to action, e.g.
* Deterministic policy: a = 7(s)
* Stochastic policy: n(als) = P[A, = a|S, = s]

Value Function

* Value function is a prediction of future reward
* Used to evaluate the goodness/badness of states

* And therefore to select between actions, e.g.
Vo(S)=E, [Riy i HYR 3 HY R 5+ |S, =5]

204

Model

A model predicts what the environment will do next
* P predicts the next state
* R predicts the next (immediate) reward, e.g.

Pl = P[Si; =" |504,=s, A=al

R =E[R,.;|S, =s, A, =a]

205

Reinforcement Learning

 Value Based

 Value Function

* Policy Based
* Policy

e Actor Critic
* Policy

 Value Function

206

Reinforcement Learning

e Model Free

* Policy and/or Value Function

* Model Based
* Policy and/or Value Function
* Model

207

Reinforcement Learning (RL)
Taxonomy

Value Function

Value-Based

208

{ RL Algorithms J

(

E Model-Free RL J

EPolicy Optimizatior%

Policy Gradient

~

<
)

J

I
1
{ Q-Learning }

DDPG

Reinforcement Learning (RL)
A Taxonomy of RL Algorithms

Model-Based RL }

L Learn the Model }

—»{ DQN

A2C / A3C

<
)

A

TD3

A

~

—{ C51

PPO

A

SAC

A

(.

TRPO

A

—{ QR-DQN

J

|

—{ HER

J

[Given the Model }

\ 4

World Models

e N\

\ 4

Y

I2A

MBMF

Y

MBVE

—P[AlphaZero]

209

Learning and Planning

 Two fundamental problems in sequential decision making
* Reinforcement Learning
* The environment is initially unknown
* The agent interacts with environment
 The agent improves its policy
* Planning
* A model of the environment is known

* The agent performs computations with its model
(without any external interaction)

 The agent improves its policy

* a.k.a deliberation, reasoning, introspection, pondering, thought, search

210

Atari Example:
Reinforcement Learning

* Rules of the game are unknown

action

N A \ * Learn directly from interactive

| game-play

* Pick actions on joystick, see
pixels and scores

211

Atari Example:
Planning

Rules of the game are known

Can query emulator

e perfect model inside agent’s
brain

If | take action a from state s:
e what would the next state be?
e what would the score be?

Plan ahead to find optimal
policy
* e.g. tree search

212

Exploration and Exploitation

Reinforcement learning is like trial-and-error learning
The agent should discover a good policy

From its experiences of the environment

Without losing too much reward along the way

Exploration finds more information about the
environment

Exploitation exploits known information to maximise
reward

It is usually important to explore as well as exploit

213

Exploration and Exploitation

Examples
e Restaurant Selection

* Exploitation: Go to your favorite restaurant
* Exploration: Try a new restaurant
* Online Banner Advertisements

* Exploitation: Show the most successful
advert

* Exploration: Show a different advert

214

Exploration and Exploitation
Examples
* Oil Drilling
* Exploitation: Drill at the best known location
* Exploration: Drill at a new location
 Game Playing

* Exploitation: Play the move you believe is
best

* Exploration: Play an experimental move

215

Prediction and Control

* Prediction: evaluate the future
* Given a policy
* Control: optimize the future

* Find the best policy

Markov Decision Processes (MDP)
Example: Student MDP

Generalized Policy Iteration
(GPI)

evaluation

/ — V,,\
VA V
‘kgreeW

Improvement

72.*4 ’V*

218

Generalized Policy Iteration (GPI)

Any iteration of policy evaluation and policy improvement,
independent of their granularity.

evaluation

ﬂ - q\
T @,
kgreeW

iImprovement

219

Temporal-Difference (TD) Learning

* SARSA: On-policy TD Control
* Q-learning: Off-policy TD Control

SARSA
(state-action-reward-state-action)
On-policy TD Control

QS A) — Q(Sp, Ap) + Ry +7 Q(Ser15 Apsr) - Q(S, Ay) |

S, A
R

S)

