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Outline

 Knowledge and Reasoning
* Logical Agents
* First-Order Logic
* Inference in First-Order Logic
 Knowledge Representation
 Knowledge Graph (KG)

* Uncertain Knowledge and Reasoning
* Quantifying Uncertainty
* Probabilistic Reasoning
 Making Complex Decisions



Stuart Russell and Peter Norvig (2020),
Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Russell BAFficIal Intelligence
Norvig A Modern Approach

P Fourth Edition

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/
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Artificial Intelligence:
A Modern Approach

. Artificial Intelligence

. Problem Solving

. Knowledge and Reasoning

. Uncertain Knowledge and Reasoning

. Machine Learning

. Communicating, Perceiving, and Acting
. Philosophy and Ethics of Al
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Knowledge
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Artificial Intelligence:
3. Knowledge and Reasoning

* Logical Agents

* First-Order Logic

* Inference in First-Order Logic
 Knowledge Representation

 Automated Planning
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Intelligent Agents



4 Approaches of Al

N hinki Roti |
Thinking Humanly: Thinking Rationally:
.. The “Laws of Thought”
The Cognitive
] Approach
Modeling Approach
1. 4.
Acting Humanly: Acting Rationally:
The Turing Test The Rational Agent

Approach s

Approach

SSSSSS : Stuart Russell and Peter Norvig (2020), Artificia

IIIIIII igence: A Modern Approach, 4th Edition, Pearson
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Reinforcement Learning (DL)

Agent

{ EnvironmentJ




Reinforcement Learning (DL)

1 observation 2 action
Agent

3 reward T

Environment
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Reinforcement Learning (DL)

Agent

0,
3 reward TRt

Environment

1 observation 2 action
A

t
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Agents interact with environments
through sensors and actuators

/Px gent Sensors s

' Percepts

?

' Actions

\ Actuators -
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Logical Agents



Logical Agents

Knowledge-based Agents
KB Agents

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Knowledge-based Agent
(KB Agent)

function KB-AGENT( percept) returns an action
persistent: KB, a knowledge base

t, a counter, initially O, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))
action < ASK(KB, MAKE-ACTION-QUERY(?))

TELL(KB, MAKE-ACTION-SENTENCE(action,t))
t<—t+1

return action
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Sentences are
physical configurations of the agent

Sentences ~ T T T~ * Sentence
I Entails l
. o | @ |
Representation g | 3 |
o | o |

_____________ = A - N
= z |
World @ ¢ 3 ;
Aspects ofthe ~~_ "7~ ™ Aspect of the
real world Follows real world

Reasoning is a process of
constructing new physical configurations from old ones

Logical reasoning should ensure that the new configurations
represent aspects of the world that actually follow from the aspects
that the old configurations represent.
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A BNF (Backus—Naur Form) grammar
of sentences in propositional logic

Sentence — AtomicSentence | ComplexSentence

AtomicSentence — True| False | P| Q| R| ...

ComplexSentence — ( Sentence)
- Sentence
Sentence N\ Sentence
Sentence V Sentence

Sentence = Sentence

Sentence < Sentence

OPERATOR PRECEDENCE : 1, A,V,=,&

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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false
false
true
true

Truth Tables (TT)

for the Five Logical Connectives

P PAQ PVQ P=Q

false
true

false

true

true false false true
true false true true
false false true false
false true true true

P&

true
false
false

true
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A Truth Table constructed for the
knowledge base given in the text

Byyn By P2 P2 Py P P33 R Ry Ry Ry Rs KB
false false false false false false false true true true true false false
false false false false false false true true true false true false false
false true false false false false false true true false true true false
false true false false false false {true true true {true true true true
false true false false false true false true true true true true true
false true false false false {true {true true true {true true true true
false true false false true false false true false false true true false
true true true true true true true false true true false true false

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A Truth-Table (TT)

enumeration algorithm for deciding

propositional entailment

function TT-ENTAILS?(K B, «) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
«, the query, a sentence in propositional logic

symbols < a list of the proposition symbols in KB and «
return TT-CHECK-ALL(KB, a, symbols, { })

function TT-CHECK-ALL(KB, o, symbols, model) returns true or false
if EMPTY ?(symbols) then
if PL-TRUE?(K B, model) then return PL-TRUE?(a, model)
else return {rue // when KB is false, always return true
else
P < FIRST(symbols)
rest <— REST(symbols)
return (TT-CHECK-ALL(K B, o, rest, model U {P = true})
and
TT-CHECK-ALL(KB, a, rest, model U {P = false }))

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Standard Logical Equivalences

The symbols a, B, and y stand for
arbitrary sentences of propositional logic.

(aNB) = (BAa) commutativity of A
(aVpB) = (BVa) commutativity of V
((@AB)A7y) = (A (BA7y)) associativity of A
((aVPB)Vy) = (aV(BV7y)) associativity of V
—(-a) = a double-negation elimination
(o = B) = (- = —a) contraposition
(e = B) = (—~aV ) implication elimination
(a & B) = (¢ = B)A(B = «)) biconditional elimination
(e AB) = (—aV -B) DeMorgan
-(aVpB) = (—naA—-B) DeMorgan
(@A (BVY) = (tAB)V (axAy)) distributivity of A over V
) = (

(aV B)A(aV~y)) distributivity of V over A

25



A grammar for
Conjunctive Normal Form (CNF),
Horn clauses, and definite clauses

CNFSentence — Clause; N\--- N\ Clause,,
Clause — Lateraly V---V Literal,,
Fact — Symbol

Literal — Symbol | -~ Symbol

Symbol — P| Q| R| ...
HornClauseForm — DefiniteClauseForm | GoalClauseForm

DefiniteClauseForm — Fact | (Symbol, A--- A\ Symbol;) = Symbol

GoalClauseForm — (Symbol; NA--- A Symbol;) = False

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A simple resolution algorithm
for propositional logic

function PL-RESOLUTION(K B, o) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic
a, the query, a sentence in propositional logic

clauses < the set of clauses in the CNF representation of KB A —«
new < { }
while frue do
for each pair of clauses C;, C; in clauses do
resolvents <— PL-RESOLVE(C;, C})
if resolvents contains the empty clause then return true
new < new U resolvents
if new C clauses then return false
clauses < clauses U new

27



The forward-chaining algorithm
for propositional logic

function PL-FC-ENTAILS?( KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional definite clauses
q, the query, a proposition symbol
count <— a table, where count[c] is initially the number of symbols in clause c’s premise
inferred < a table, where inferred| s] is initially false for all symbols
queue <— a queue of symbols, initially symbols known to be true in KB

while queue is not empty do
p < POP(queue)
if p = ¢ then return true
if inferred[p] = false then
inferred[p] < true
for each clause c in KB where p is in c.PREMISE do
decrement count|c]
if count[c] = 0 then add c.CONCLUSION to queue
return false

28



A set of Horn clauses
)

P = Q
LANM = P P
BANL = M
AANP = L M
AANB = L L
A L
B
A B

(a) (b)
The corresponding AND—OR graph

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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First-Order Logic



Formal languages and their
ontological and epistemological

commitments
Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)
Propositional logic ~ facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory ~ facts degree of belief € [0, 1]

