Artificial Intelligence for Text Analytics

Deep Learning, Transfer Learning, Zero-Shot, and Few-Shot Learning for Text Analytics

1102AITA10 MBA, IM, NTPU (M5026) (Spring 2022) Tue 2, 3, 4 (9:10-12:00) (B8F40)

Min-Yuh Day, Ph.D,

Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2022-05-24

https://meet.google.com/ paj-zhhj-mya

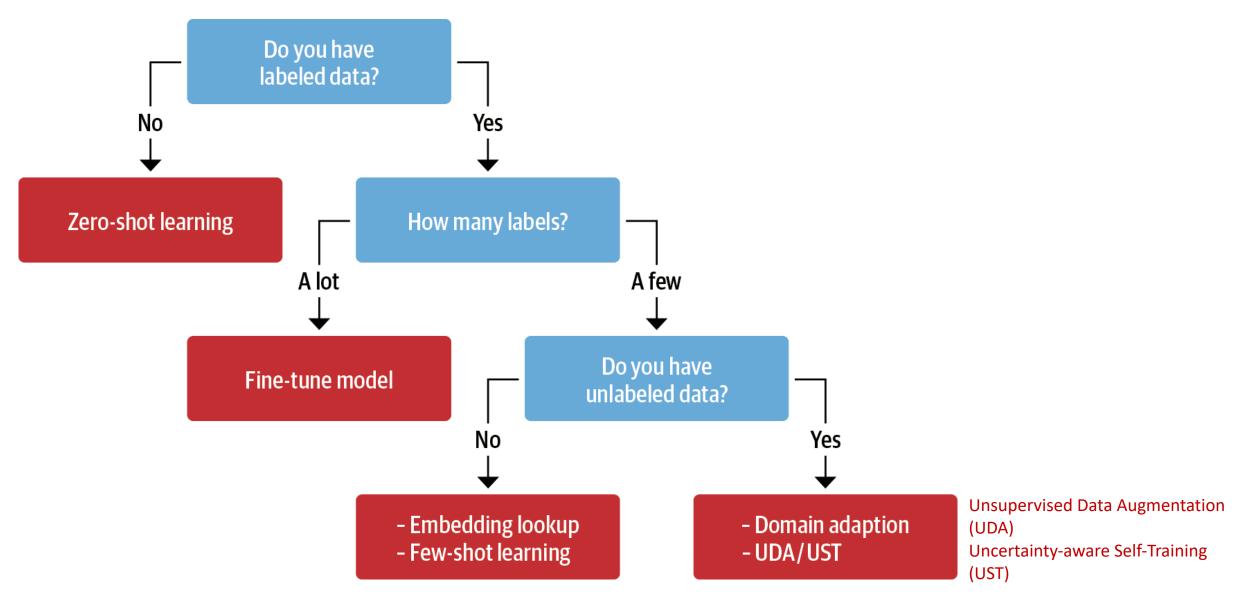
Week Date Subject/Topics

- **1 2022/02/22** Introduction to Artificial Intelligence for Text Analytics
- 2 2022/03/01 Foundations of Text Analytics: Natural Language Processing (NLP)
- 3 2022/03/08 Python for Natural Language Processing
- 4 2022/03/15 Natural Language Processing with Transformers
- 5 2022/03/22 Case Study on Artificial Intelligence for Text Analytics I
- 6 2022/03/29 Text Classification and Sentiment Analysis

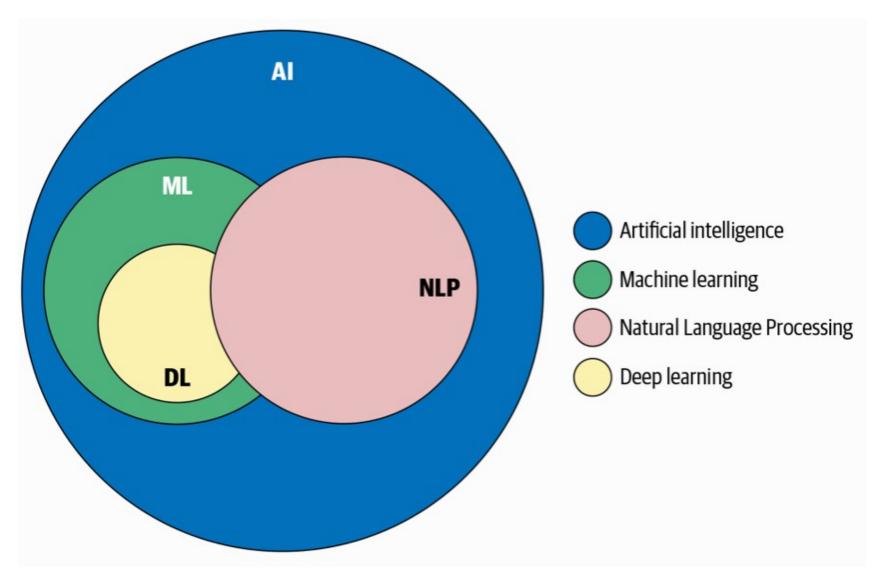
Week Date Subject/Topics

- 7 2022/04/05 Tomb-Sweeping Day (Holiday, No Classes)
- 8 2022/04/12 Midterm Project Report
- 9 2022/04/19 Multilingual Named Entity Recognition (NER), Text Similarity and Clustering
- 10 2022/04/26 Text Summarization and Topic Models
- 11 2022/05/03 Text Generation
- **12 2022/05/10 Case Study on Artificial Intelligence for Text Analytics II**

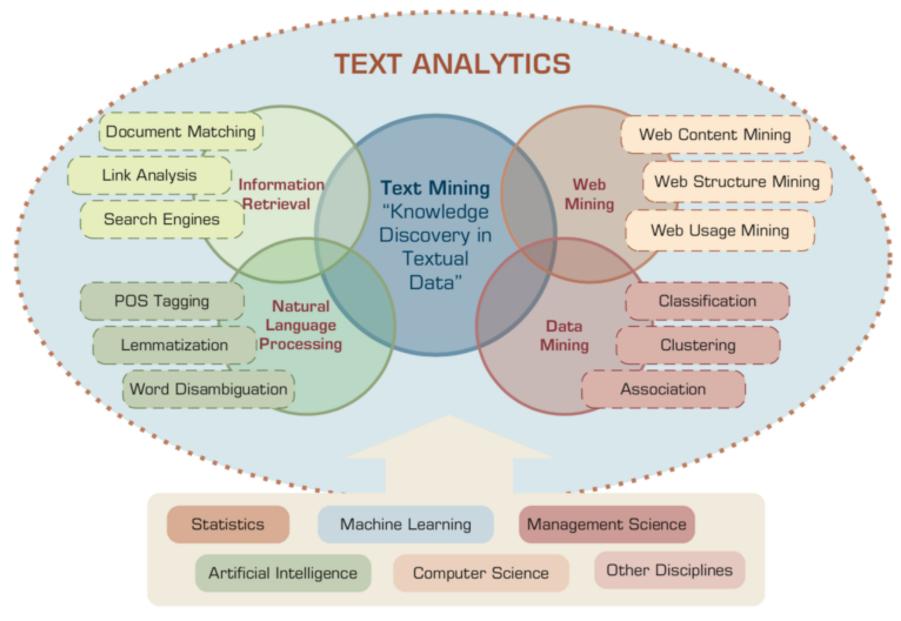
Week Date Subject/Topics


- 13 2022/05/17 Question Answering and Dialogue Systems
- 14 2022/05/24 Deep Learning, Transfer Learning, Zero-Shot, and Few-Shot Learning for Text Analytics
- 15 2022/05/31 Final Project Report I
- 16 2022/06/07 Final Project Report II
- 17 2022/06/14 Self-learning
- 18 2022/06/21 Self-learning

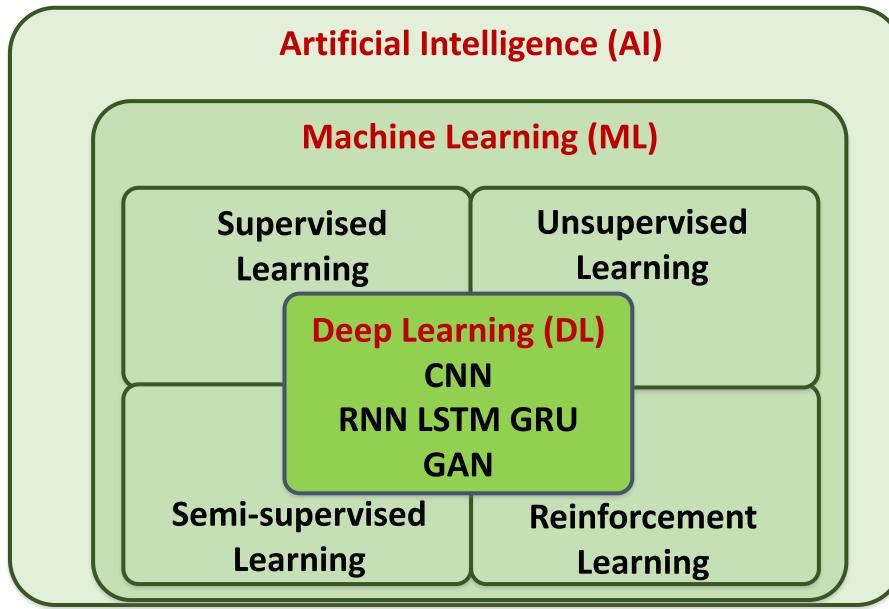
Deep Learning, Transfer Learning, Zero-Shot, and Few-Shot Learning for Text Analytics


Outline

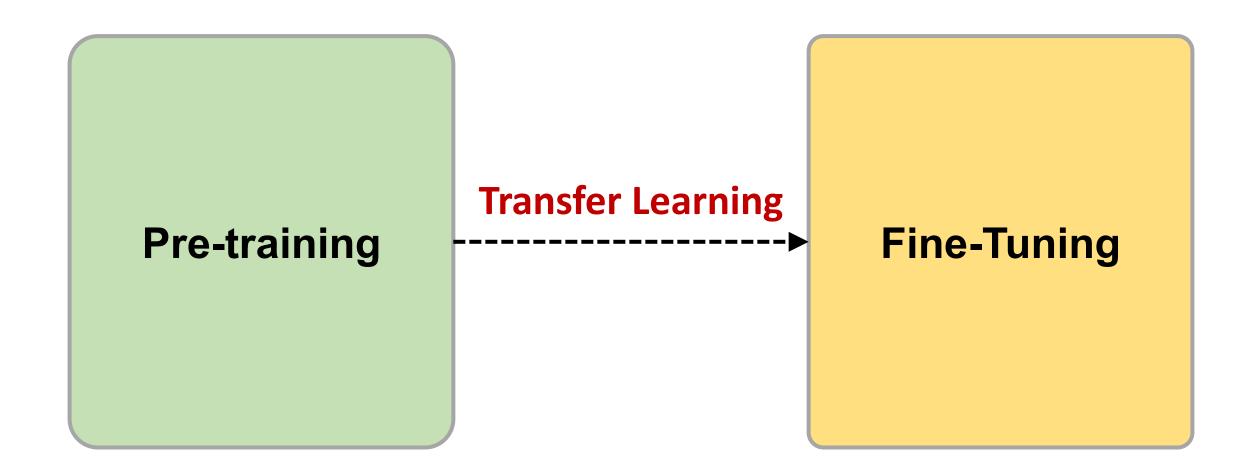
- Deep Learning
 - Transfer Learning
 - Pre-training, Fine-Tuning (FT)
- Few-Shot Learning (FSL)
 - Meta Learning: Learn to Learn
- One-Shot Learning (1SL)
- Zero-Shot Learning (OSL)(ZSL)