A’
SARSA

221

Q-lea rning (Watkins, 1989)
Off-policy TD Control

QS A — Q(Sp, Ap + a|Ryq + 7 max Q(S¢q, a) - Q(Sp, Ay |

® oA

Q-learning

222

Q-learning and Expected SARSA

@ oA

Q-learning Expected SARSA

223

Q-learning and Double Q-learning

100% /\ ML
0 0
\ .
75% \\ . B left A right D
\
\
% left \
actions 50%; \ Q-learning
from A
Double
o5k 'Q-learning *’\
5"6, ——————————————————————————————————— ~ optimal
1 100 200 300
Episodes

Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown
inset). Q-learning initially learns to take the left action much more often than the right action,
and always takes it significantly more often than the 5% minimum probability enforced by
e-greedy action selection with € = 0.1. In contrast, Double QQ-learning is essentially unaffected by
maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates
were zero. Any ties in e-greedy action selection were broken randomly.

224

n-step methods for sate-action value

1-step Sarsa co-step Sarsa n-step
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa aka Monte Carlo Expected Sarsa

D U U T
I 7T 7.7 1 1
! 1 1]
! bl
SR
? O

I
[
I
[

Figure 7.3: The backup diagrams for the spectrum of n-step methods for state—action values.
They range from the one-step update of Sarsa(0) to the up-until-termination update of the
Monte Carlo method. In between are the n-step updates, based on n steps of real rewards and
the estimated value of the nth next state—action pair, all appropriately discounted. On the far
right is the backup diagram for n-step Expected Sarsa.

225

Reinforcement Learning
Actor-Critic (AC) Architecture

N\

Critic

s

\
Policy
N\

Actor

state —%

/

Value

Function
/

/

|

reward

D
error

{ Environment j«

action

226

Reinforcement Learning
Actor-Critic (AC) Learning Methods

r

Policy
(Actor) Action

TCrlthue

" Value Table
~ (Critic)

State T Reward

State

\

J

Environment

227

Reinforcement Learning Methods

Temporal- N Dynamic ;
difference programming
learning O

depth
(length)
of update

Monte

Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the
two of the most important dimensions explored in Part I of this book: the depth and width of
the updates.

Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

228

Monte Carlo Tree Search (MCTS)

l { Repeat while time remains -
~— Selection =——» Expansion =——» Simulation =——» Backup ——~

FT

Tree Rollout
Policy Policy
|

Figure 8.10: Monte Carlo Tree Search. When the environment changes to a new state, MCTS
executes as many iterations as possible before an action needs to be selected, incrementally
building a tree whose root node represents the current state. Each iteration consists of the four
operations Selection, Expansion (though possibly skipped on some iterations), Simulation,
and Backup, as explained in the text and illustrated by the bold arrows in the trees. Adapted
from Chaslot, Bakkes, Szita, and Spronck (2008).
229

Monte Carlo Tree Search (MCTS)
MCTS in AlphaGo Zero

a Select b Expand and evaluate € Backup d Play
2 Repeat J

+ Q+U P P O/‘ '\Q &
W s wmow) A

Q+U foan, O+ U &/ \P o/\o 5% N5
14 o) =1, O o , .
SN R N—C L

230

MCTS in AlphaGo Zero

a Select

a: Each simulation traverses the tree by selecting the edge with
maximum action value Q, plus an upper confidence bound U that

depends on a stored prior probability P and visit count N for that edge
(which is incremented once traversed).

231

MCTS in AlphaGo Zero

b Expand and evaluate

b: The leaf node is expanded and the associated position s is
evaluated by the neural network (P(s, -),V(s)) = fq(s); the vector of P
values are stored in the outgoing edges from s.

232

MCTS in AlphaGo Zero

€ Backup

c: Action value Q is updated to track the mean of all evaluations
V in the subtree below that action

233

MCTS in AlphaGo Zero

d Play

d: Once the search is complete, search probabilities t are

returned, proportional to N/T, where N is the visit count of each
move from the root state and t is a parameter controlling

temperature.