Fuzzy logic

facts with degree of truth € [0,1] ~ known interval value

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A model containing five objects

two binary relations (brother and on-head), three unary relations
(person, king, and crown), and one unary function (left-leg).

crown

brother on head

person
king

brother

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The syntax of first-order logic
with equality

Sentence — AtomicSentence | ComplexSentence

AtomicSentence — Predicate | Predicate(Term,...)| Term = Term
ComplexSentence — ( Sentence)
- Sentence
Sentence N\ Sentence
Sentence V Sentence

|

|

|

|  Sentence = Sentence
| Sentence < Sentence
|

Quantifier Variable,... Sentence

Term — Function(Term,...)

|  Constant
|  Variable

Quantifier — V| 3

Constant — A| X, | John| ---

Variable — a| x| s| ---
Predicate — True| False | After | Loves | Raining | ---
Function — Mother | LeftLeg | ---
OPERATOR PRECEDENCE  : —,=,A,V,=,&

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Some members of the set of all
models for a language with two
constant symbols, R and J, and one
binary relation symbol

J

56660 &8

SSSSSS : Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Some members of the set of all
models for a language with two
constant symbols, R and J, and one
binary relation symbol, under
database semantics
1;3 J 1;2 J 1;2 J 1;3 J 1‘2 J
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A digital circuit C1, purporting to be a
one-bit full adder.
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Inference in
First-Order Logic



The unification algorithm

function UNIFY(z, y, 0=empty) returns a substitution to make z and y identical, or failure
if 0 = failure then return failure
else if z = y then return ¢
else if VARIABLE?(z) then return UNIFY-VAR(z, y, #)
else if VARIABLE?(y) then return UNIFY-VAR(y, z,0)
else if COMPOUND?(z) and COMPOUND?(y) then
return UNIFY(ARGS(z), ARGS(y), UNIFY(OP(z), OP(y), 0))
else if L1ST?(z) and LI1ST?(y) then
return UNIFY(REST(z), REST(y), UNIFY(FIRST(z), FIRST(y),#))
else return failure

function UNIFY-VAR(var, z,f) returns a substitution
if {var/val} € 6 for some val then return UNIFY(val, z, 6)
else if {z /val} € 6 for some val then return UNIFY(var, val,0)
else if OCCUR-CHECK?(var, ) then return failure
else return add {var/z} to 0

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



The subsumption lattice whose

lowest node is Employs
(IBM, Richard )

The subsumption lattice for the sentence Employs
(John, John)

Employs(x,y) Employs(x,y)
Employs(x,Richard) Employs(IBM,y) Employs(x,John) Employs(x,x) Employs(John,y)
Employs(IBM,Richard) Employs(John,John)

(a) (b)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 39



A conceptually straightforward, but inefficient,
forward-chaining algorithm

function FOL-FC-ASK(KB, o) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses
a, the query, an atomic sentence

while true do
new < { } / / The set of new sentences inferred on each iteration
for each rule in KB do
(p1 A... A pp, = q)< STANDARDIZE-VARIABLES(rule)
for each 6 such that SUBST(6,p1 A ... A p,)=SUBST,p; A ... A pl)
for some p1,...,p, in KB
q' < SUBST(6, q)
if ¢’ does not unify with some sentence already in KB or new then
add ¢’ to new
¢ < UNIFY(q', o)
if ¢ is not failure then return ¢
if new = {} then return false
add new to KB

40



The proof tree generated by forward
chaining on the crime example

Criminal(West)

Weapon(M,)

American(West)

Source

Sells(West,M,,Nono)

\

Missile(M,)

Owns(Nono, M)

: Stuart Russell and Peter Norvig (2020), Artificial Intelligence

Hostile(Nono)

Enemy(Nono,America)

: A Modern Approach, 4th Edition, Pearson
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Constraint graph for coloring the
map of Australia

&

(a)

O
@

Diff (wa, nt) A Diff (wa, sa) A
Diff (nt,q) A Diff (nt, sa) A
Diff (q, nsw) A Diff (q, sa) A
Diff (nsw,v) A Diff (nsw, sa) A
Diff (v, sa) = Colorable()

Diff (Red, Blue) Diff (Red, Green)
Diff (Green, Red) Diff (Green, Blue)
Diff (Blue, Red) Diff (Blue, Green)

(b)

42



A simple backward-chaining algorithm for
first-order knowledge bases

function FOL-BC-ASK(KB, query) returns a generator of substitutions
return FOL-BC-OR(KB, query,{ })

function FOL-BC-OR(KB, goal, f) returns a substitution
for each rule in FETCH-RULES-FOR-GOAL(KB, goal) do
(lhs = rhs) < STANDARDIZE- VARIABLES(rule)
for each 6’ in FOL-BC-AND(KB, lhs, UNIFY(rhs, goal, 0)) do
yield 6’

function FOL-BC-AND(KB, goals, 0) returns a substitution

if & = failure then return
else if LENGTH(goals) = 0 then yield
else

first,rest < FIRST(goals), REST(goals)

for each 6’ in FOL-BC-OR(KB, SUBST(#, first), 6) do

for each 0" in FOL-BC-AND(KB, rest,0’) do
yield 6"

43



Proof tree constructed by

backward chaining t

o prove that West is a criminal

American(West)

U

Source

Criminal(West)
Weapon(y) Sells(West,M,,z) Hostile(Nono)
{z/Nono}
Missile(y) || Missile(M;) | |Owns(Nono,M;) | | Enemy(Nono,America)
WIM, U U U

: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Pseudocode representing the result
of compiling the Append predicate

procedure APPEND(azx, vy, az, continuation)

trail <~ GLOBAL-TRAIL-POINTER()

if ax =[] and UNIFY(y, az) then CALL(continuation)

RESET-TRAIL(trawl)

a,x, 2z < NEW-VARIABLE(), NEW-VARIABLE(), NEW-VARIABLE()

if UNIFY(az,[a] + ) and UNIFY(az,[a | z]) then APPEND(z, y, 2, continuation)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 45



A B &
O—-0—0
(a)

Finding a path from A to C can lead
Prolog into an infinite loop.

SSSSSS : Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Proof that a path exists from A to C.

path(a,c)
path(a,c)
A\ path(a,Y) link(Y,c)
link(a,c) path(a,Y) link(b,c)
fail
path(a,Y’) link(Y’,Y)

link(a,¥) /
(a) (b)
Infinite proof tree generated

when the clauses are
in the “wrong” order

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



A resolution proof that

West is a

criminal

“American(x) v —Weapon(y) v —Sells(x,y,z) v —Hostile(z) vCriminal(x) —Criminal(West)

American(West) \ —American(West) v ~Weapon(y)v —Sells(West,y,z) v —Hostile(z)

—Missile(x) v Weapon(x)

—Weapon(y) v —Sells(West,y,z) v —Hostile(z)

/3

Missile(M,)

—Missile(y) Vv —Sells(West,y,z) v —Hostile(z)

~Missile(x) V-Owns(Nono, x) V Sells(West,x, Nono) —Sells(West,M,z) v —Hostile(z)

Missile(M,)

—Missile(M) v ~Owns(Nono,M,) V —~Hostile(Nono)