Transfer Learning, Fine-tuning, Few-shot learning

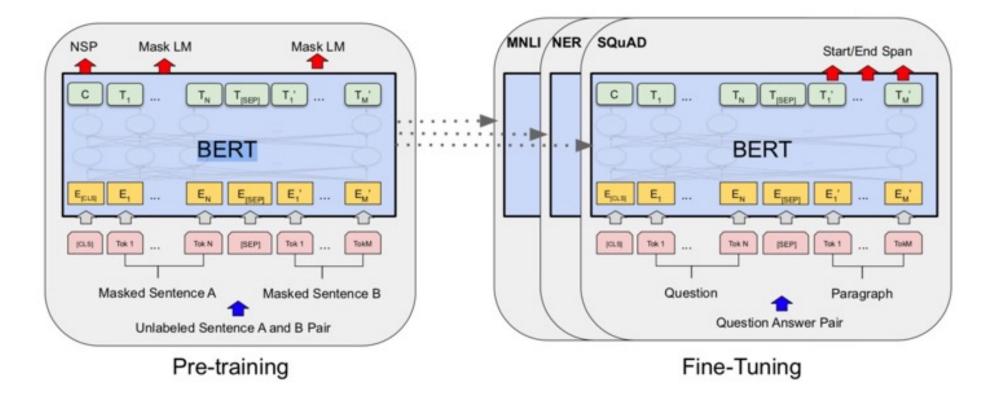
AI, NLP, ML, DL



Text Analytics and Text Mining

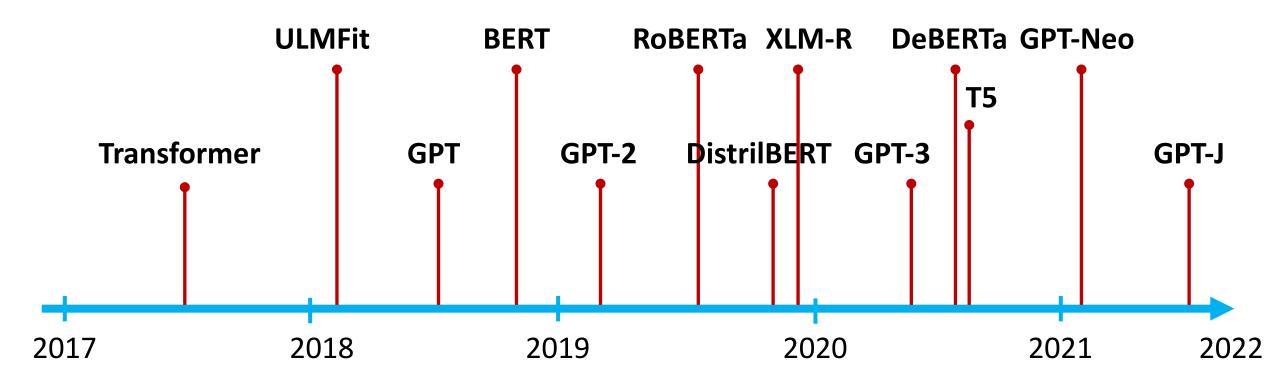

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

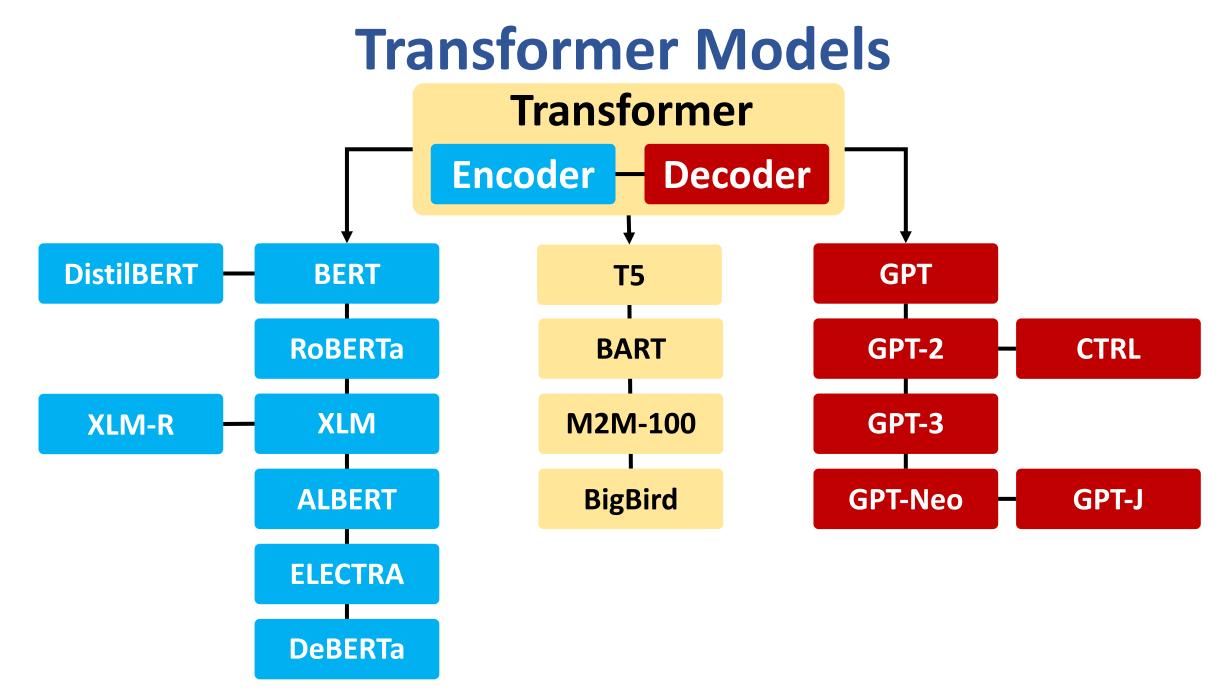
AI, ML, DL



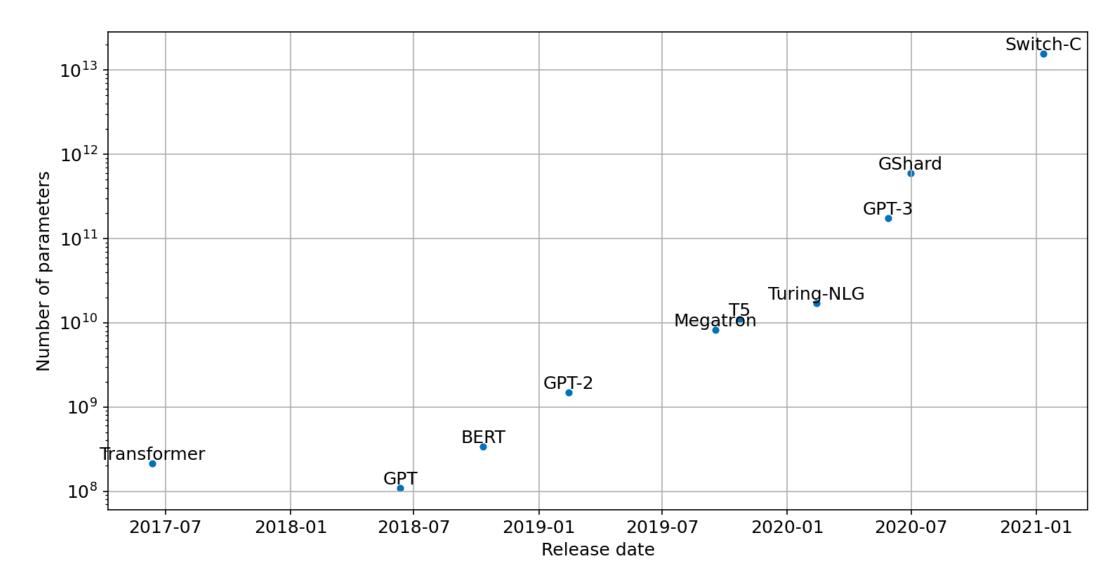
Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning.html

Transfer Learning

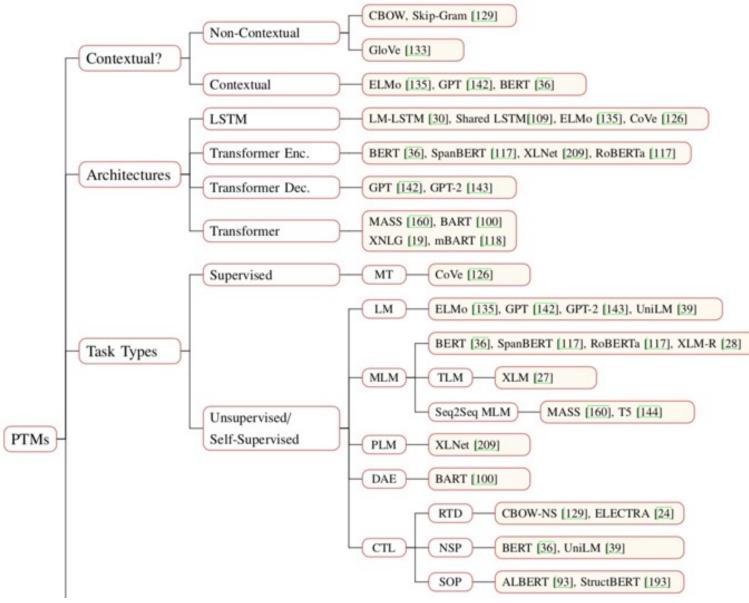

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) Overall pre-training and fine-tuning procedures for BERT



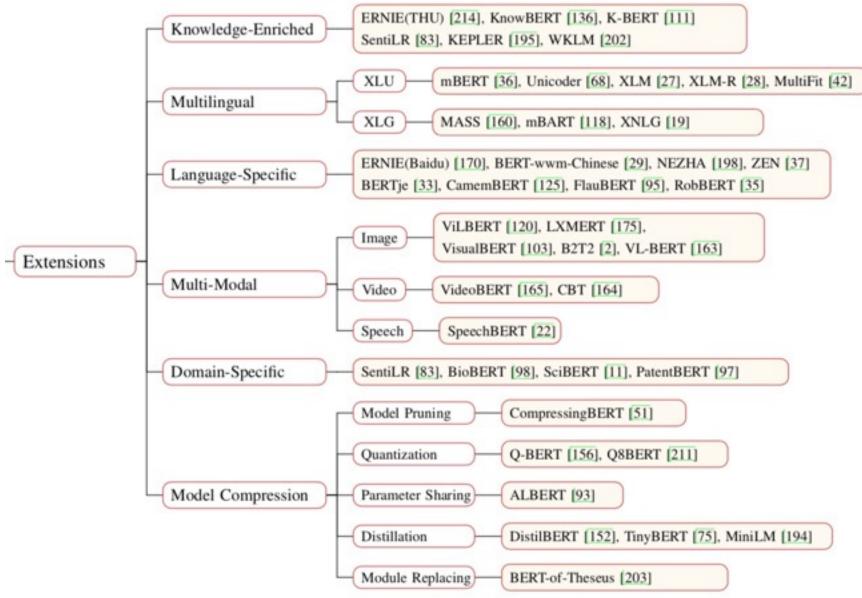
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).


"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

The Transformers Timeline

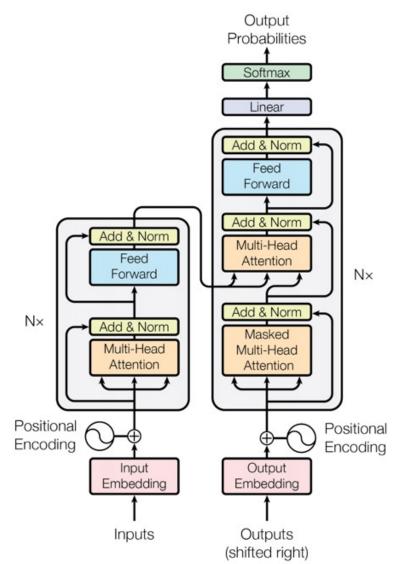


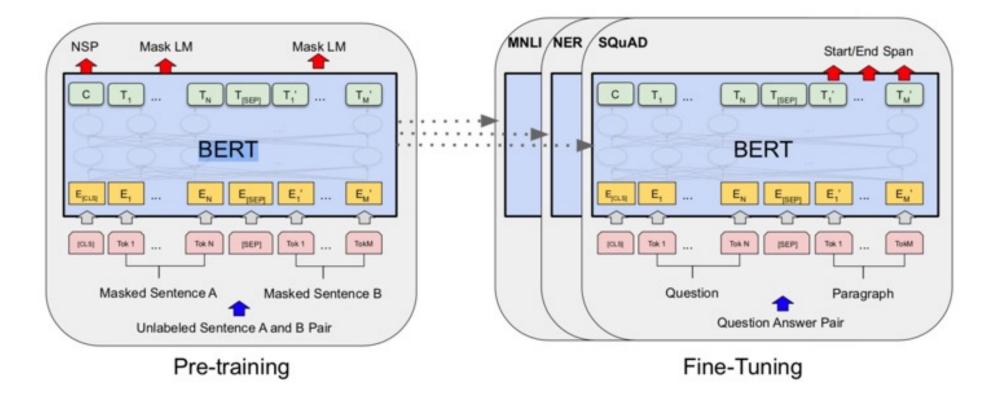
Scaling Transformers



Pre-trained Models (PTM)

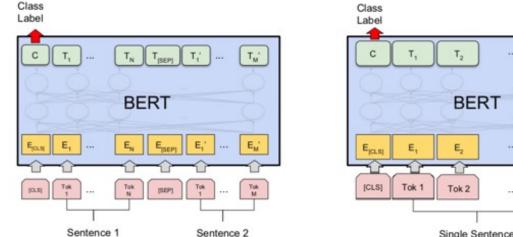
Source: Qiu, Xipeng, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. "Pre-trained Models for Natural Language Processing: A Survey." arXiv preprint arXiv:2003.08271 (2020).

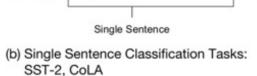

Pre-trained Models (PTM)


Source: Qiu, Xipeng, Tianxiang Sun, Yige Xu, Yunfan Shao, Ning Dai, and Xuanjing Huang. "Pre-trained Models for Natural Language Processing: A Survey." arXiv preprint arXiv:2003.08271 (2020).