1T

|
Gy

/\/\l/\/\
o ARS AN N N

T

234

Reinforcement Learning
Actor Critic ANN

Environment Environment
\ |

States/Stimuli

?{\'f%(%? @?”'@@

Reward

)

(

= \
=
£ —]
A = —> "
c v - c
o w v o
g - g g
< & ;/ <
G) f
- Dopamine
=
=S
E\
)
£\
—» | ©
U%
—

235

Reinforcement Learning

General Dyna Architecture

Vak X
Policy/value

functions

planning update
direct DL S|mulated
Iearnlng control
Model

(Environment)

236

Dyna:
Integrated Planning, Acting, and Learning

value/policy

acting
planning direct
RL
model experience
model

learning

237

Model-Based RL

value/policy

acting
planning

model experience

“ "

model
learning

238

Model-Free RL
(DQN, A3C)

value/policy
acting
planning direct
RL

model experlence

model
learning

239

Reinforcement Learning

Algorithms

Deep Reinforcement Learning (DRL)

Dynamic Programming‘

Markov Decision Process
(MDP)

Monte Carlo Method

¥

Q-Learning

TD Learning

Partially Observable MDP
(POMDP)

Actor-Critic Methods

<

Deep Q Network (DQN)

Double DQN

Neural Fitted Q | Deep Recurrent Q
Learning Network (DQRN)

A3C

Rainbow

240

Human-level control through
deep reinforcement learning (DQN)

Convglution Convglution Fully cgnnected Fully cgnnected

L

¢ “'\
L]
°
..'III‘.
. ‘Il.l'-
)

“® © © 0 0 0 0 0 0 0 O

==
a
0
%\u
u,l“".\.
—0 Illl .."'.l
) —a III'»
%{j \
a \
i |

o 9 ® 0 0 0 0 0 0 0 o

C e e e e 0 e

z'rn(-z¢s-)"v 5
+ i+ +1+0+0+0R+0R+ N & N > 15
o] (@] (©)] (@] (@] (@] (@) (© g

Schematic illustration of the convolutional neural network

241

Deep Q-Network (DQN)

Q-value

T

Network

N

State Action

Q-value 1

T~

Q-value 2

Network

I

State

Q-value 3

242

Reinforcement Learning

with policy represented via DNN

1 Reward r
Agent pnNy Policy
. Ty(S, a)
N
Y~ KA :
state XS Take action a
S ' ®

parameter 6

Observe state s

-

Environment

243

Reinforcement Learning
Deep Q-Learning in FIFA 18

reward r

Al Bot

Policy Q(s,a)

Optical Character Obtain Reward

Recognition (pytesseract))

Take Action

FIFA 18 Game Window

ﬂ :

state s Q-Learning Model

Feature Map

Observe Game

MobileNet Feature Extractor

244

Asynchronous Advantage Actor-Critic

(A3C)

" Global Network

—

 Worker1 Worker2

ork

N\ \
J
"
Worker n)
!

.'.

Source: https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

245

Training workflow of each
worker agent in A3C

5. Worker q
updates global 1. Worker reset

network with to global
gradients network
4. Worker 2. Worker
gets interacts
gradients with
from losses environment

3. Worker
calculates
value and
policy loss

N

246

Reinforcement Learning
Example: PCMAN

SCORE: 0

Dueling Network Architectures for
Deep Reinforcement Learning

e

AR

N\

Single stream Q-network

>

—

AR

Dueling Q-network

248

Rainbow: Combining improvements in

deep reinforcement learning

Median human-normalized score

200%

100%

0%

DQN

DDQN

Prioritized DDQN

Dueling DDQN f
A3C

Distributional DQN
Noisy DQN

Rainbow l

1]
44 100 200
Millions of frames

Source: Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver (2017). "Rainbow: Combining improvements in deep reinforcement learning." arXiv preprint arXiv:1710.02298 (2017).