Owns(Nono, M) =Owns(Nono, M)V —Hostile(Nono)

—Enemy(x,America) v Hostile(x)

—Hostile(Nono)

Enemy(Nono, America)

\?'nemymono,America)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A resolution proof that
Curiosity killed the cat

Cat(Tuna)

—Cat(x) v Animal(x)

Kills(Jack, Tuna) v Kills(Curiosity, Tuna)| | ~Kills(Curiosity, Tuna)

\_—

\/

Animal(Tuna)

—Loves(y, x)V ~Animal(z) vV —Kills(x, z) | | Kills(Jack, Tuna) | | ~Loves(x, F(x)) Vv Loves(G(x), x) “Animal(x) v Loves(Jack, x)

P —

—Loves(y, x) V —Kills(x, Tuna) —Animal(F(Jack)) v Loves(G(Jack), Jack) | |Animal(F(x)) V Loves(G(x), x)

]

—Loves(y, Jack) Loves(G(Jack), Jack)

Y

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Structure of a
completeness proof for resolution

Any set of sentences S is representable in clausal form

Assume S 1s unsatisfiable, and in clausal form

l< Herbrand’s theorem
Some set S’ of ground instances is unsatisfiable
Ground resolution
—
theorem
Resolution can find a contradiction in S’
l< Lifting lemma

There is a resolution proof for the contradiction in §'

50



Knowledge
Representation



The Upper Ontology of the World

Anything

/\

AbstractObjects GeneralizedEvents

/\ /\

Sets Numbers RepresentationalObjects Intervals  Places  PhysicalObjects Processes

N\ \ N

Categories Sentences Measurements Moments Things /Stuﬁ‘\
Times Weights Animals Agents  Solid Liquid Gas

N/

Humans

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 52



Meet(i, j)

Before(i, j)
After(j,i)

During(i, j)

Overlap(i, j)

Predicates on time intervals

I J
Starts(i, j)
I J
i Finishes(i, j)
J
Equals(i, j)

53



A schematic view of the object
President (USA) for the early years




A semantic network

with four objects (John, Mary, 1, and 2) and four categories Relations are
denoted by labeled links

SubsetOf

HasMother

MemberOf

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Semantic network

Representation of the logical assertion
Fly (Shankar, NewYork, NewDelhi, Yesterday)

MemberOf

During

Origin Destination

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The syntax of descriptions in a subset
of the CLASSIC language.

Concept —

Path —

ConceptName —
RoleName —

Thing | ConceptName
And(Concept, .. .)
All(RoleName, Concept)
AtLeast(Integer, RoleName)
AtMost(Integer, RoleName)
Fills( RoleName, IndividualName, . . .)
SameAs( Path, Path)
OneOf(IndividualName, . . .)
[RoleName, . . .]

Adult | Female | Male | ...
Spouse | Daughter | Son | ...

57



Knowledge Graph
(KG)



Knowledge Graph (KG)

 Knowledge Graph (KG)

* A knowledge graph is a multi-relational graph composed of
entities and relations, which are regarded as
nodes and different types of edges, respectively (Ji et al., 2021).

* Represents knowledge as concepts (entities) and
their relationships (Facts)

* Triple of facts
* SPO: (subject, predicate, object)
 HRT: (head, relation, tail)

* Common Knowledge Graph: DBpedia, YAGO, Wikidata

59



Knowledge Graph, Facts, Triple, Embedding

* G

* Knowledge graph
e F

* Set of facts
* (b 1Y)

* Triple of head, relation, and tail
* (h, 1, t)
 Embedding of head, relation, and tail

60



Knowledge Representation
Factual Triple and Knowledge Graph

* Albert Einstein, winner of the 1921 Nobel prize in physics

* The Nobel Prize in Physics 1921 was awarded to Albert Einstein
"for his services to Theoretical Physics, and especially for his
discovery of the law of the photoelectric effect.”

Triple (Albert Einstein, WinnerOf, Nobel Prize in Physics)

KnOWIEdge Albert WinnerOf Nobel Prize
Graph Einstein in Physics

61



Factual Triples in Knowledge Base
(h, 1, 1)

(Albert Einstein, BornIn, German Empire)
(Albert Einstein, SonOf, Hermann Einstein)

---------------------------------------------------------

i (Albert Einstein, WinnerOf, Nobel Prize in Physics) ]

U o o o o o o o o o |

(Albert Einstein, ExpertIn, Physics)
(Nobel Prize in Physics, AwardIn, Physics)

(The theory of relativity, TheoryOf, Physics)
(Albert Einstein, SupervisedBy, Alfred Kleiner)
(Alfred Kleiner, ProfessorOf, University of Zurich)
(The theory of relativity, ProposedBy, Albert Einstein)
(Hans Albert Einstein, SonOf, Albert Einstein)

62



Entities and Relations in Knowledge Graph

(Albert Einstein, WinnerOf, Nobel Prize in Physics)

The theory

. TheoryOf —
of relativity
ProposedBy ExpertIn

\-\ ;/. AwardIn
_______________________________ .
i

Albert Nobel Prize

in Physics
German | GraduateFrom Super VlsedBy

Empire
Alfred
<«— ProfessorOf
Klelner

Hans Albert
Einstein

WinnerOf —

63



knowledge base and knowledge graph

Factual triples in knowledge base Entities and relations in knowledge graph

TheoryOf —>.
/ f

ProposedBy ExpertIn

|

Albert
Einstein

(Albert Einstein, Bornln, German Empire)
(Albert Einstein, SonOf, Hermann Einstein)
(Albert Einstein, GraduateFrom, University of Zurich)
(Albert Einstein, WinnerOf, Nobel Prize in Physics)
(Albert Einstein, Expertln, Physics)

(Nobel Prize in Physics, AwardIn, Physics)

(The theory of relativity, TheoryOf, Physics)

(;;‘;It‘);r:(:i'msfu;, SfupervnsedBy., Alfrcd Kluru.r.) SonOf
red Kleiner, ProfessorOf, University of Zurich)
(The theory of relativity, ProposedBy, Albert Einstein)
(Hans Albert Einstein, SonOf, Albert Einstein)

The theory
of relativity

Hans Albert
Einstein

AwardIn

Hermann
Einstein /~ SonOf

, Nobel Prize
WinnerOf — . .
in Physics

Bornln
ull SupervisedBy

German GraduateFrom \

Empire

v
<— ProfessorOf
(Albert Einstein, WinnerOf, Nobel Prize in Physics)

Alfred
Kleiner
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Categorization of Research on Knowledge Graphs

- Point-wise - Manifold - Single-fact QA
-Complex  -Gaussian  <— Representation Space Natural Language Question Answering [~ Multi-.hop
- Discrete Understanding / Reasoning
_ — \ LN
- Dnstanc? Scoring Function Knowledge Knowledge- »| Dialogue Systems
- Semantic el Representation Aware
Matching Encoding Models Learning Applications / o Recommender Systems
- Others /
- Linear/Bilinear / Auxiliary Information Others Applications | " astion Generation
- Factorization \ \ - Search Engine
- Neural Nets - Textual - Type - Visual - Medical Applications
-CNN - Mental Healthcare
- RNN Knowledge - Zero-shot Image
- Transformers Entity Discove Acquisiti Classification
-GCN B & 2 Temporal - Text Generation
/ Knowledge - Sentiment Analysis
Relation Extraction Graph
- Recognition ' Temporal Embedding
- Typing Knowledge Graph Completion
- Disambiguation
: - Neural Nets i . :
- Alignment Enti
= - Attention - Embedding-based Ranking ity L ynamice
-GCN - Path-based Reasoning
- GAN - Rule-based Reasoning Temporal Relational Dependency
-RL - Meta Relational Learning
- Others - Triple Classification Temporal Logical Reasoning

65



Knowledge Graph Completion (KGC) Datasets

Knowledge Graph
Completion (KGC) | #Entity [#Relation| #Train #Valid Reference
Dataset

Toutanova & Chen

WN18RR 40,943 11 86,835 3,034 3,134 (2015);
Zhang et al. (2020)

Dettmers et al. (2018);

FB15k-237 14,541 237 272,115 17,535 20,466 Zhang et al. (2020)

Mahdisoltani et al.