Transformer (Attention is All You Need)

(Vaswani et al., 2017)


Source: Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." In *Advances in neural information processing systems*, pp. 5998-6008. 2017. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) Overall pre-training and fine-tuning procedures for BERT

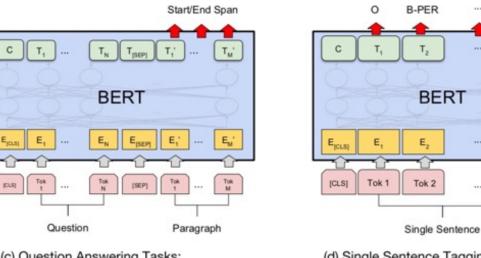

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on Different Tasks

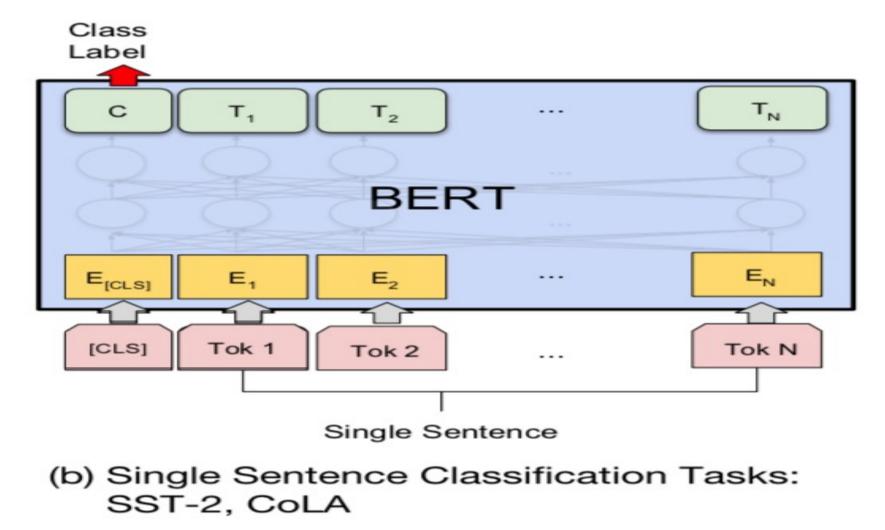
(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

T_N

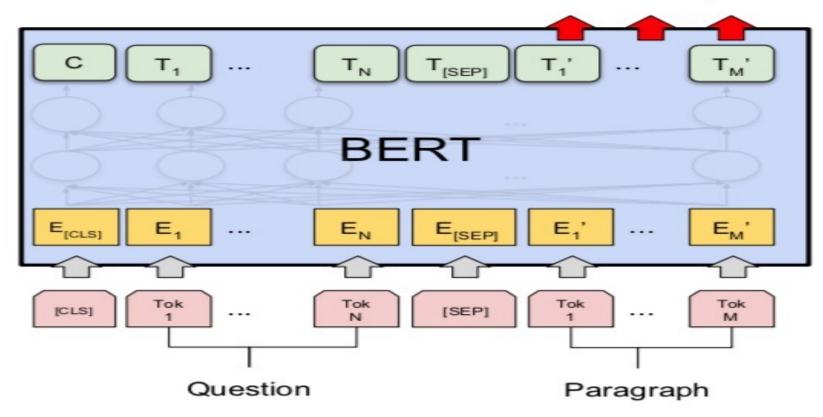

EN

Tok N

0

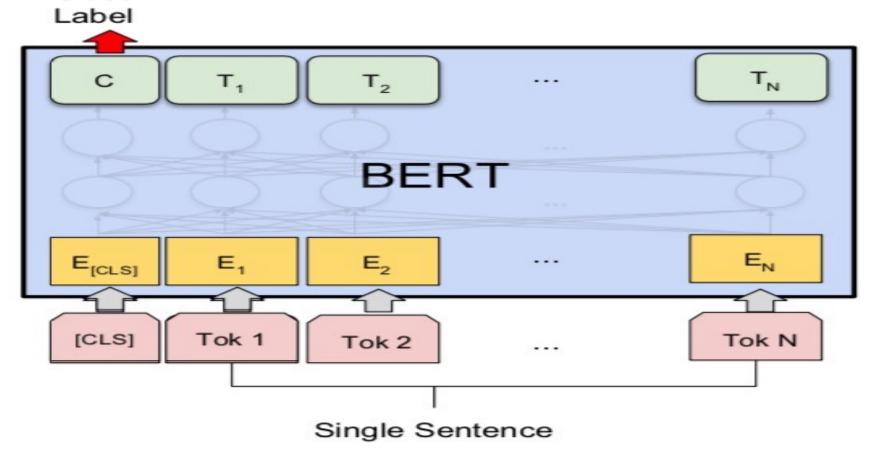

E_N

Tok N

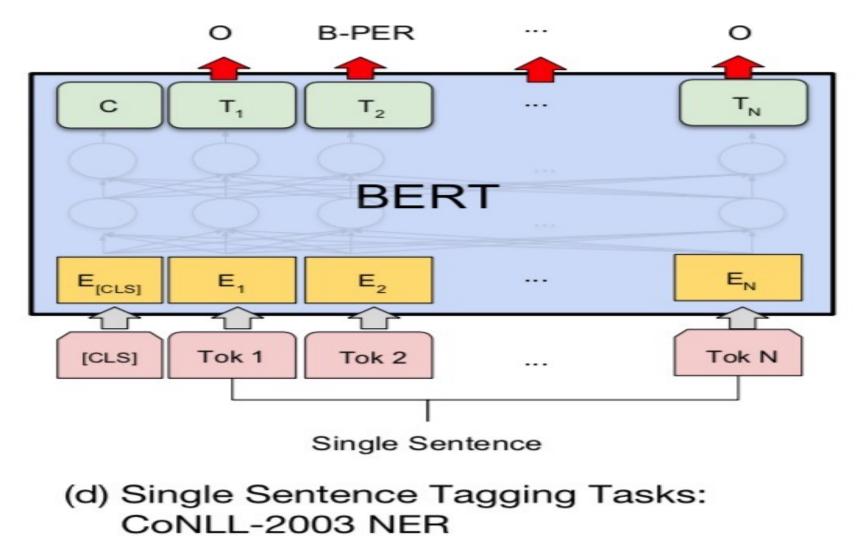

(c) Question Answering Tasks: SQuAD v1.1 (d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Sentiment Analysis: Single Sentence Classification

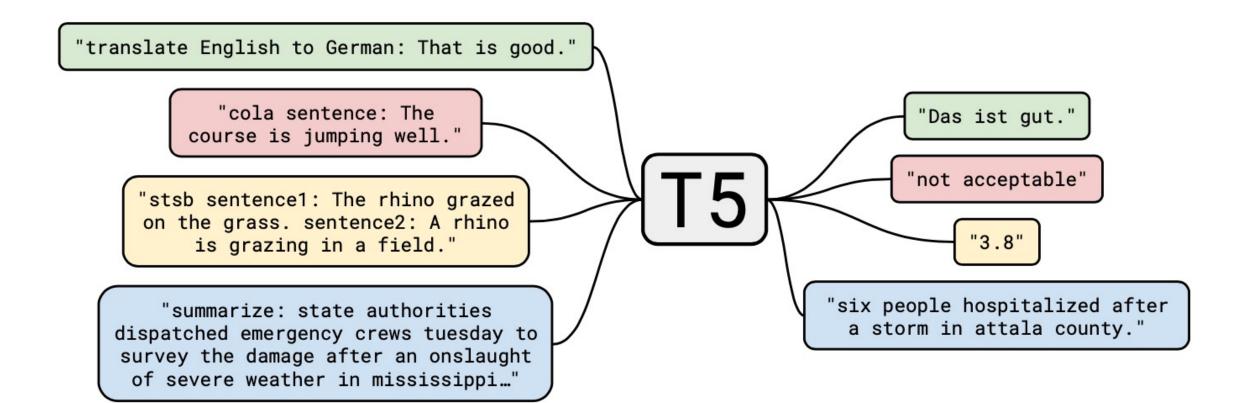
Fine-tuning BERT on Question Answering (QA)


Start/End Span

(c) Question Answering Tasks: SQuAD v1.1


Fine-tuning BERT on Dialogue Intent Detection (ID; Classification)

Class


(b) Single Sentence Classification Tasks: SST-2, CoLA

Fine-tuning BERT on Dialogue Slot Filling (SF)

T5

Text-to-Text Transfer Transformer

Hugging Face

😣 Hugging Face

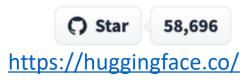
Q Search models, datas

Models = Datasets

ets 🛛 🖹 Spaces

Solutions

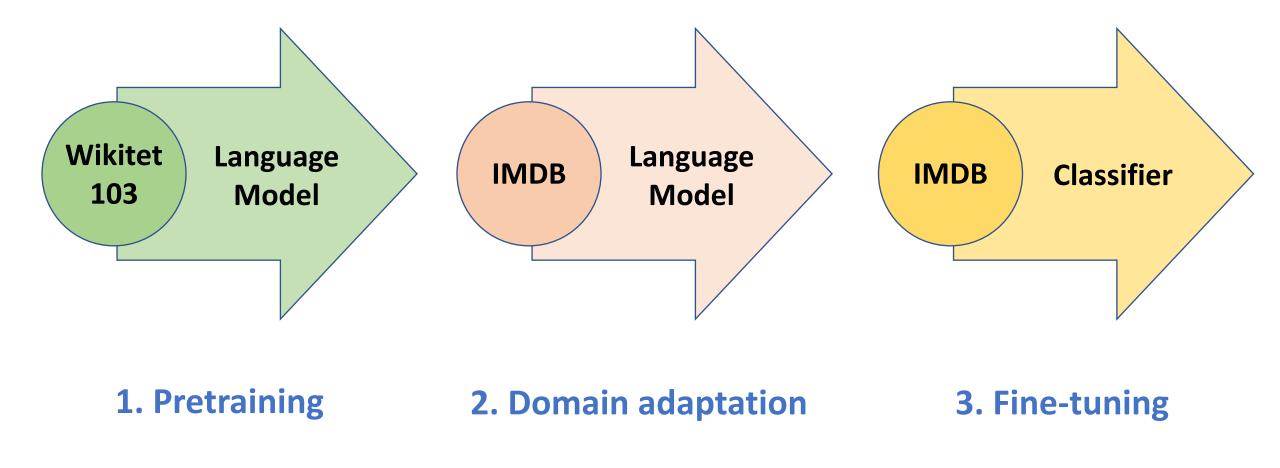
Docs


Pricing ~≡

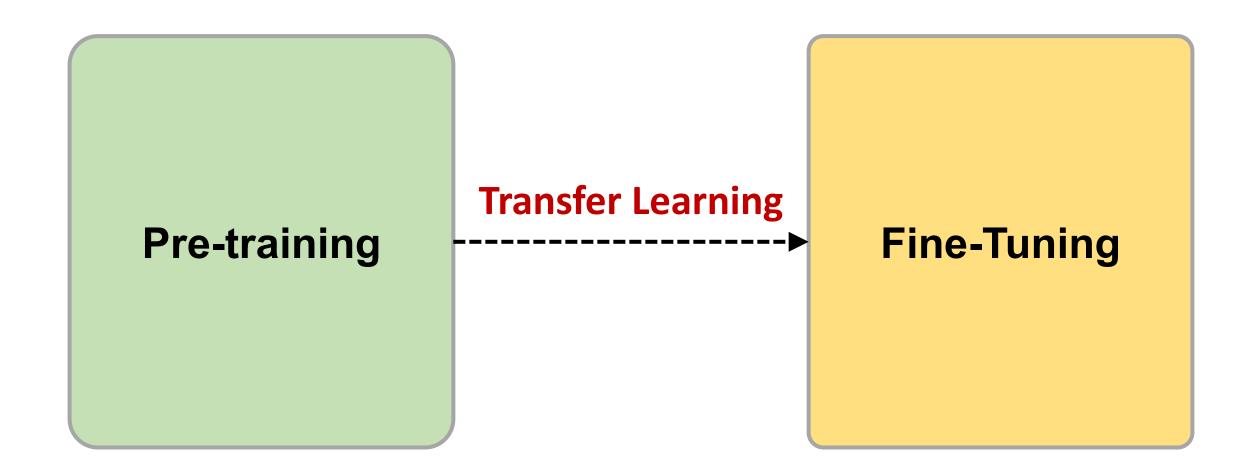
Log In Sign Up

The AI community building the future.