249

A Typical Strategy Development
Workflow

Policy Strat Parameter
—» Development —>» Backteigl‘:l —» Optimization —>»
(By Hand) B (Simulation)

1 | |

Supervised
Model Training

Simulation &

Data Analysis —>» Paper Trading

—>» Live Trading

250

Reinforcement Learning (RL) in

Trading Strategies
RL Agent Simulation &
Data Analysis —>» gra'::::g;: —>» Pa;l::'r::lng —>» Live Trading

251

Portfolio management system in equity market

neutral using reinforcement learning
(Wu et al., 2021)

S0 stocks x 10 days x OHLC S50 x 10 x 4
: 1
: 1 Normalized
Stock Prices o Input Tensor
: Training : Testing
Data Data
........................... l.----__ ___----l.------_------------y---__
Long RL model Short RL model
~ - ™~
Environmen e Environmen
— iy S A
Weights Weights
(Portfolio) Reward State « tfolio Reward State
- ™~ - ™~
NN Agent NN Agent
Long Portfolio Short Portfolio
Combine
(Half-and-Hal)
EMN Strategy l
EMN
Portfolio

252

FinRL:

A Deep Reinforcement Learning Library for
Automated Stock Trading in Quantitative Finance

Conventional RL Agents =~ DRL Agents

== I-I-l..-

Financial Market Environments

e: Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhan qugY ngeX nd Christina Dan Wang (2020). "FinRL: A Deep Reinforcement Learning Library for Automated Stock
Trading in Quantitative Fin arXiv preprint arXiv:2011.09607 (2020).

253

FinRL

Deep Reinforcement Learning Algorithms

Value
DQN States Q-value based Discrete only Single stock trading Target network, experience replay Simple and easy to use
Value Use two identical neural network
e g | : ; o
Double DQN States Q-value based Discrete only Single stock trading SRl Y Reduce overestimations
S Value Better differentiate actions
& # . . l . ' I- ?
Dueling DQN States Q-value et Discrete only Single stock trading Add a specialized dueling Q head St wait s
= tor- Mult C % -lear i ieh-di i
DDPG ?tate ' Bivakm Actor-critic Bilienicons ul iple.sto k tra.ding Being deep Q lt.aa ning for continuous | Better at handling high-dimensional
action pair based portfolio allocation action spaces continuous action spaces
A2C State Chvalic Actor-critic Discrete and Al s e Advantage function, parallel gradients Stable, cost-effective, faster and
action pair based continuous updating works better with large batch sizes
State Actor-critic Discrete and Improve stability, less variance,
PPO setion pal Q-value Based contiitons All use cases Clipped surrogate objective function St to Irplerrent
SAC ?tate .| Q-value RARiEHte Continuous only Multiple.stock tra.dlng. Entropy regularization, Improve stability
' action pair based portfolio allocation exploration-exploitation trade-off
t tor-critic Multiple stock trading, i B i
D3 ?ta . 3 Q-value Acreren Continuous only o e. gk ra. Ng. | Clipped double Q-Learning, delayed Improve DDPG performance
action pair based portfolio allocation | policy update, target policy smoothing.
State Actor-critic ; Multiple stock trading, . s
MADD -value Continuous onl Handle multi-agent RL problem Improve stability and performance
Pe action pair Qi based e o portfolio allocation . g i - -

Source: Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuging Yang, Bowen Xiao, and Christina Dan Wang (2020). "FinRL: A Deep Reinforcement Learning Library for Automated Stock
Trading in Quantitative Finance." arXiv preprint arXiv:2011.09607 (2020).