YAGO3-10 123,182 37 1,079,040 5,000 5,000 (2015)2' Zhan)g etal.
2020
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Domain-Specific Knowledge Graph

 Domain-Specific Knowledge Graph
 PubMed Knowledge Graph (PKG)

* Extracting biological entities from 29 million PubMed abstracts

* Lynx: Legal Knowledge Graph for Multilingual Compliance
Services
* Legal Knowledge Graph (LKG) integrates and links heterogeneous

compliance data sources including legislation, case law, standards
and other private contracts.
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Lynx: Legal Knowledge Graph for
Multilingual Compliance Services

. Secure Access Layer Contracts, other Customer

g @) contentand data
S '
° o 2
Users Decisions
o e y e @
O Q Q I
@]
O O
Ontologies, & ) Metadata
Vocabularies, o e!
. o) ®
Taxonomies -
Thesauri... *
L] . °
o O
Directives & @ ! P @ Dataand
Regulations, CE Labels, Multimedia
Standards (I1SO et al)
o
Law, Legal & © Courts

Information

https://lvnx-project.eu/
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A PDDL description of an air cargo
transportation planning problem

Init(At(C1, SFO) N At(Cs, JFK) N At(P1, SFO) N At(P,, JFK)
A Cargo(C1) N Cargo(C2) A Plane(Py) N Plane(Ps)
A Airport(JFK) N Airport(SFO))
Goal(At(Cy1, JFK) N At(Cs, SFO))
Action(Load(c, p, a),
PRECOND: At(c, a) A At(p, a) A Cargo(c) A Plane(p) N Airport(a)
EFFECT: - At(c, a) A In(c, p))
Action(Unload(c, p, a),
PRECOND: In(c, p) A At(p, a) A Cargo(c) A Plane(p) N Airport(a)
EFFECT: At(c, a) A — In(c, p))
Action(Fly(p, from, to),
PRECOND: At(p, from) A Plane(p) N Airport(from) A Airport(to)
EFFECT: = At(p, from) A At(p, to))
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The simple spare tire problem

Init(Tire(Flat) N Tire(Spare) N At(Flat, Azle) N At(Spare, Trunk))
Goal(At(Spare, Axle))
Action(Remove(obj, loc),
PRECOND: At(o0bj, loc)
EFFECT: = At(obj, loc) N At(obj, Ground))
Action(PutOn(t, Azle),
PRECOND: Tire(t) A At(t, Ground) N — At(Flat, Azle) N — At(Spare, Axle)
EFFECT: - At(t, Ground) N At(t, Axle))
Action(LeaveOvernight,
PRECOND:
EFFECT: - At(Spare, Ground) N — At(Spare, Azle) N — At(Spare, Trunk)
A - At(Flat, Ground) N — At(Flat, Azle) N — At(Flat, Trunk))
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Diagram of the blocks-world problem

A

Start State Goal State

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

alE o
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A planning problem in the blocks
world: building a three-block tower

Init(On(A, Table) A On(B, Table) N On(C, A)

A Block(A) A Block(B) A Block(C) A Clear(B) A Clear(C) A Clear(Table))
Goal(On(A, B) A On(B,C))
Action(Move(b, z,y),

PRECOND: On(b,z) A Clear(b) A Clear(y) A Block(b) A Block(y) A

(b#£z) A (b#y) A (z#y),

EFFECT: On(b,y) A Clear(z) A -On(b,z) N —Clear(y))
Action(MoveToTable(b, x),

PRECOND: On(b,z) A Clear(b) A Block(b) A Block(z),

EFFECT: On(b, Table) A Clear(z) AN —On(b,x))

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Two approaches to searching for a plan (a)

Forward (progression) search
(b) Backward (regression) search

F'Y(P‘lo A- Q
Al(Ph A)
(a)
Al(Pz, A)
Fly(P,, A, B)
At(Ph A)
~—
At(st a Fly(Py, A, B)
(b)

At(P1, a P F'V(Pm A, B)
At(P 2y A)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Two state spaces from
planning problems with the
ignore-delete-lists heuristic

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Definitions of possible refinements

for two high-level actions

Refinement(Go(Home, SFO),
STEPS: [Drive(Home, SFOLongTermParking),
Shuttle(SFOLongTermParking, SFO)] )
Refinement(Go(Home, SFO),
STEPS: [Taxi(Home, SFO)] )

Refinement( Navigate([a, b], [z,y]),
PRECOND:a=z A b=y
STEPS: [] )

Refinement( Navigate([a, b], [z,y]),
PRECOND: Connected([a, b], [a — 1,b])
STEPS: [Left, Navigate([a — 1,b], [z,y])] )

Refinement(Navigate([a, b], [z, y]),
PRECOND: Connected([a,b],[a + 1, b])
STEPS: [Right, Navigate([a + 1,b], [z,y])] )
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A breadth-first implementation of
hierarchical forward planning search

function HIERARCHICAL-SEARCH( problem, hierarchy) returns a solution or failure

frontier < a FIFO queue with [Act] as the only element
while true do
if IS-EMPTY( frontier) then return failure
plan < POP( frontier) / / chooses the shallowest plan in frontier
hla < the first HLA in plan, or null if none
prefiz,suffir < the action subsequences before and after hla in plan
outcome < RESULT(problem INITIAL, prefix)
if hla is null then / / so plan is primitive and outcome is its result
if problem.IS-GOAL(outcome) then return plan
else for each sequence in REFINEMENTS(hla, outcome, hierarchy) do
add APPEND( prefiz, sequence, suffiz) to frontier
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Goal achievement for high-level
plans with approximate descriptions
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A hierarchical planning algorithm

function ANGELIC-SEARCH( problem, hierarchy, initialPlan) returns solution or fail