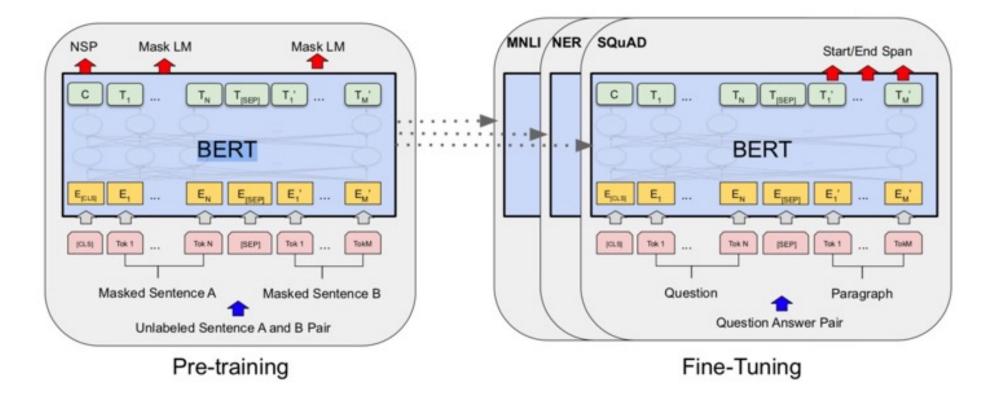
Build, train and deploy state of the art models powered by the reference open source in machine learning.



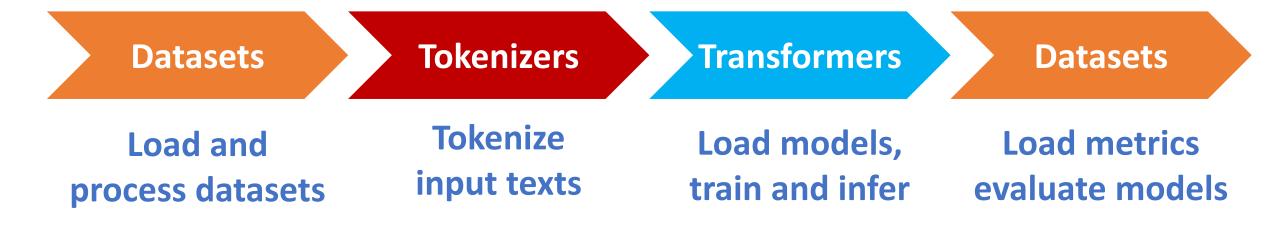
Hugging Face Tasks Natural Language Processing

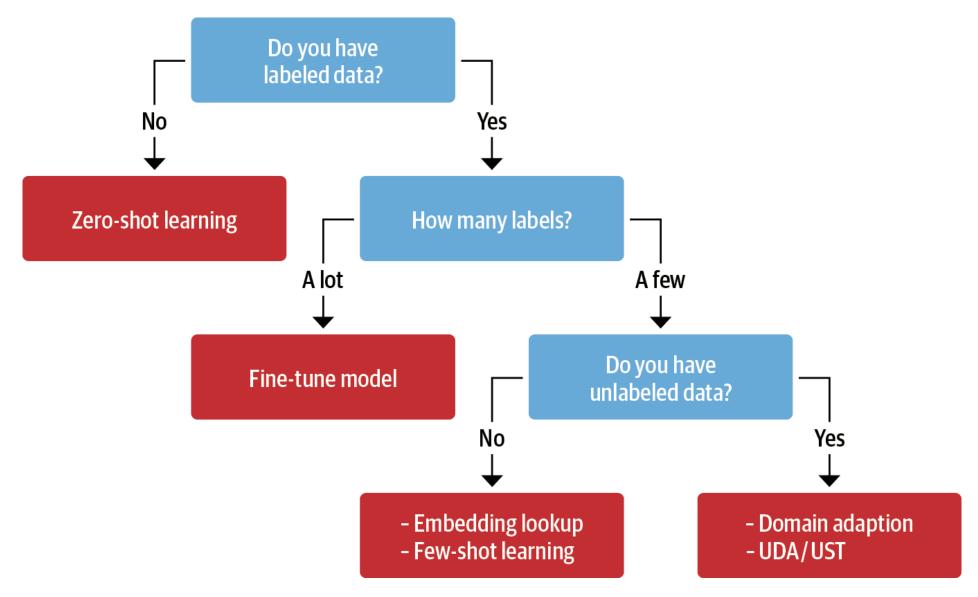

Text	Token	Question	ズ _A
Classification	Classification	Answering	Translation
3345 models	1492 models	1140 models	1467 models
ē	Ţ	¢	
Summarization	Text Generation	Fill-Mask	Sentence
323 models	3959 models	2453 models	Similarity

https://huggingface.co/tasks


ULMFiT: 3 Steps Transfer Learning in NLP

Transfer Learning


BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) Overall pre-training and fine-tuning procedures for BERT


Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

A typical pipeline for training transformer models with the Datasets, Tokenizers, and Transformers libraries

Transfer Learning, Fine-tuning, Few-shot learning

Few-Shot Learning (FSL) Typical Scenarios

- Acting as a test bed for learning like human
- Learning for rare cases
- Reducing data gathering effort and computational cost

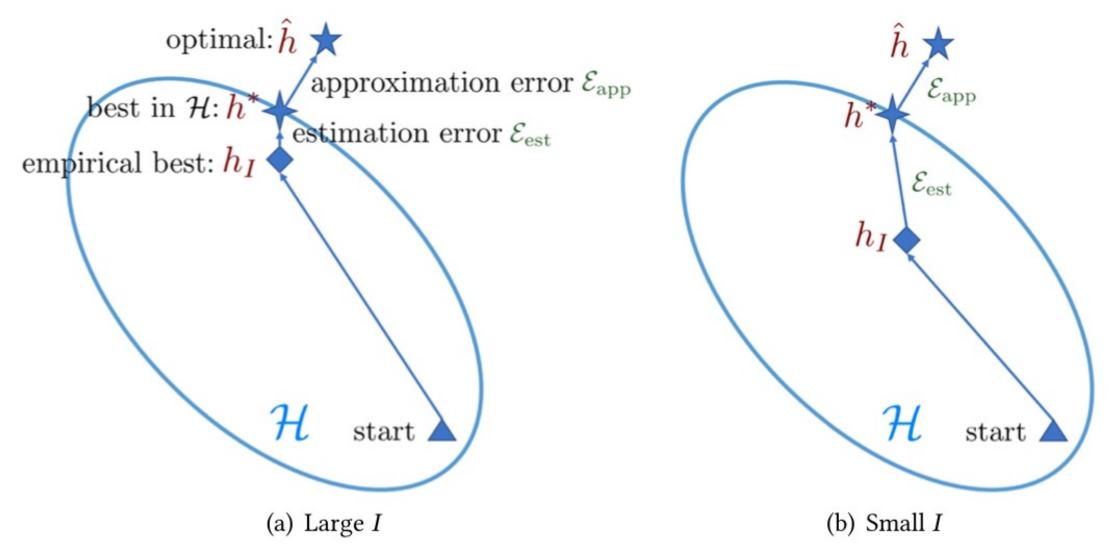
Few-Shot Learning (FSL)

- Few-Shot Learning (FSL) is a sub-area in machine learning.
- Machine Learning Definition
 - A computer program is said to learn from experience E with respect to some classes of task T and performance measure P if its performance can improve with E on T measured by P.
 - Example: Image classification task (T), a machine learning program can improve its classification accuracy (P) through E obtained by training on a large number of labeled images (e.g., the ImageNet data set).

Machine Learning

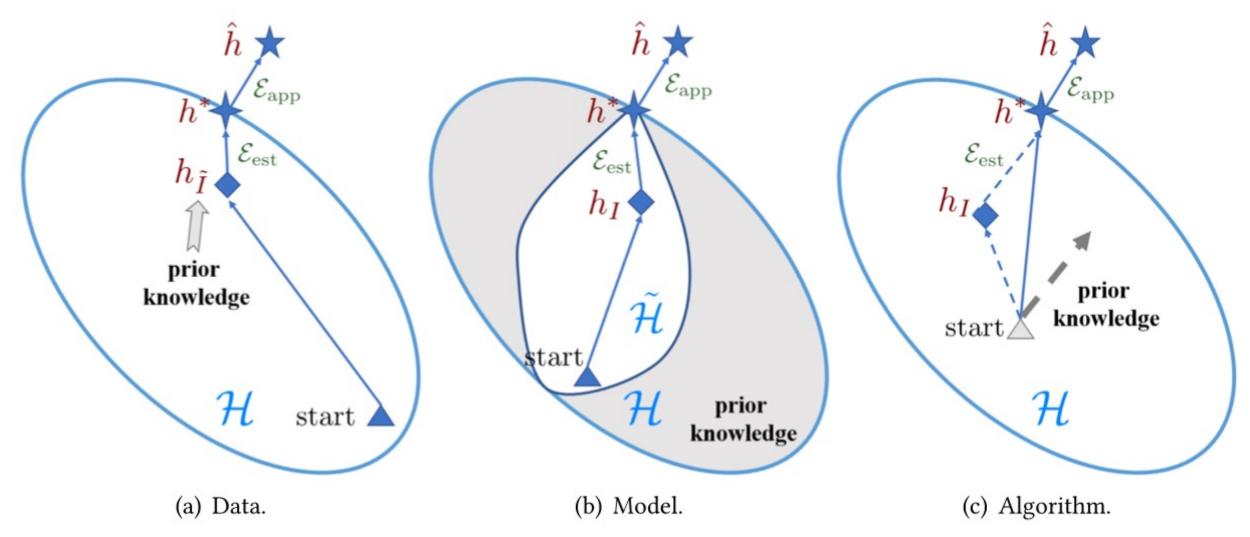
task T	experience E	performance P
image classification [73]	large-scale labeled images for each class	classification
	large-scale labeled illages for each class	accuracy
	a database containing around 30 million	
the ancient game of Go [120]	recorded moves of human experts and	winning rate
	self-play records	00000

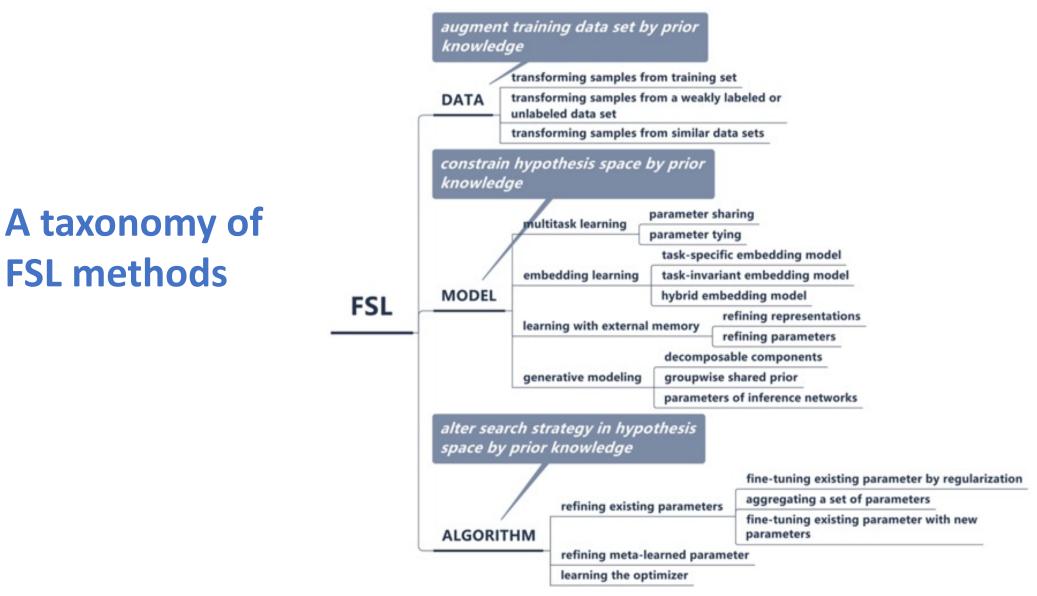
Few-Shot Learning (FSL)

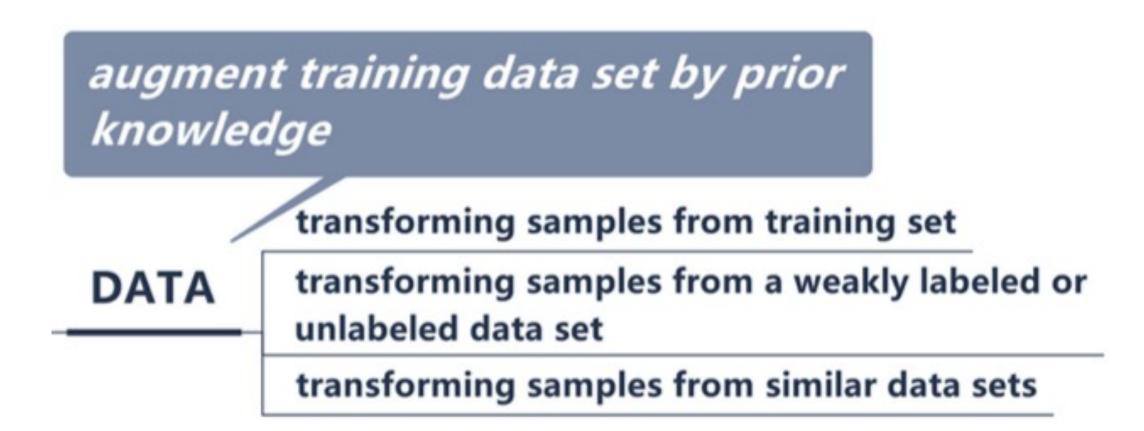

- Few-shot Learning (FSL) is a type of machine learning problems (specified by E, T, and P), where E contains only a limited number of examples with supervised information for the target T.
 - Existing FSL problems are mainly supervised learning problems.
 - Few-shot classification learns classifiers given only a few labeled examples of each class.
 - image classification
 - sentiment classification from short text
 - object recognition