254

FinRL:

A Deep Reinforcement Learning Library for
Automated Stock Trading in Quantitative Finance

Evaluation of Trading Performance
Training-Validation-Testing Flow

training validation testing/trading

B Y o e I

01/01/2009 10/01/2015 01/01/2016 09/23/2020

Cumulative Return

Reinforcement Learning (RL)
FinRL

Performance of single stock trading

using Proximal policy optimization (PPO) in the FinRL library

1.2| — AMZN
—— GOOGL
1| —QQQ : - AN
— SPY]\4
0.8| — AAPL y
— MSFT | WJ\C /\\‘W:
- -~ S&P 500 . | ‘ . S Va
0.6 o | AN / Y My
0.4 | | | \ » ,ﬂ/ | —]
. J e ,»”.
0.2 ’A i
| g ,,é/"' Vgt sl W
Jan2 Mar 13 May 22 Jul 31 Oct9 Dec 18 Feb 26 May 6 Jul15 Sep 23
2019 2020

256

Cumulative Return

Reinforcement Learning (RL)
FinRL

Performance of multiple stock trading

and portfolio allocation
using the FinRL library

0.4| — TD3 (Portfolio Allocation)
~—— DDPG (Portfolio Allocation)
pa|™ TD3 (Multiple Stock)
~—— DDPG (Multiple Stock)
DJIA
0.2 Min-Variance
0.1
0}
=01
=0.2
Jan2 Mar 13 May 22 Jul 31 Oct9 Dec 18 Feb 26 May 6 Jul15 Sep 23
2019 2020

257

Reinforcement Learning (RL)

FInRL

Performance of single stock trading

using Proximal policy optimization
(PPO) in the FinRL library

2019/01/01-2020/0923 | SPY | QQQ | GOOGL | AMZN | AAPL | MSFT | S&P 500
Initial value 100,000 | 100,000 | 100,000 | 100,000 | 100,000 | 100,000 | 100,000
Final value 127,044 | 163,647 | 174,825 | 192,031 | 173,063 | 172,797 | 133,402
Annualized return 14.89% | 32.33% | 3740% | 44.94% | 36.88% | 36.49% | 17.81%
Annualized Std 9.63% | 27.51% | 33.41% | 29.62% | 25.84% | 33.41% | 27.00%
Sharpe ratio 1.49 1.16 1.12 1.40 1.35 1.10 0.74

Max drawdown 2093% | 28.26% | 27.76% | 21.13% | 22.47% | 28.11% | 33.92%

258

Reinforcement Learning (RL)
FinRL

Performance of multiple stock trading
and portfolio allocation

over the DJIA constituents stocks using the FinRL library

2019/01/01-2020/09/23 TD3 DDPG Min-Var. | DIJIA

Initial value 1,000,000 1,000,000 1,000,000 | 1,000,000
Final value 1,403,337; 1,381,120 | 1,396,607; 1,281,120 | 1,171,120 | 1,185,260
Annualized return 21.40%; 17.61% 20.34%; 15.81% 8.38% 10.61%
Annualized Std 14.60%; 17.01% 15.89%; 16.60% 2621% | 28.63%
Sharpe ratio 1.38; 1.03 [.28; 0.98 0.44 0.48

Max drawdown 11.52% 12.78% 13.72%:; 13.68% 34.34% | 37.01%

259

Deep Reinforcement Learning
Library

* OpenAl Gym

* Google Dopamine
* RLlib

* Horizon

* FinRL

Open Al Gym

Gym is a toolkit for developing
and comparing reinforcement

learning algorithms. It
supports teaching agents
everything from walking to
playing games like Pong
or Pinball.

View documentation »
View on GitHub »

RandomAgent on Ant-v2

— TN . t— c— co—

Episode 12

RandomAgent on CartPole-v1

!. .

https://geym.openai.com/

261

https://gym.openai.com/

Google Dopamine

A
SN

Dopamine is a research framework
for fast prototyping of
reinforcement learning algorithmes.

https://github.com/google/dopamine

262

https://github.com/google/dopamine

Deep Reinforcement Learning
Dopamine Colab Examples

co) agents.ipynb B

File Edit View Insert Runtime Tools Help

0 CO0E @ TEXT 4 CELL & CELL

Table of contents Code snippets Files

Dopamine: How to create and train a custom
agent

Install necessary packages.

Necessary Iimports and globals.