frontier < a FIFO queue with initialPlan as the only element
while ¢{rue do
if EMPTY?( frontier) then return fa:l
plan < POP( frontier) / / chooses the shallowest node in frontier
if REACH ' (problem INITIAL, plan) intersects problem.GOAL then
if plan is primitive then return plan // REACHT is exact for primitive plans
guaranteed < REACH ™ (problem.INITIAL, plan) N problem.GOAL
if guaranteed#{ } and MAKING-PROGRESS(plan, initialPlan) then
finalState < any element of guaranteed
return DECOMPOSE(hierarchy, problem INITIAL, plan, finalState)
hla < some HLA in plan
prefiz,suffiz < the action subsequences before and after hla in plan
outcome <— RESULT(problem.INITIAL, prefix)
for each sequence in REFINEMENTS(hla, outcome, hierarchy) do
frontier < Insert(APPEND( prefix, sequence, suffix), frontier)
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A hierarchical planning algorithm
Decompose solution

function DECOMPOSE(hzerarchy, so, plan, s¢) returns a solution

solution <— an empty plan
while plan is not empty do
action < REMOVE-LAST(plan)
s; —a state in REACH™ (sp, plan) such that sy cREACH™ (s;, action)
problem < a problem with INITIAL = s; and GOAL = s;
solution <— APPEND(ANGELIC-SEARCH(problem, hierarchy, action), solution)
Sf < 8
return solution
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At first, the sequence “whole plan” is
expected to get the agent from Sto G

whole plan

«———————————————————————— ————————————————

continuation

SSSSSS : Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A job-shop scheduling problem for
assembling two cars,
with resource constraints

Jobs({AddEnginel < AddWheels1 < Inspect1 },
{ AddEngine2 < Add Wheels2 < Inspect2})

Resources(EngineHoists(1), WheelStations(1), Inspectors(e2), LugNuts(500))

Action(AddEnginel , DURATION:30,

USE: EngineHoists(1))
Action(AddEngine2, DURATION:60,

USE: EngineHoists(1))
Action(AddWheels1, DURATION:30,

CONSUME: LugNuts(20), USE: WheelStations(1))
Action(AddWheels2, DURATION:15,

CONSUME: LugNuts(20), USE: WheelStations(1))
Action(Inspect;, DURATION:10,

USE: Inspectors(1))

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A representation of the temporal constraints

for the job-shop scheduling problem

[0.15] [30.45] [60.75]
AddEnginel AddWheelsl Inspectl
30 30 10
[0.0]
Start
[0,0] [60,60] [75,75]
AddEngine2 [ AddWheels2 [mmmgp={ [nspect2
60 15 10
Cinspect
N

AddWheels2

[85.85]
Finish

10

20

30

40

50

1 1
60 70

80

90
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EngineHoists(1)

WheelStations(1)

Inspectors(2)

A solution to the
job-shop scheduling problem

AddEnginel N AddEngine2 b
AddWheels1 AddWheels2

I 1 1 1 1 ] 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100 110 120
Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Artificial Intelligence:
Uncertain Knowledge
and Reasoning



Artificial Intelligence:
4. Uncertain Knowledge and Reasoning

* Quantifying Uncertainty

* Probabilistic Reasoning

* Probabilistic Reasoning over Time
* Probabilistic Programming
 Making Simple Decisions
 Making Complex Decisions

* Multiagent Decision Making
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DT-Agent
A Decision-Theoretic Agent that
Selects Rational Actions

function DT-AGENT( percept) returns an action
persistent: belief_state, probabilistic beliefs about the current state of the world
action, the agent’s action

update belief_state based on action and percept
calculate outcome probabilities for actions,

given action descriptions and current belief_state
select action with highest expected utility

given probabilities of outcomes and utility information
return action
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Agent 1 has inconsistent beliefs

Proposition Agentl’s  Agent2  Agent1 Agent 1 payofs for each outcome
belief bets bets 4,0 0,7 -a,b -,

0 04 fona  S6on-a 56 -$6 $4 W4
b 03 $3ondb  §Ton-b -§7 § 5 8
aVb 08  Son-(aVh) Bonavd §2 N K -8

S50 51 S

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson




A full joint distribution for the
Toothache, Cavity, Catch world

toothache Stoothache

cateh S eateh cateh S cateh

cavity 0.108 012 0072 0.008
oty 0016 ).064 (.144 .376

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson




Weather and Dental problems are
independent

Cavity
Toothache Catch
Weather

&

decomposes
into

Cavity
Toothache  Catch

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Coin flips are independent

decomposes
into
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Probabilistic
Reasoning



A Simple Bayesian Network

Weather is independent to the other three variables.
Toothache and Catch are conditionally independent, given Cavity.

Toothache

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A Typical Bayesian Network

Topology and the Conditional Probability Tables (CPTs)

Burglary

P(B=true)
.001

P(E=true)
002

Earthquake

B E| P(A=true|B,E)
t t .70
t f 01
i .70
fif 01

P(J=truelA) A | P(M=true|A)

t 90
.05

t 70
1 o1




Conditional Probability Table
for P(Fever | Cold, Flu, Malaria)

Cold  Flu Malaria P(fever|-) P(—fever|)

f 00 1.0

t 09 0.1

f 08 0.2

f098  0.02=02x0.1

f 04 0.6

£ 094  0.06=06x0.1

f o088  0.12=06x02

£ 0988  0.012=06x02x0.1

e e T

SSSSSS : Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson




A Simple Network

with discrete variables (Subsidy and Buys)
and continuous variables (Harvest and Cost )

Gubsidy Qarves)
(Cost

CBuys

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Probability distribution

over Cost as a function of Harvest size

P(c | h, subsidy) P(c | h, = subsidy)
04 ; 04 ;
03 1 (03 &
0.2 02 -
0.1 1 D 0.1
%95 0
3 Harvest h

(a) (b) (c)

distribution P (Cost | Harvest ),
obtained by summing over the
two subsidy cases.

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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P(c)

0.5 ;

04 ;

0.3 -

0.2 1

0.1 1

A normal (Gaussian) distribution
for the cost threshold

1
0.8 -
S 06
)
5
T 04 -
02 -
r 0 )
0 2 4 6 8 10 12 0 2 12
Cost ¢
(a)

Expit and Probit models for the
probability of buys given cost

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A Bayesian Network
for evaluating car insurance applications

Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 101



The structure of the expression

P(jla)
90

P(mla)
.70

P(jl-a)
.05

P(ml-a)
01

P(~alb,e)
05

P(alb,—e)

P(jl-a)
.05

P(ml-a)
01

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

P(—alb,—e)
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The Enumeration Algorithm
for Exact Inference in Bayes Nets

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayes net with variables vars

Q(X) < a distribution over X, initially empty
for each value z; of X do
Q(z;) + ENUMERATE-ALL(vars, €z,)
where e, is e extended with X = z;
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY ?(vars) then return 1.0
V <~ FIRST(vars)
if V is an evidence variable with value v in e
then return P(v | parents(V)) x ENUMERATE-ALL(REST(vars), e)
elsereturn ) | P(v|parents(V)) x ENUMERATE-ALL(REST(vars),e,)
where e, is e extended with V = v
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X

Y

T o T o

Pointwise Multiplication

f(X,¥) Xg(Y,Z) =h(X,Y,Z)

Source

f(X,Y)
3

1
9
l

Y

Z

g(Y,Z)
2

3
6
4

S

s T T T o o o o

|-<

S T o o T Y o o+

NN

: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

h(X,Y, Z)

3% .2=.06
X .8=.24
TX .6=42
X .4=.28
9x.2=.18
9Ix .8=.72
1x.6=.06
1x.4=.04
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The Variable Elimination Algorithm
for Exact Inference in Bayes Nets