- Few-shot classification learns a classifier *h*, which predicts label *y_i* for each input *x_i*.
- Usually, one considers the *N-way-K-shot* classification, in which *D_{train}* contains *I* = *KN* examples from *N* classes each with *K* examples

- Few-Shot Learning (FSL)
 - *K* = 10 ~ 100 examples
- One-Shot Learning (1SL)
 - K = 1 example
- Zero-Shot Learning (OSL)(ZSL)
 - K = 0


task T	exper	performance P	
lask I	supervised information prior knowledge		
character generation [76]	a few examples of new	pre-learned knowledge of	pass rate of visual
character generation [70]	character parts and relations		Turing test
drug toxicity discovery [4]	new molecule's limited	similar molecules' assays	classification
drug toxicity discovery [4]	assay	similar molecules assays	accuracy
image classification [70]	a few labeled images for	raw images of other classes,	classification
mage classification [70]	each class of the target T	or pre-trained models	accuracy


Comparison of learning with sufficient and few training samples


40

Different perspectives on how FSL methods solve the few-shot problem

42

constrain hypothesis space by prior knowledge

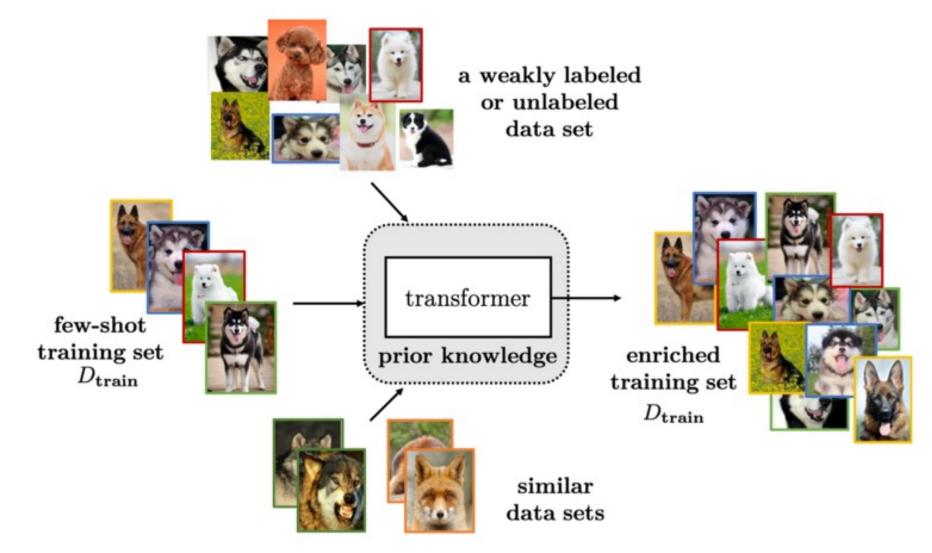
	multitack loarning	parameter	sharing		
Į.	multitask learning		parameter tying		
		task-spee	cific embedding model		
	embedding learning	task-inva	riant embedding model		
MODEL		hybrid er	nbedding model		
	looming with outomal		refining representations		
-	learning with external	memory	refining parameters		
		decomp	osable components		
	generative modeling	groupwi	se shared prior		
		paramet	ers of inference networks		

alter search strategy in hypothesis space by prior knowledge

fine-tuning existing parameter by regularization

refining existing parameters

ALGORITHM


aggregating a set of parameters

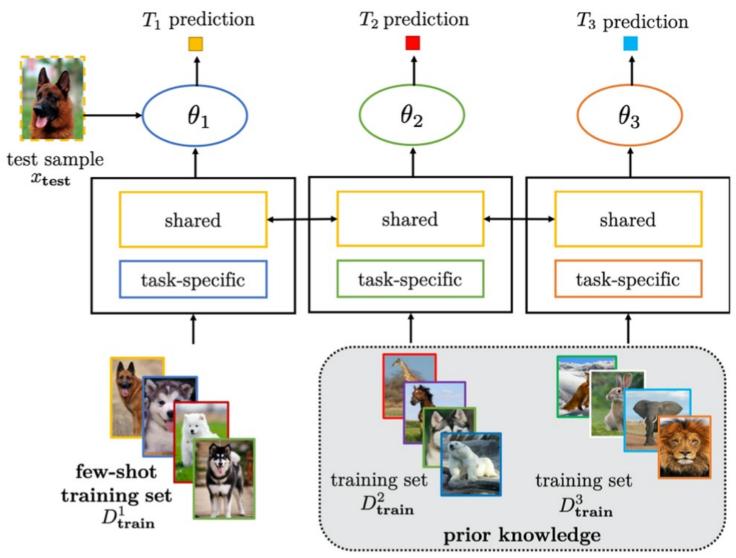
fine-tuning existing parameter with new parameters

refining meta-learned parameter

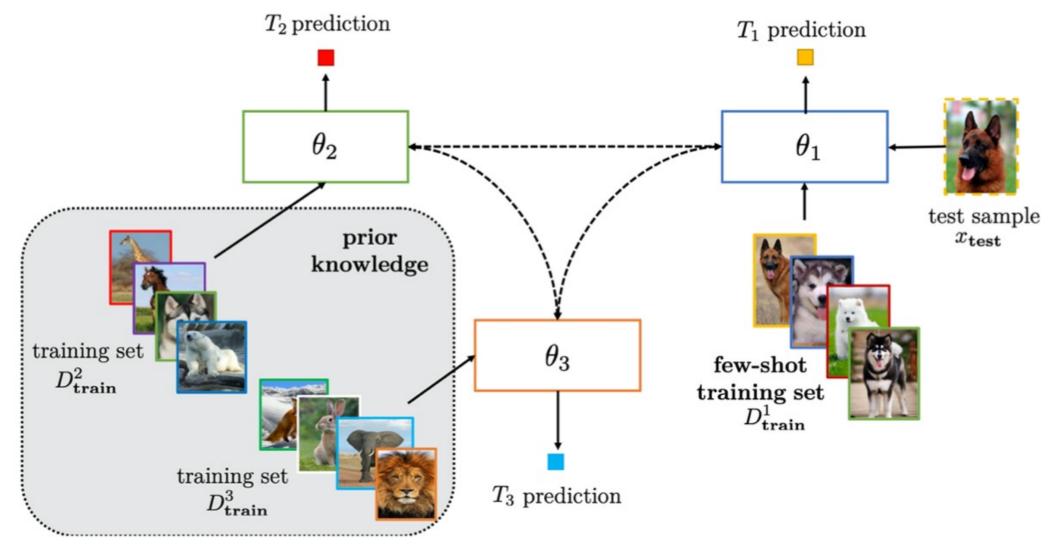
learning the optimizer

Few-Shot Learning (FSL) Solving the FSL problem by data augmentation

Characteristics for FSL Methods Focusing on the Data Perspective

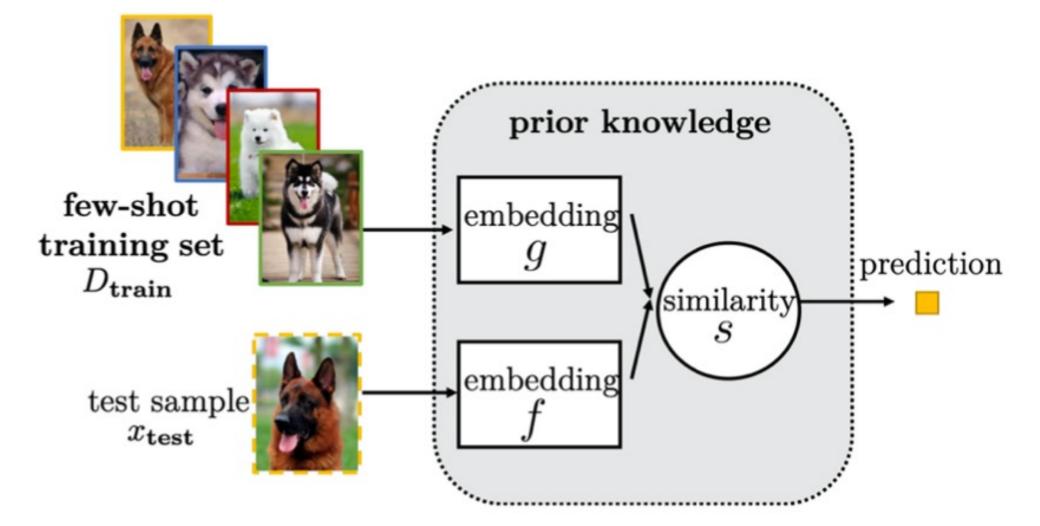

category	input (x, y)	transformer t	output (\tilde{x}, \tilde{y})
transforming samples from	original (x_i, y_i)	learned transformation	$(t(x_i), y_i)$
$D_{ ext{train}}$		function on x_i	
transforming samples from a weakly labeled or unlabeled data set	weakly labeled or unlabeled $(\bar{x}, -)$	a predictor trained from $D_{ m train}$	$(\bar{x}, t(\bar{x}))$
transforming samples from similar data sets	samples $\{(\hat{x}_j, \hat{y}_j)\}$ from similar data sets	an aggregator to combine $\{(\hat{x}_j, \hat{y}_j)\}$	$(t(\{\hat{x}_j\}), t(\{\hat{y}_j\}))$

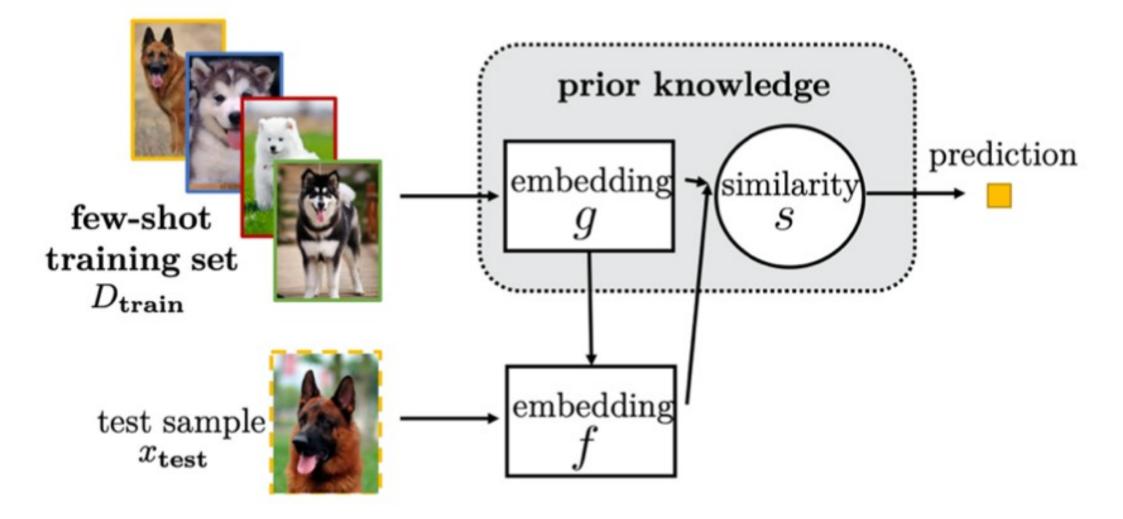
The transformer $t(\cdot)$ takes input (x, y) and returns synthesized sample (\tilde{x}, \tilde{y}) to augment the few-shot D_{train} .