Load baseline data

Example 1: Train a modified version of DQN

Create an agent based on DQN, but
choosing actions randomly,

Train MyRandomDQNAgent.
Load the training logs.
Plot training results.
Example 2 Traén an agent bullt from scratch.

Create a completely new agent from
scratch.

Train StickyAgent.

Load the training logs.

X

DQN Rainbow
o swe @)

& COPY TO DRIVE +/ CONNECTED « # EDITING A

Copyright 2018 The Dopamine Authors.

Licensed under the Apache License, Version 2.0 (the "License”); you may not use this file except in compliance with the License. You
may obtain a copy of the License at

Unless required by applicable law or agreed 10 in writing, software distributed under the License is distributed on an "AS IS” BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language
governing permissions and limitations under the License.

Dopamine: How to create and train a custom agent

This colab demonstrates how to create a variant of a provided agent (Example 1) and how to create a new agent from scratch
(Example 2).

Run all the cells below in order,

[1 Install necessary packages.

[1 Necessary imports and globals.

BASE_PATH: ‘/tmp/colab_dope_run’

GAME: ‘Asternx’

[| Load baseline data

https://colab.research.google.com/github/google/dopamine/blob/master/dopamine/colab/agents.ipynb 263

https://colab.research.google.com/github/google/dopamine/blob/master/dopamine/colab/agents.ipynb

RLIib:

Scalable Reinforcement Learning

Examples
Tune API Reference

Contributing to Tune

RLLIB

RLIb: Scalable Reinforcement
Learning

RLIib Table of Contents
RLID Training APIs
RLIib Environments

RLIIb Models, Preprocessors, and
Action Distributions

RLIIb Algorithms

RLIIb Sample Collection and
Trajectory Views

RLIID Offine Datasets

RLIIb Concepts and Custom
Algorithms

RLIIb Examples
RLIIb Package Reference
Contributing to RLID

RAY SGD

RaySGD: Distributed Training

< (3 O X = contents
RLED in 60 seconds
Ruring RLID

RLIlib: Scalable Reinforcement Learning pescen

Sample Batches

RLIib is an open-source library for reinforcement learning that offers both high scalability and a Training
unified API for a variety of applications. RLIIb natively supports TensorFlow, TensorFlow Eager, and Application Support
PyTorch, but most of its internals are framework agnostic. Customization

OpenAl || Multi-Agent/ || Policy Offline .
Gym Hierarchical || Serving || Data } (1) Application Support

Custom Algorithms

(2) Abstractions for RL

To get started, take a look over the custom env example and the AP| documentation. If you're
looking to develop custom algorithms with RLIib, also check out concepts and custom algorithms.

RLIib in 60 seconds

The following is a whirlwind overview of RLED, For a more in-depth guide, see also the full table of

contents and RLIb blog posts. You may also want to skim the list of built-in algorithms, Look out for _

the 1" and () icons to see which algorithms are available for each framework.

https://docs.ray.io/en/master/rllib.html

264

https://docs.ray.io/en/master/rllib.html

Aurélien Géron (2019),
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition
O’Reilly Media, 2019

OREILLY &,

e
Hands-on Y
Machine Learning
with Scikit-Learn,
Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

Aurélien Géron

https://github.com/ageron/handson-ml2

https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646/ 265

https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646/
https://github.com/ageron/handson-ml2

Hands-On Machine Learning with
Scikit-Learn, Keras, and TensorFlow

Notebooks

1.The Machine Learning landscape
2.End-to-end Machine Learning project
3.Classification

4.Training Models

5.Support Vector Machines

6.Decision Trees

7.Ensemble Learning and Random Forests
8.Dimensionality Reduction
9.Unsupervised Learning Techniques
10.Artificial Neural Nets with Keras
11.Training Deep Neural Networks

12.Custom Models and Training with TensorFlow

O'REILLY

Hands-on Machine
Learning with
Scikit-L.earn, Keras
& TensorFloy ;/[

!