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables vars

factors < ||
for each V in ORDER(vars) do

factors < [MAKE-FACTOR(V ,e)] + factors

if V is a hidden variable then factors <— SUM-OUT(V,, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))
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Bayes Net Encoding

of the 3-CNF (Conjunctive Normal Form) Sentence
(W VX VY) A (-W VY VZ) A (X VY V-2Z)
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Multiply Connected Network

(b) A clustered equivalent

P(C=.5)

S R|P(W|s,r)
i .99
t £l .90
ot 90
f £l .00

P(C=.5)

S+R |P(W|s+r)
[t 99
LT .90
It .90
Jr 1 .00

P(S+R|c)
tef fr ff

.08 .02 .72 .18
.10 .40 .10 .40

(b)
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A Sampling Algorithm

that generates events from a Bayesian network

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn, a Bayesian network specifying joint distribution P(X, ..., X;,)

X ¢ an event with n elements
for each variable X; in X1,..., X, do
X[i| + a random sample from P(X; | parents(X;))

return x
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The Rejection-Sampling Algorithm

for answering queries given evidence in a Bayesian network

function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X | e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network
N, the total number of samples to be generated
local variables: C, a vector of counts for each value of X, initially zero

forj=1to N do
X <— PRIOR-SAMPLE(bn)

if x is consistent with e then
Cl7] < C[j]+1 where z; is the value of X inx
return NORMALIZE(C)
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The Likelihood-Weighting Algorithm

for inference in Bayesian networks

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network specifying joint distribution P(X7, ..., X,,)
N, the total number of samples to be generated
local variables: W, a vector of weighted counts for each value of X, initially zero

for;=1to Ndo

X, W < WEIGHTED-SAMPLE(bn, e)

W/[j| < W[j] + w where z; is the value of X in x
return NORMALIZE (W)

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

w < 1; X + an event with n elements, with values fixed from e
for:=1tondo
if X; is an evidence variable with value z;; in e
then w < w x P(X; = z;; | parents(X;))
else x[i| < a random sample from P(X; | parents(X;))
return x, w
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Performance of rejection sampling and
likelihood weighting on the insurance network

0.1 -

‘ Rejection Sampling s s
I Likelihood weighting
0.08 - l
| IA\
|
006 1 IV
S I
i o
0.04 - b’ 'I v \v\ II‘“V\AN
\'\/t J \L\
0.02 - \,,w\j'__\”«
\d\\‘\.
O \”\v\m'—ﬁ\

0 200000 400000 600000 800000  1x10°

Number of samples

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 111



The Gibbs Sampling Algorithm

for approximate inference in Bayes nets

function GIBBS-ASK(X, e, bn, N) returns an estimate of P(X |e)
local variables: C, a vector of counts for each value of X, initially zero
Z., the nonevidence variables in bn
X, the current state of the network, initialized from e

initialize x with random values for the variables in Z

for k=1to N do
choose any variable Z; from Z according to any distribution p(%)
set the value of Z; in x by sampling from P(Z; | mb(Z;))
C[j] < Clj] + 1 where z; is the value of X in x

return NORMALIZE(C)
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The States and Transition Probabilities
of the Markov Chain

for the query P(Rain | Sprinkler = true, WetGrass = true)

0.6296 0.1164 1.0000 0.0000
O 0.0926 ) O 0.0000 O
C r © (6 T 4 C r Q C °r

0.4074 /\ 0.5000 /\
0.2222 02778  0.0238 0.4762  0.5000 0.0000  0.0000 0.5000
/ 0.3922 / / 0.5000 ]

r /\ -c r
N

-c \ -«c r O—lc -p
60.3856 0.1078 0.8683\/ Qo.oooo 0.0000 1.0000\)

(a) (b)

Transition Probabilities
when the CPT for Rain constrains it
to have the same value as Cloudy

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 113



Performance of Gibbs sampling
compared to likelihood weighting on
the car insurance network

002 1+ 0.02 ;
|= | Likelihood weighting —— Likelihood weighting ——
I | Gibbs sampling ———- Gibbs sampling ———-
0015 {1, 0015 -
| A h
I |“ |
oot i fi 2 oo
ot h‘ E ool
|
0.005 \ 0.005
|
0 , ey : 0 ! \1{'\1\_,".*—\/.‘\ e W
0 200000 400000 600000 800000 1x10° 0 200000 400000 600000 800000 1x10°
Number of samples Number of samples
(a) (b)

are observed and Age is the query variable

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 114



A Causal Bayesian Network

representing cause-effect relations among five variables

GreenerGrass

(a) (b)

GreenerGrass

The network after performing the action
“turn Sprinkler on.”

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Probabilistic
Reasoning
over Time



’________\

Bayesian network structure

corresponding to a First-order Markov Process
with state defined by the variables Xz.

_—_—_—_—_—_—_—_—_—_—_—_—_—_—_—_~

@D D) D)D) -

A Second-order Markov Process

NN I I I S I S S DS B B D B B S B B B D B D B B B B B B B e e e
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Bayesian Network Structure
and Conditional Distributions
describing the umbrella world

R,_1|PRIR, ;)

0.7
£l 03

R;

PU R,

[

f

0.9
02

@bill@ @mb'rella, @béll@

SSSSSS : Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Smoothing computes P(X, | e;.)

the posterior distribution of the state at some past time k given a
complete sequence of observations from 1 to t.

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The Forward—-Backward Algorithm
for Smoothing

function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions

inputs: ev, a vector of evidence values for steps 1, ...,
prior, the prior distribution on the initial state, P(Xo)
local variables: fv, a vector of forward messages for steps O, . . ., ¢
b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1,...,¢

fv[0] < prior
for:= 1totdo
fv[i| < FORWARD (fv[i — 1], ev][i])
for := ¢t down to 1 do
sv[i] <~ NORMALIZE(fv[i] X b)
b <~ BACKWARD (b, ev][i])
return sv
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Possible state sequences for Rain , c.-

be viewed as paths through a graph of the possible states
at each time step

Rainy Rain, Rain, Rain; Rain, Rains
true true true true true true
(a)
false false false false false false
Umbrella, true true false true true

Operation of the Viterbi algorithm
for the umbrella observation sequence [true, true, false, true, true]
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Algorithm for Smoothing
with a Fixed Time Lag of d Step

function FIXED-LAG-SMOOTHING(e;, hmm, d) returns a distribution over X;_4
inputs: e;, the current evidence for time step ¢
hmm, a hidden Markov model with S x S transition matrix T
d, the length of the lag for smoothing
persistent: ¢, the current time, initially 1
f, the forward message P(X; | e1.¢), initially Amnm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
et—4.t, double-ended list of evidence from ¢ — d to ¢, initially empty
local variables: O;_,, O;, diagonal matrices containing the sensor model information

add e; to the end of e;_4.¢
O, < diagonal matrix containing P(e; | X)
if t > d then
f < FORWARD(f, e;_q)
remove e;_4_1 from the beginning of e;_4.¢
O;_, < diagonal matrix containing P(e;_4 | X;—4)
B+ O, ', T 'BTO;
else B < BTO;
t—t+1
if ¢ > d + 1 then return NORMALIZE(f x B1) else return null
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Specification of the prior, transition model,
and sensor model for the umbrella DBN

P(R,)

Ry |P(R;|Ry)

0.7

Y

0.7
0.3
R,

P(Uy|Ry)

t

f

0.9
.2

@mbrell@
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A DBN fragment

the sensor status variable required for
modeling persistent failure of the battery sensor
E(Battery, |...5555005555...)