Characteristics for FSL Methods Focusing on the Model Perspective

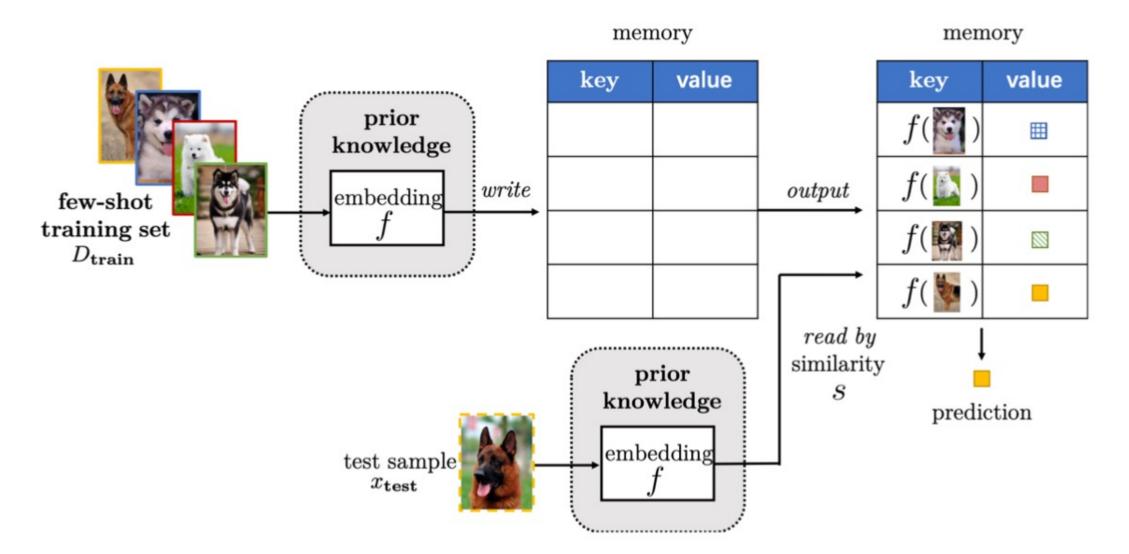
strategy	prior knowledge	how to constrain ${\cal H}$
multitask learning	other T 's with their data sets D 's	share/tie parameter
embedding learning	embedding learned from/together with other <i>T</i> 's	project samples to a smaller embedding space in which similar and dissimilar samples can be easily discriminated
learning with external memory	embedding learned from other <i>T</i> 's to interact with memory	refine samples using key-value pairs stored in memory
generative modeling	prior model learned from other T 's	restrict the form of distribution

Solving the FSL problem by multitask learning with parameter sharing


Solving the FSL problem by multitask learning with parameter tying

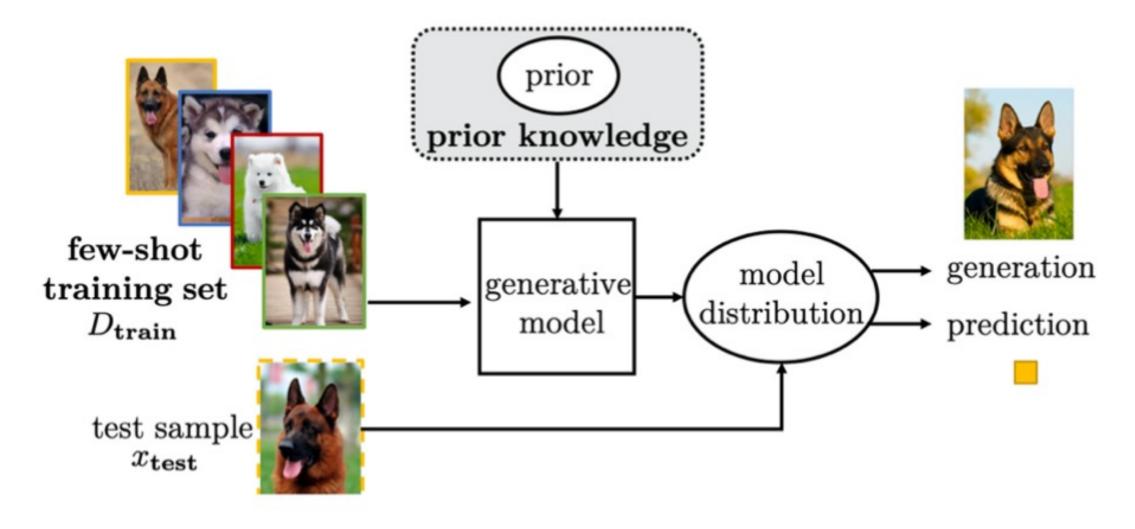

Characteristics of Embedding Learning Methods

category	method	embedding function	embedding function	similarity measure s	
category		f for x_{test}	g for $D_{ m train}$		
task-specific	mAP-DLM/SSVM[130]	CNN	the same as f	cosine similarity	
	class relevance pseudo-metric [36]	kernel	the same as \boldsymbol{f}	squared ℓ_2 distance	
	convolutional siamese net [70]	CNN	the same as f	weighted ℓ_1 distance	
	Micro-Set[127]	logistic projection	the same as f	ℓ_2 distance	
	Matching Nets [138]	CNN, LSTM	CNN, biLSTM	cosine similarity	
	resLSTM [4]	GNN, LSTM	GNN, LSTM	cosine similarity	
	Active MN [8]	CNN	biLSTM	cosine similarity	
	SSMN [24]	CNN	another CNN	learned distance	
task-invariant	ProtoNet [121]	CNN	the same as f	squared ℓ_2 distance	
	semi-supervised ProtoNet[108]	CNN	the same as f	squared ℓ_2 distance	
	PMN [141]	CNN, LSTM	CNN, biLSTM	cosine similarity	
	ARC [119]	LSTM, biLSTM	the same as f	-	
	Relation Net [126]	CNN	the same as f	-	
	GNN [115]	CNN, GNN	the same as f	learned distance	
	TPN [84]	CNN	the same as f	Gaussian similarity	
	SNAIL [91]	CNN	the same as f	-	
	Learnet [14]	adaptive CNN	CNN	weighted ℓ_1 distance	
hybrid	DCCN [162]	adaptive CNN	CNN	-	
nybrid	R2-D2 [13]	adaptive CNN	CNN	-	
	TADAM [100]	adaptive CNN	the same as f	squared ℓ_2 distance	

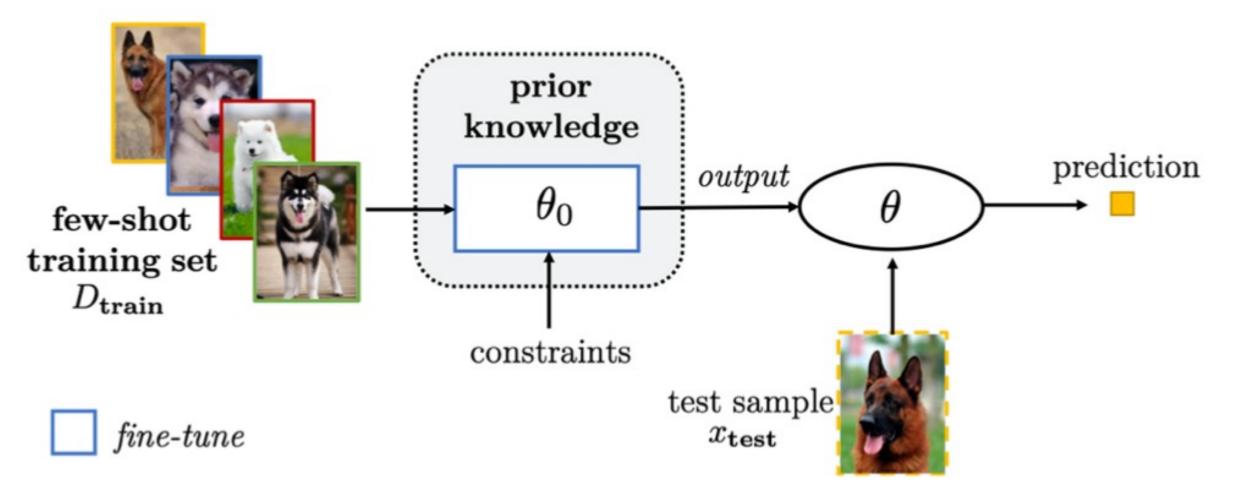

Few-Shot Learning (FSL) Solving the FSL problem by task-invariant embedding model

Few-Shot Learning (FSL) Solving the FSL problem by hybrid embedding model

Solving the FSL problem by learning with external memory



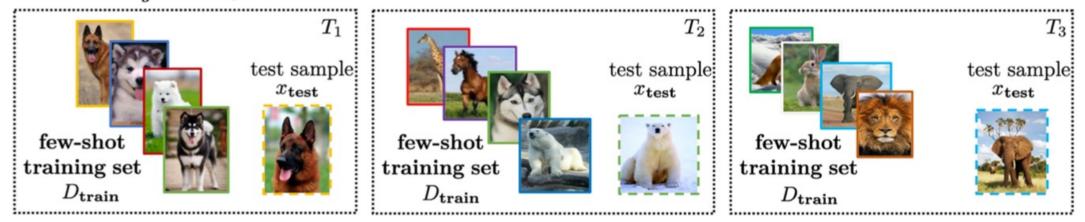
Few-Shot Learning (FSL) Characteristics of FSL Methods Based on Learning with External Memory


category	method		memory M	similarity s
category	methou	key M _{key}	value M_{value}	similarity 5
	MANN [114]	$f(x_i, y_{i-1})$	$f(x_i, y_{i-1})$	cosine similarity
	APL [104]	$f(x_i)$	y_i	squared ℓ_2 distance
refining	abstraction memory [149]	$f(x_i)$	word embedding of y_i	dot product
representations	CMN [164]	$f(x_i)$	y_i , age	dot product
representations	life-long memory [65]	$f(x_i)$	y_i , age	cosine similarity
	Mem2Vec [125]	$f(x_i)$	word embedding of y_i , age	dot product
refining parameters	MetaNet [96]	$f(x_i)$	fast weight	cosine similarity
	CSNs [97]	$f(x_i)$	fast weight	cosine similarity
	MN-Net [22]	$f(x_i)$	y_i	dot product

Here, f is an embedding function usually pre-trained by CNN or LSTM.

Few-Shot Learning (FSL) Solving the FSL problem by generative modeling

Few-Shot Learning (FSL) Solving the FSL problem by fine-tuning existing parameter θ_{θ} by regularization

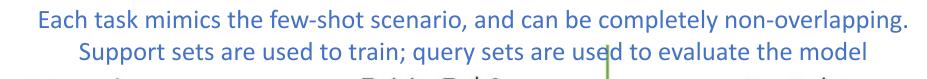


Few-Shot Learning (FSL) Characteristics for FSL Methods Focusing on the Algorithm Perspective

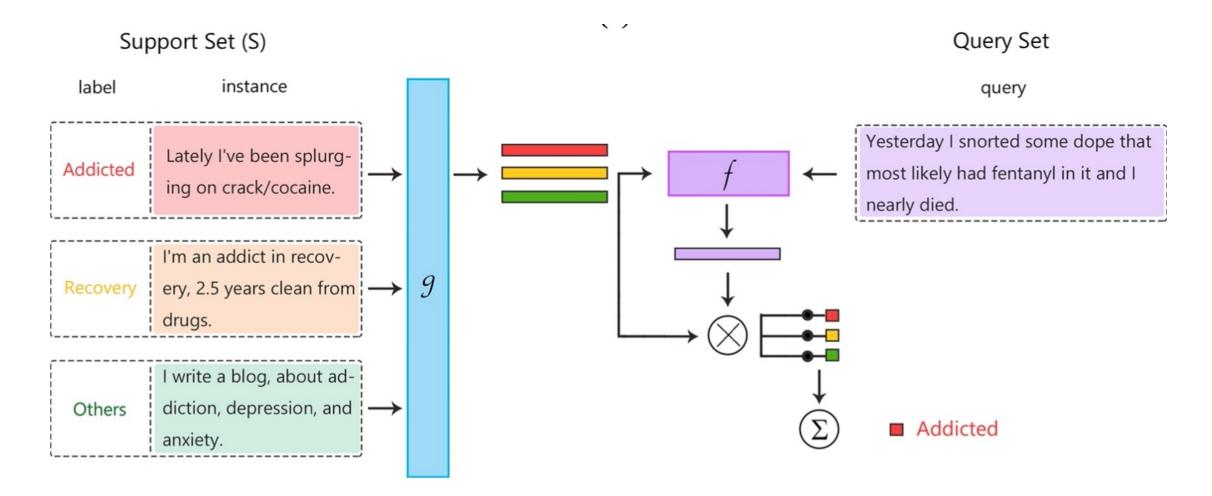
strategy	prior knowledge	how to search $ heta$ of the h^* in \mathcal{H}	
refining existing parameters	learned θ_0	refine θ_0 by D_{train}	
refining meta-learned parameters	meta-learner	refine θ_0 by D_{train}	
learning the optimizer	meta-learner	use search steps provided by the meta-learner	

Few-Shot Learning (FSL) Solving the FSL problem by meta-learning

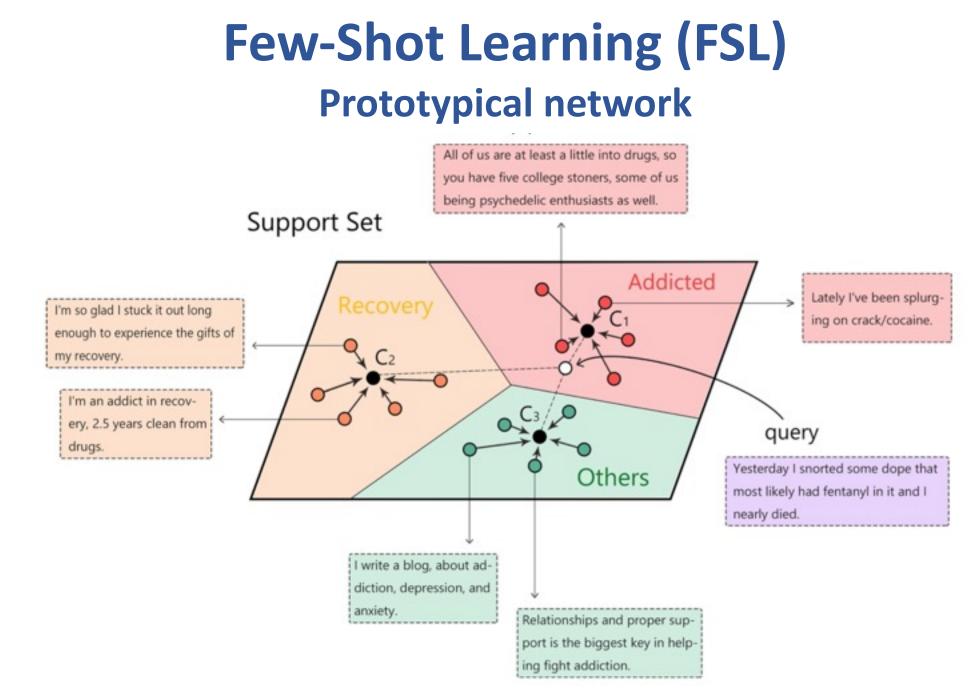
meta-training tasks T_s 's



meta-testing tasks T_t 's


. . .