13.Loading and Preprocessing Data

14.Deep Computer Vision Using Convolutional Neural Networks

15.Processing Sequences Using RNNs and CNNs

16.Natural Language Processing with RNNs and Attention

17.Representation Learning Using Autoencoders

18.Reinforcement Learning

19.Training and Deploying TensorFlow Models at Scale

https://github.com/ageron/handson-ml2

266

https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/01_the_machine_learning_landscape.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/02_end_to_end_machine_learning_project.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/03_classification.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/04_training_linear_models.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/05_support_vector_machines.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/06_decision_trees.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/07_ensemble_learning_and_random_forests.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/08_dimensionality_reduction.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/09_unsupervised_learning.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/10_neural_nets_with_keras.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/11_training_deep_neural_networks.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/12_custom_models_and_training_with_tensorflow.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/13_loading_and_preprocessing_data.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/14_deep_computer_vision_with_cnns.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/15_processing_sequences_using_rnns_and_cnns.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/16_nlp_with_rnns_and_attention.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/17_autoencoders.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/18_reinforcement_learning.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/19_training_and_deploying_at_scale.ipynb
https://github.com/ageron/handson-ml2

Stuart Russell and Peter Norvig (2020),
Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Russell BAFficIal Intelligence
Norvig A Modern Approach

P Fourth Edition

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/ 267

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

Artificial Intelligence: A Modern Approach (AIMA)

* Artificial Intelligence: A Modern Approach (AIMA)
* http://aima.cs.berkeley.edu/

 AIMA Python
* http://aima.cs.berkeley.edu/python/readme.html

* https://github.com/aimacode/aima-python

* Learning

* http://aima.cs.berkeley.edu/python/learning.html

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 268

http://aima.cs.berkeley.edu/
http://aima.cs.berkeley.edu/python/readme.html
https://github.com/aimacode/aima-python
http://aima.cs.berkeley.edu/python/learning.html

Artificial Intelligence: A Modern Approach (AIMA)

]

o US Edition

o Global Edition
Acknowledgements
Code

Courses
Editions

Errata
Exercises
Figures
Instructors Page
Pseudocode

Reviews

ne—t AR INEMLOOOC O
A L2 AP s

Artificial Intelligence: A Modern Approach, 4th US ed.

by Stuart Russell and Peter Norvig

The authontative, most-used Al textbook, adopted by over 1500 schools.

Table of Contents for the US Edition (or see the Global Edition)

Preface (pdf); Contents with subsections
I Artificial Intelligence
1 Introduction ... 1
2 Intelligent Agents ... 36
II Problem-solving
3 Solving Problems by Searching ... 63
4 Search in Complex Environments ... 110
5 Adversarial Search and Games ... 146
6 Constraint Satisfaction Problems ... 180
III Knowledge, reasoning, and planning
7 Logical Agents ... 208
8 First-Order Logic ... 251
9 Inference in First-Order Logic ... 280
10 Knowledge Representation ... 314
11 Automated Planning ... 344
IV Uncertain knowledge and reasoning
12 Quantifying Uncertainty ... 385
13 Probabilistic Reasoning ... 412
14 Probabilistic Reasoning over Time ... 461
15 Probabilistic Programming ... S00
16 Making Simple Decisions ... 528
17 Making Complex Decisions ... 562
18 Multiagent Decision Making ... 599

http://aima.

V Machine Learning
19 Learning from Examples ... 651
20 Learning Probabilistic Models ... 721
21 Deep Leaming ... 750
22 Reinforcement Leaming ... 789
VI Communicating, perceiving, and acting
23 Natural Language Processing ... 823
24 Deep Learning for Natural Language Processing ... 856
25 Computer Vision ... 881
26 Robotics ... 925
VII Conclusions
27 Philosophy, Ethics, and Safety of Al ... 981
28 The Future of Al ... 1012
Appendix A: Mathematical Background ... 1023
Appendix B: Notes on Languages and Algorithms ... 1030
Bibliography ... 1033 (pdf and LaTeX bib file and bib data)
Index ... 1069 (pdf)