By | P(By 5
t | 1.000 e
£ | 0.001 4 Rl s N
E(Battery, |...5555000000...)
3 A
2 A

P(BMBroken_1...5555000000...)

E(Battery,)

1 -
BMeterl 0 l—l—l—I-C—l—l—J — = S e 2
P(BMBroken,|...5555005555...)
-1 ' . ' '
25 30

15 20
Time step

(b)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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P(R)

0.7

Ry |P(R,|R,)
{ 0.7
£l 03

@@ w

Unrolling a
Dynamic Bayesian Network

P(R,|R,)

P(R,|R,)

P(R3|R,)!

Umbrella

R, |P(UyR))
tl 09
162

Source

: Stuart Russell and Peter Norvig (2020), Artificial Intelligence

R [P(UIR)| [Ry|[P(UyRy)| |R3[P(UslRy)
tl 09 t| 09 0.9
a2 102 0.2
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The Particle Filtering Algorithm

function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence
N, the number of samples to be maintained
dbn, a DBN defined by P(Xy), P(X; | Xo), and P(E; | X;)
persistent: S, a vector of samples of size N, initially generated from P(X)
local variables: W, a vector of weights of size N

for2=1to N do

S[4] < sample from P(X; | Xo = S|[i]) // step 1
Wil <« P(e| Xy = S[i]) // step 2
S < WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W) // step 3

return S
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The Particle Filtering Update Cycle
for the Umbrella DBN

Rain, Rain, Rain,, Rain,,

ase [0 el ] [ ] [EE

(a) Propagate (b) Weight (c¢) Resample

E[§
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A Dynamic Bayes Net

for simultaneous localization and mapping
in the stochastic-dirt vacuum world

@catio@

i

<meD

<Dirt1,1

o>

<Diﬂ2,1

o>

><Diﬂ42,1

WallSensE
DirLS'ensE
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Probabilistic
Programming



Possible Worlds

for a language with two constant symbols, R and J

RJ RJ RJ R R J R J
‘... ....‘h\...
®
Rd RIS BT R R J

) (@ ‘3& 3\6%
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Bayes Net for a Single customer C1

recommending a single book B1. Honest(C1) is Boolean

@mmendation(q,@ Recommendation(C,, B,) Recommendation(C,, B,)

(a) (b)

Bayes net with two customers and two books
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Bayes Net

for the book recommendation when Author(B2) is unknown

@(Cl, @ @thor(Bz)

[\ I\
Kindness(Cl\)\ /Q%ﬁtvy@

Recommendation(C, @

Quality(B, )

@commendation(cl, B,
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One particular world for the
book recommendation OUPM

Variable
# Customer
# Book

HonCSt( Custo‘mer, ’ l)

Honest | cystomer, 2)
Kindness customer, 1)

Kindness cystomer, ,2)

Quality pook, 1

Quahty (Book, ,2)

Quality g,ok, 3
#LoginID(OW,-,< Customer, ,1))
#LoginID(Omr,(Customer. 2))
Recommendation (1.oginiD,(Owner,(Customer, 1)),1),{Book, ,
Recommendation (LoginID,(Owner,(Customer, 1)),1),(Book, ,
Recommendation (LoginID ,{Ouner,{Customer, 1)),1),{Book, ,
Recommendation (LoginID,{Ouner,(Customer, 2)),1),(Book, ,
Recommendation (poginiD,{Owner,{Customer, ,
Recommendation (LoginiD,(Ouner,{Customer,
Recommendation (LoginID,{Owner,{Customer, ,
Recommendation oginID,{Owner,{ Customer, ,
Recommendation LoginID,{Ouner,{Customer,,

2)),1),{Book,
2)),1),{Book,
2)),2),{Book,
2)),2),{Book,
2)),2),(Book,

1)
2)
3)
1)

2)
'3)
1)
2)
»3)

Value
2

3
true

false

—_CT O T OO R N R Ot W s

Probability
0.3333
0.3333
0.99
0.01
0.3

0.1
0.05
0.4
0.15
1.0
0.25
0.5

0.5

0.5

0.4

0.4

0.4

0.4

0.4

0.4

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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An OUPM for
Citation Information Extraction

type Researcher, Paper, Citation
random String Name(Researcher)
random String Title(Paper)

random Paper PubCited(Citation)
random String Text(Citation)

random Boolean Professor(Researcher)
origin Researcher Author(Paper)

# Researcher ~ OM (3,1)

Name(r) ~ NamePrior()

Professor(r) ~ Boolean(0.2)

# Paper(Author = r) ~ if Professor(r) then OM (1.5,0.5) else OM (1,0.5)
Title(p) ~ PaperTitlePrior()

CitedPaper(c) ~ UniformChoice({Paper p})

Text(c) ~ HMMGrammar(Name(Author(CitedPaper(c))), Title( CitedPaper(c)))
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Making
Simple
Decisions



Nontransitive preferencesA>B>C > A
can result in irrational behavior:
a cycle of exchanges each costing one cent

A
A B
¢ ¢ (1-p)
(1-9) C
is equivalent to A
B C £
_ (-,
l¢
(1-p)(1—q) €
(a) (b)

The decomposability axiom

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The Utility of Money

A ‘
PR~ 5o
: ’//( ] -~ $ - $
—150,000 800,000

(a) (b)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 137



Unjustified optimism
caused by choosing the best of k options

0.9 -
08 - k=30/f\‘\
] Iy

0.6 -
0.5 -
04 -
0.3 -
0.2 =~
01 7

S5 4 3 -2 -1 0 1 2. i3 4 5

Error in utility estimate

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 138



Strict dominance
(a) Deterministic  (b) Uncertain

X2 X2
A I This region ) !
| dominates A |
: @
|
C o i B o -: _______ C_ B
Y A
> a
= X 1 - X 1
(a) (b)

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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Probability

0.6 -
0.5 -
04 -
0.3 -
0.2 1
0.1 |

0

Stochastic dominance

1.2
1 4
N i
| =
S, | I ]S, S 06
| | e
I | & 04 -
| |
| | 02 -
| |
—_ 0 A A
-6 -55 -5 45 -4 -35 -3 -25 -2 -6 -55 -5 45 -4 -35 -3 -25 -2
Negative cost Negative cost
(a) (b)

Cumulative distributions for the
frugality of S1 and S2.

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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A decision network for the
airport-siting problem

Air Traffic

Airport Site

Litigation

(Erugetny
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A simplified representation of the
airport-siting problem

Airport Site

555555 : Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson 142



Making
Complex Decisions



A dynamic decision network

for a mobile robot with state variables for battery level, charging status,
location, and velocity, and action variables for the left and right wheel
motors and for charging.