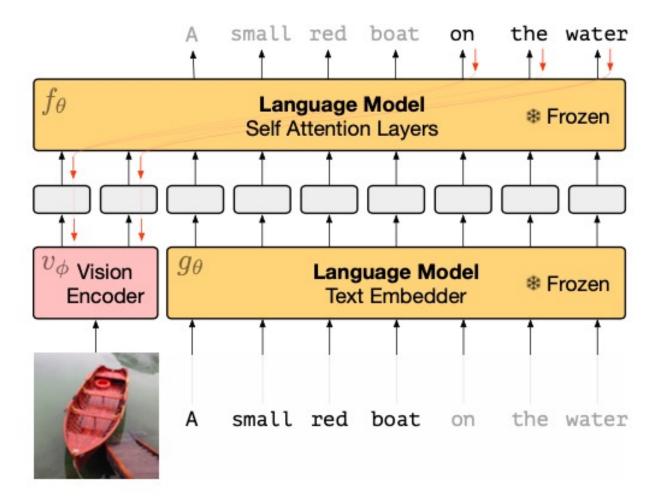
Few-Shot Learning (FSL) Meta-learning



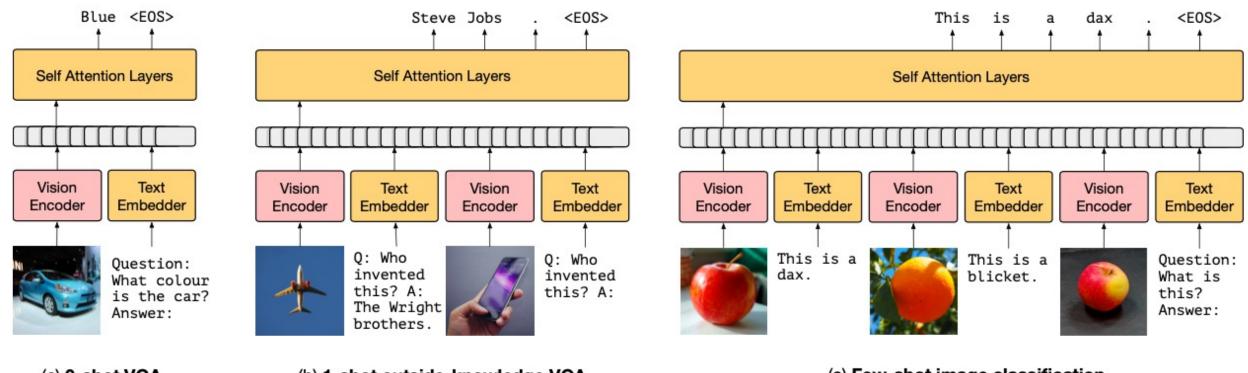
Few-Shot Learning (FSL) Matching networks

61

Few-Shot Learning (FSL) for medical text


Study	Year	Data source	Research aim	Size of training set	Number of entities / classes	Entity type of training domain	Entity type of test domain
Alicia Lara-Clares and Ana Garcia-Serrano ⁴⁴	2019	MEDDOCAN shared task dataset ⁴⁵	NER	500 clinical cases, with no reconstruction	29	Clinical	Clinical
Ferré et al. ⁴⁶	2019	BB-norm dataset from the Bacteria Biotope 2019 Task ⁴⁷	Entity Normalization	Original dataset with no reconstruction and zero-shot	Not mentioned *	Biological	Biological
Hou et al. ⁴⁸	2020	Snips dataset 49	Slot Tagging (NER)	1-shot and 5-shot	7	Six of Weather, Music, PlayList, Book (including biomedical), Search Screen (including biomedical), Restaurant and Creative Work.	The remaining one
Sharaf et al. ⁵⁰	2020	ten different datasets collected from the Open Parallel Corpus (OPUS) ⁵¹	Neural Machine Translation (NMT)	Sizes ranging from 4k to 64k training words (200 to 3200 sentences), but reconstructed	N/A [†]	Bible, European Central Bank, KDE, Quran, WMT news test sets, Books, European Medicines Agency (EMEA), Global Voices, Medical (ufal-Med), TED talks	Bible, European Central Bank, KDE, Quran, WMT news test sets, Books, European Medicines Agency (EMEA), Global Voices, Medical (ufal-Med), TED tall
Lu et al. ⁵²	2020	MIMIC II ²² and MIMIC III ²³ , and EU legislation dataset ⁵³	Multi-label Text Classification	5-shot for MIMIC II and III, 50-shot for EU legislation	MIMIC II: 9 MIMIC III: 15 EU legis- lation: 5	Medical	Medical

Few-Shot Learning (FSL) for medical text


Study	Year	Data source	Research aim	Size of training set	Number of entities / classes	Entity type of training domain	Entity type of test domain
Lu et al. ⁸⁰	2021	Constructed and shared a novel dataset ^{††} based on Weibo for the research of few-shot rumor detection, and use PHEME dataset ⁸¹	Rumor Detection (NER)	For the Weibo dataset: 2-way 3-event 5-shot 9-query; for PHEME dataset: 2-way 2-event 5-shot 9-query	Weibo: 14 PHEME: 5	Source posts and comments from Sina Weibo related to COVID-19	Source posts and comments from Sina Weibo related to COVID-19
Ma et al. 82	2021	CCLE, CERES- correctedCRISPR gene disruption scores, GDSC1000 dataset, PDTC dataset and PDX dataset ^{‡‡}	Drug- response Predictions	1-shot, 2-shot, 5-shot and 10-shot	N/A [†]	Biomedical	Biomedical
Kormilitzin et al. ⁸³	2021	MIMIC-III ²³ and UK-CRIS datasets ^{30, 31}	NER	25%, 50%, 75% and 100% of the training set, with no reconstruction	7	Electronic health record	Electronic health record
Guo et al. ³⁴	2021	Abstracts of biomedicalliteratures (from relation extraction task of BioNLP Shared Task 2011 and 2019 ⁴⁷) and structured biological datasets	NER	100%, 75%, 50%, 25%, 0% of training set, with no reconstruction	Not mentioned *	Biomedical entities	Biomedical entities
Lee et al. ⁸⁵	2021	COVID19-Scientific ⁸⁶ , COVID19-Social ⁸⁷ (fact- checked by journalists from a website called Politi-fact.com), FEVER ⁸⁸ (Fact Extraction and Verification, generated by altering sentences extracted from Wiki- pedia to promote research onfact- checking systems)	Fact-Checking (close to Text Classification)	2-shot, 10-shot and 50-shot	Not mentioned *	Facts about COVID-19	Facts about COVID-19

Curated samples with about five seeds required to get past well-known language model failure modes of either repeating text for the prompt or emitting text that does not pertain to the image. These samples demonstrate the ability to generate open-ended outputs that adapt to both images and text, and to make use of facts that it has learned during language-only pre-training.

Gradients through a frozen language model's self attention layers are used to train the vision encoder.

(a) **0-shot VQA**

(b) 1-shot outside-knowledge VQA

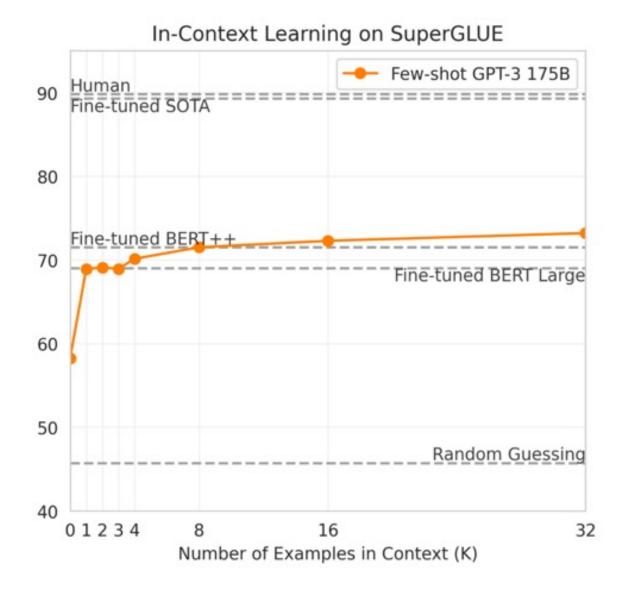
(c) Few-shot image classification

Inference-Time interface for *Frozen*. The figure demonstrates how we can support (a) visual question answering, (b) outside-knowledge question answering and (c) few-shot image classification via in-context learning.

(a) minilmageNet

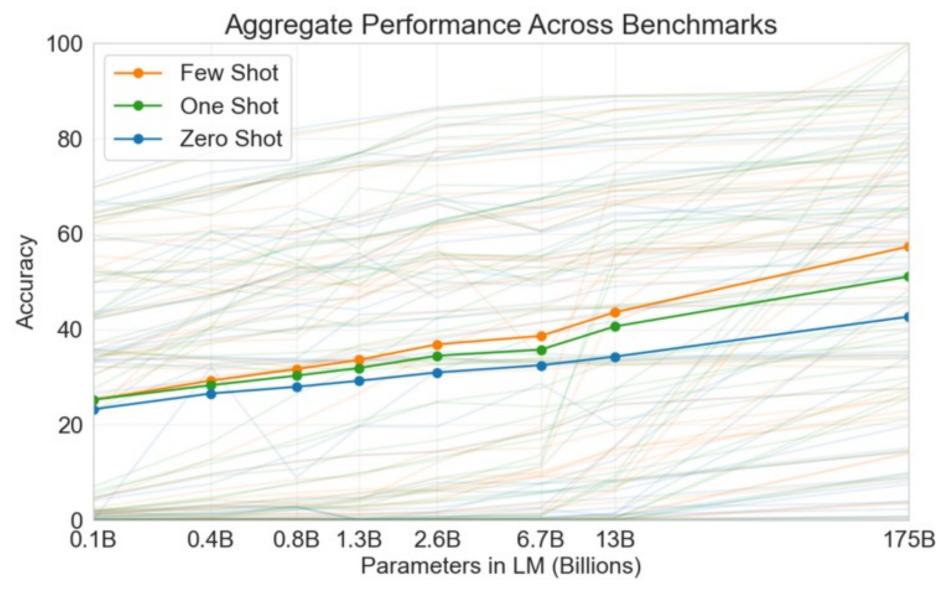
(b) Fast VQA

Examples of (a) the Open-Ended miniImageNet evaluation (b) the Fast VQA evaluation.


Language Models are Few-Shot Learners

Tom B. Brown*	Benjamin Mann*	Nick Ryder*	Melanie Subbiah*	This work was
Jared Kaplan [†]	Prafulla Dhariwal	Arvind Neelakantan	Pranav Shyam	funded by
				OpenAl.
Girish Sastry	Amanda Askell Sa	ndhini Agarwal	Ariel Herbert-Voss	All models were
Gretchen Kruege	r Tom Henighan	Rewon Child	Aditya Ramesh	trained on V100
Doniel M 7	linglan Joffma		mens Winter	GPU's on part of
Daniel M. 2	Ziegler Jeffre	y wu Cie	mens winter	a high-
Christopher Hesse	Mark Chen Eric	Sigler Mateusz L	itwin Scott Gray	bandwidth
Benjamin Chess Jack Clark Christopher Berner		cluster provided		
Denjanin C	Juen en		opner Derner	by Microsoft.
Sam McCandlish	Alec Radford	Ilya Sutskever	Dario Amodei	

Source: Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. (2020) "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901



Source: Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. (2020) "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901

Performance on SuperGLUE increases with model size. A value of K = 32means that our model was shown 32 examples per task, for 256 examples total divided across the 8 tasks in SuperGLUE.

Source: Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. (2020) "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901

Source: Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. (2020) "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901

Performance on cloze and completion tasks.