Exercises (website)

Eigures (pdf)

Code (website); Pseudocode (pdf)
Covers: US, Global

cs.berkeley.edu/

269

http://aima.cs.berkeley.edu/

Papers with Code

State-of-the-Art (SOTA)
R T —

Browse State-of-the-Art

2 1500 leaderboards « 1327 tasks « 1347 datasats « 17810 papers with code

Follow on W Twitter for updates

Computer Vision
Semantic EE& Image Object Pose
Segmentation e ms Classification Detection Estimation
2 33 leaderboards &2 52 leaderboards &2 54 leaderboards 2 51 eaderboards 2 40 leaderboards
6467 papers with code 564 papers with code 467 papers with code 231 papers with code 231 papers with code
» See all 707 tasks
Natural Language Processing
F: " Machine Language A Question Sentiment Text
LL: Translation Modelling Soo Answering Analysis Generation

https://paperswithcode.com/sota

270

https://paperswithcode.com/sota

Summary

* Deep Learning (DL)
* Neural Networks (NN)
e Convolutional Neural Networks (CNN)
* Recurrent Neural Networks (RNN)
* Reinforcement Learning (RL)
* Markov Decision Processes (MDP)
* Deep Reinforcement Learning (DRL) Algorithms
 SARSA
* Q-Learning
* DQN, A3C, Rainbow

References

Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.

Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O’Reilly Media.
Steven D'Ascoli (2022), Artificial Intelligence and Deep Learning with Python: Every Line of Code Explained For Readers New to Al and New to Python, Independently published.

Nithin Buduma, Nikhil Buduma, Joe Papa (2022), Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms, 2nd Edition, O'Reilly Media.

Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft Computing (2020): 106384.

Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005-2019." Applied Soft Computing 90
(2020): 106181.

Deep Learning Basics: Neural Networks Demystified,
https://www.youtube.com/playlist?list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRalPoU

Deep Learning SIMPLIFIED,
https://www.youtube.com/playlist?list=PLjJh1vISEYgvGod9wWiydumYI8hOXixNu

3BluelBrown (2017), But what *is* a Neural Network? | Chapter 1, deep learning, https://www.youtube.com/watch?v=aircAruvnKk

3BluelBrown (2017), Gradient descent, how neural networks learn | Chapter 2, deep learning, https://www.youtube.com/watch?v=IHZWWFHWa-w
3BluelBrown (2017), What is backpropagation really doing? | Chapter 3, deep learning, https://www.youtube.com/watch?v=Ilg3gGewQ5U

Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqgYmG7hTraZDM-OYHWgPebj2MfCFzFObQ

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis
Hassabis (2018), "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play." Science 362, no. 6419 (2018): 1140-1144.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent
Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis (2017), "Mastering the game of Go without human knowledge." Nature 550 (2017): 354—359.

Hado Van Hasselt, Arthur Guez, and David Silver (2016). "Deep Reinforcement Learning with Double Q-Learning." In AAAI, vol. 2, p. 5. 2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver (2017). "Rainbow: Combining improvements in deep
reinforcement learning." arXiv preprint arXiv:1710.02298 (2017).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves et al. (2015) "Human-level control through deep reinforcement learning." Nature 518, no. 7540
(2015): 529.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas (2015). "Dueling network architectures for deep reinforcement learning." arXiv preprint arXiv:1511.06581
(2015).

Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuging Yang, Bowen Xiao, and Christina Dan Wang (2020). "FinRL: A Deep Reinforcement Learning Library for Automated Stock Trading in
Quantitative Finance." arXiv preprint arXiv:2011.09607 (2020).

Mu-En Wu, Jia-Hao Syu, Jerry Chun-Wei Lin, and Jan-Ming Ho. "Portfolio management system in equity market neutral using reinforcement learning." Applied Intelligence (2021): 1-13.
Min-Yuh Day (2022), Python 101, https://tinyurl.com/aintpupython101

272

https://tinyurl.com/aintpupython101