Plug/Unplug, Plug/Unplug,,,

LeftWhee, LefWhel,,
RightWhee,

i\
| e > .

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The game of Tetris
The DDN for the Tetris MDP

Next

F
RN

(a)

A

NextPiece;

CurrentPiece,

Filled,

(b)

At+1

CurrentPiece, |

Filled,,

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
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The Value Iteration Algorithm for
calculating utilities of states

function VALUE-ITERATION(mdp, €) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s’ | s, a),
rewards R(s,a, s’), discount »y
€, the maximum error allowed in the utility of any state
local variables: U, U’, vectors of utilities for states in S, initially zero
0, the maximum relative change in the utility of any state

repeat
U+U";6<0
for each state s in S do
U'[s] <+~ max, ¢ a(s) Q-VALUE(mdp,s,a, U)
if |U'[s] — Ul[s]| > dthend <« |U'[s] — Uls]|
until 6 < €(1—7)/y
return U
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Stuart Russell and Peter Norvig (2020),
Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Russell BAFficIal Intelligence
Norvig A Modern Approach

P Fourth Edition

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/ 147
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Artificial Intelligence: A Modern Approach (AIMA)

Artificial Intelligence: A Modern Approach (AIMA)
e http://aima.cs.berkeley.edu/
AIMA Python

* http://aima.cs.berkeley.edu/python/readme.html

* https://github.com/aimacode/aima-python
Logic, KB Agent

* http://aima.cs.berkeley.edu/python/logic.html
Probability Models (DTAgent)
* http://aima.cs.berkeley.edu/python/probability.html

Markov Decision Processes (MDP)
* http://aima.cs.berkeley.edu/python/mdp.html
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AIMA Code

Al aimacode
Code for the book "Artificial Intelligence: A Modern Approach"
" M A} 358 followers @ Berkeley, CA (;9 http://aima.cs.berkeley.edu [ peter@norvig.com
() Overview [J Repositories 13  [f] Projects @ Packages AR People
Popular repositories
aima-python Public aima-java Public

Python implementation of algorithms from Russell And Norvig's
"Artificial Intelligence - A Modern Approach"

@ Jupyter Notebook Y¥ 6.6k % 3.2k

aima-pseudocode Public

Pseudocode descriptions of the algorithms from Russell And
Norvig's "Artificial Intelligence - A Modern Approach”

w740 % 386

aima-javascript Public

Javascript visualization of algorithms from Russell And Norvig's
"Artificial Intelligence - A Modern Approach"

JavaScript Y 495 % 208

Java implementation of algorithms from Russell And Norvig's
"Artificial Intelligence - A Modern Approach"

@Java w14k ¥ 767

aima-exercises Public

Exercises for the book Artificial Intelligence: A Modern Approach

@OHTML w61 % 353

aima-lisp Public

Common Lisp implementation of algorithms from Russell And
Norvig's "Artificial Intelligence - A Modern Approach"

@ Commonlisp Y342 %os

https://github.com/aimacode

Follow

You can now follow organizations

Organization activity like new
discussions, sponsorships, and
repositories will appear in your dashboard
feed.

members. You must be a member to see
who's a part of this organization.

Top languages

JavaScript @ Python @ Java
® Common Lisp @ Scala

Report abuse
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AIMA Python

E aimacode [ aima-python  Public

<{> Code

¥ master ~

°
s

o

wRErRErEErEE RN BN BN BN SN |

® Issues 120

i1 Pullrequests 79

¥ 1branch © 0tags

® Actions

mcventur Fixed bug in treatment of repeated nodes in frontier...

aima-data @ fécbeab

gui

images

is
notebooks
tests
.coveragerc
flake8
.gitignore
.gitmodules

travis.yml

fixed tests (#1191)

add perception and tests (#1091)

updating submodule (#994)

f Projects

Go to file

61d695b on Dec 5, 2021

Added TicTacToe to notebook (#213)

Image Rendering problem resolved (#1178)

fixed tests (#1191)

0J wiki

Added coverage report generation to Travis (#1058)

Fix flake8 warnings (#508)

Reworked PriorityQueue and Added Tests (#1025)

Updating Submodule (#647)

fixed svm for not posdef kernel matrix, updated .travis.yml wi...

@ Security

1,190 commits

® Watch 337 ~

4 years ago
2 years ago
3 years ago
7 years ago
3 years ago
2 years ago
3 years ago
5 years ago
4 years ago
5 years ago

2 years ago

https://github.com/aimacode/aima-python

% Fork 3.2k - vy Star 6.6k

|~ Insights

About

Python implementation of algorithms
from Russell And Norvig's "Artificial
Intelligence - A Modern Approach"

Readme
MIT license

6.6k stars
337 watching

< O % B

3.2k forks

Releases

No releases published

Packages

No packages published

151


https://github.com/aimacode/aima-python

Papers with Code

State-of-the-Art (SOTA)
[l“"] Search for papers, code and tasks )& W Follow 4 Discuss Trends About Log In/Register

Browse State-of-the-Art

122 1509 leaderboards « 1327 tasks « 1347 datasets « 17810 papers with code

Follow on W Twitter for updates

Computer Vision

. ;i'-iii‘- ,
Semantic I Image Object
Segmentation e -2l Classification Detection

Image Pose
Generation Estimation
&2 33 leaderboards &2 52 leaderboards &2 54 leaderboards 112 51leaderboards 122 40 leaderboards
667 papers with code 564 papers with code 467 papers with code 231 papers with code 231 papers with code

» See all 707 tasks

Natural Language Processing

Language == Question Sentiment = Text
Modelling E: ~~~~~ Answering Analysis - Generation

https://paperswithcode.com/sota 152
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Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4z)1zTuniMqf2RkCrT

<0 python101.ipynb - Colaborator X -+

C @ https://colab.research.google.com/drive/IFEG6DNGvwfUbeo4zJ1zTunjMgf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3 % ¢ &

& python101.ipynb

File Edit View Insert Runtime Tools Help

Bl COMMENT 2% SHARE o

CODE TEXT 4 CELL ¥ CELL +/ CONNECTED ~ 2 EDITING A
1 # Future Value :
° 2 pv = 100
3r=0.1
4 n=17
5 fv =pv * ((1 + (r)) ** n)
6 print(round(fv, 2))
> 194.87
[11] 1 amount = 100
2 interest = 10 #10% = 0.01 * 10
3 years = 7
3
5 future_value = amount * ((1 + (0.01 * interest)) ** years)
6 print(round(future_value, 2))
> 194.87
[12] # Python Function def

1

2 def getfv(pv, r, n):

3 fv = pv * ((1 + (r)) ** n)
4 return fv

5 fv = getfv (100, 0.1, 7).

6 print(round(fv, 2))

> 194.87
[13] 1 # Python if else
2 score = 80
3 if score >=60 :
4 print("Pass”)
5 else:
6 print("Fail"),
[» Pass

https://tinyurl.com/aintpupython101 153
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Summary

 Knowledge and Reasoning
* Logical Agents
* First-Order Logic
* Inference in First-Order Logic
 Knowledge Representation
 Knowledge Graph (KG)

* Uncertain Knowledge and Reasoning
* Quantifying Uncertainty
* Probabilistic Reasoning
 Making Complex Decisions
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