Setting	LAMBADA	LAMBADA	StoryCloze	HellaSwag
	(acc)	(ppl)	(acc)	(acc)
SOTA	68.0 ^a	8.63 ^b	91.8 ^c	85.6 ^d
GPT-3 Zero-Shot	76.2	3.00	83.2	78.9
GPT-3 One-Shot	72.5	3.35	84.7	78.1
GPT-3 Few-Shot	86.4	1.92	87.7	79.3

GPT-3 significantly improves SOTA on LAMBADA while achieving respectable performance on two difficult completion prediction datasets.

Results on three Open-Domain QA tasks

Setting	NaturalQS	WebQS	TriviaQA
RAG (Fine-tuned, Open-Domain) [LPP+20]	44.5	45.5	68.0
T5-11B+SSM (Fine-tuned, Closed-Book) [RRS20]	36.6	44.7	60.5
T5-11B (Fine-tuned, Closed-Book)	34.5	37.4	50.1
GPT-3 Zero-Shot	14.6	14.4	64.3
GPT-3 One-Shot	23.0	25.3	68.0
GPT-3 Few-Shot	29.9	41.5	71.2

GPT-3 is shown in the few-, one-, and zero-shot settings, as compared to prior SOTA results for closed book and open domain settings. TriviaQA few-shot result is evaluated on the wiki split test server.

GPT-3 results on a selection of QA / RC tasks.

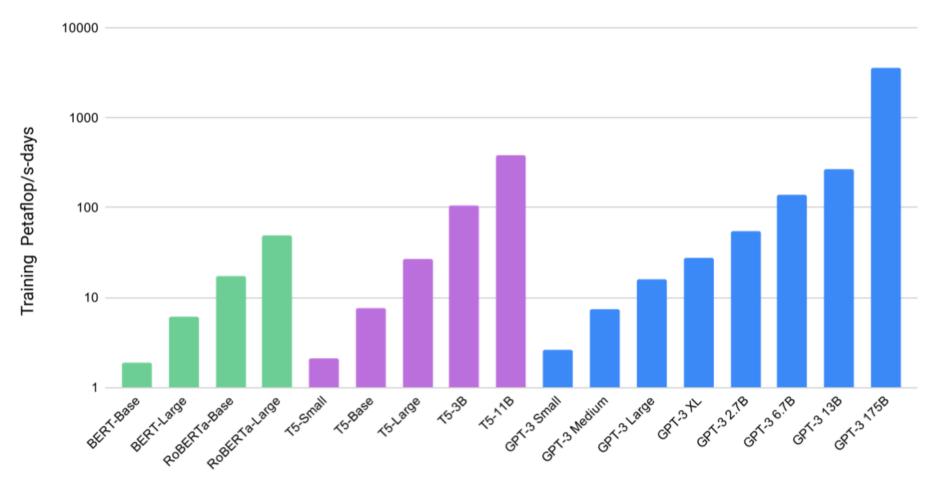
Setting	ARC (Easy)	ARC (Challenge)	CoQA	DROP
Fine-tuned SOTA	92.0 ^{<i>a</i>}	78.5 ^b	90.7 ^c	89.1 ^d
GPT-3 Zero-Shot	68.8	51.4	81.5	23.6
GPT-3 One-Shot	71.2	53.2	84.0	34.3
GPT-3 Few-Shot	70.1	51.5	85.0	36.5

CoQA and DROP are F1 while ARC reports accuracy. See the appendix for additional experiments. a[KKS+20] b[KKS+20] c[JZC+19] d [JN20]

Setting	En→Fr	Fr→En	En→De	De→En	En→Ro	Ro→En
SOTA (Supervised)	45.6 ^{<i>a</i>}	35.0 ^b	41.2 ^c	40.2^{d}	38.5 ^e	39.9 ^e
XLM [LC19]	33.4	33.3	26.4	34.3	33.3	31.8
MASS [STQ ⁺ 19]	<u>37.5</u>	34.9	28.3	35.2	<u>35.2</u>	33.1
mBART [LGG ⁺ 20]	-	-	<u>29.8</u>	34.0	35.0	30.5
GPT-3 Zero-Shot	25.2	21.2	24.6	27.2	14.1	19.9
GPT-3 One-Shot	28.3	33.7	26.2	30.4	20.6	38.6
GPT-3 Few-Shot	32.6	<u>39.2</u>	29.7	<u>40.6</u>	21.0	<u>39.5</u>

Few-shot GPT-3 outperforms previous unsupervised NMT work by 5 BLEU when translating into English reflecting its strength as an English LM.

Source: Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. (2020) "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901


GPT-3: Language Models are Few-Shot Learners Performance of GPT-3 on SuperGLUE

compared to fine-tuned baselines and SOTA

SuperGLU Average		E BoolQ Accuracy	CB Accuracy	CB y F1	COPA Accuracy	RTE Accuracy
Fine-tuned SOTA	89.0	91.0	96.9	93.9	94.8	92.5
Fine-tuned BERT-Large	69.0	77.4	83.6	75.7	70.6	71.7
GPT-3 Few-Shot	71.8	76.4	75.6	52.0	92.0	69.0
	WiC	WSC	MultiRC	MultiRC	ReCoRD	ReCoRD
	Accuracy	Accuracy	Accuracy	F1a	Accuracy	F1
Fine-tuned SOTA	76.1	93.8	62.3	88.2	92.5	93.3
Fine-tuned BERT-Large	69.6	64.6	24.1	70.0	71.3	72.0
GPT-3 Few-Shot	49.4	80.1	30.5	75.4	90.2	91.1

GPT-3 few-shot is given a total of 32 examples within the context of each task and performs no gradient updates.

Total Compute Used During Training

GPT-3 3B is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute during pre-training

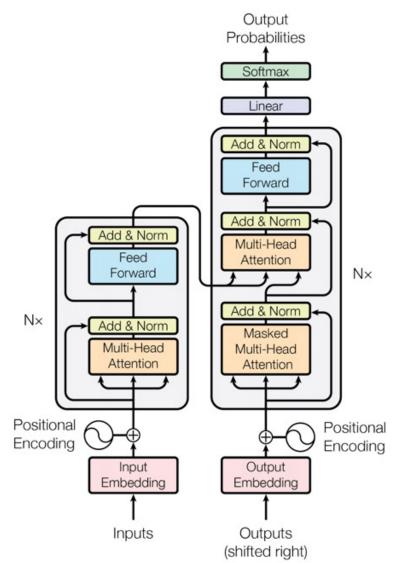
Human accuracy in identifying

whether short (~200 word) news articles are model generated

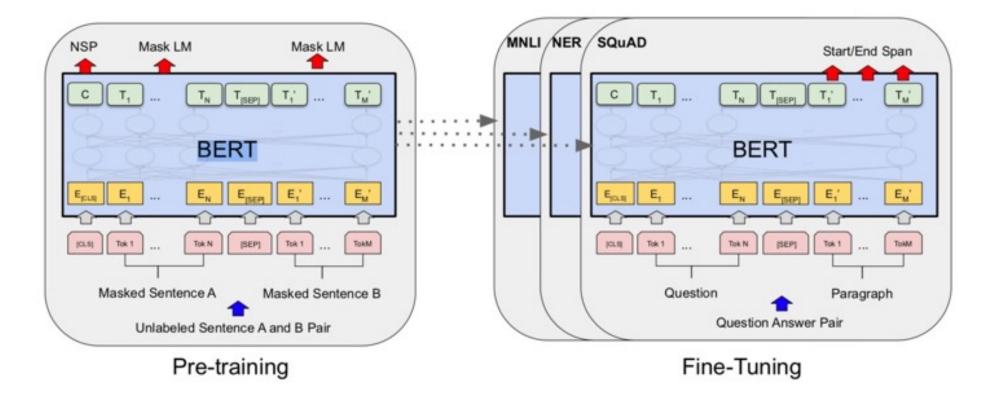
	Mean accuracy	95% Confidence Interval (low, hi)	t compared to control (p -value)	"I don't know" assignments
Control (deliberately bad model)	86%	83%-90%	-	3.6 %
GPT-3 Small	76%	72%-80%	3.9 (2 <i>e</i> -4)	4.9%
GPT-3 Medium	61%	58%-65%	10.3 (7e-21)	6.0%
GPT-3 Large	68%	64%-72%	7.3 (3 <i>e</i> -11)	8.7%
GPT-3 XL	62%	59%-65%	10.7 (1 <i>e</i> -19)	7.5%
GPT-3 2.7B	62%	58%-65%	10.4 (5 <i>e</i> -19)	7.1%
GPT-3 6.7B	60%	56%-63%	11.2 (3 <i>e</i> -21)	6.2%
GPT-3 13B	55%	52%-58%	15.3 (1e-32)	7.1%
GPT-3 175B	52%	49%-54%	16.9 (1 <i>e</i> -34)	7.8%

This table compares mean accuracy between five different models, and shows the results of a two-sample T-Test for the difference in mean accuracy between each model and the control model (an unconditional GPT-3 Small model with increased output randomness).

The GPT-3 generated news article that humans had the greatest difficulty distinguishing from a human written article (accuracy: 12%) Title: United Methodists Agree to Historic Split Subtitle: Those who oppose gay marriage will form their own denomination

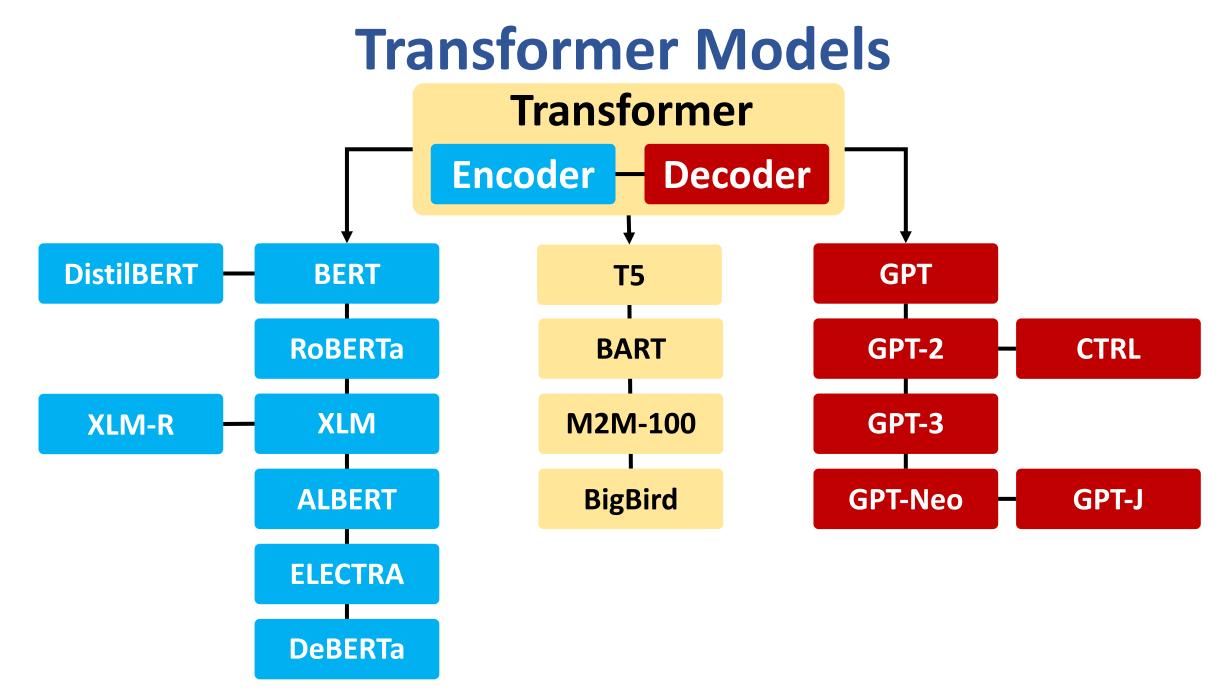

Article: After two days of intense debate, the United Methodist Church has agreed to a historic split - one that is expected to end in the creation of a new denomination, one that will be "theologically and socially conservative," according to The Washington Post. The majority of delegates attending the church's annual General Conference in May voted to strengthen a ban on the ordination of LGBTQ clergy and to write new rules that will "discipline" clergy who officiate at same-sex weddings. But those who opposed these measures have a new plan: They say they will form a separate denomination by 2020, calling their church the Christian Methodist denomination.

The Post notes that the denomination, which claims 12.5 million members, was in the early 20th century the "largest Protestant denomination in the U.S.," but that it has been shrinking in recent decades. The new split will be the second in the church's history. The first occurred in 1968, when roughly 10 percent of the denomination left to form the Evangelical United Brethren Church. The Post notes that the proposed split "comes at a critical time for the church, which has been losing members for years," which has been "pushed toward the brink of a schism over the role of LGBTQ people in the church." Gay marriage is not the only issue that has divided the church. In 2016, the denomination was split over ordination of transgender clergy, with the North Pacific regional conference voting to ban them from serving as clergy, and the South Pacific regional conference voting to allow them.

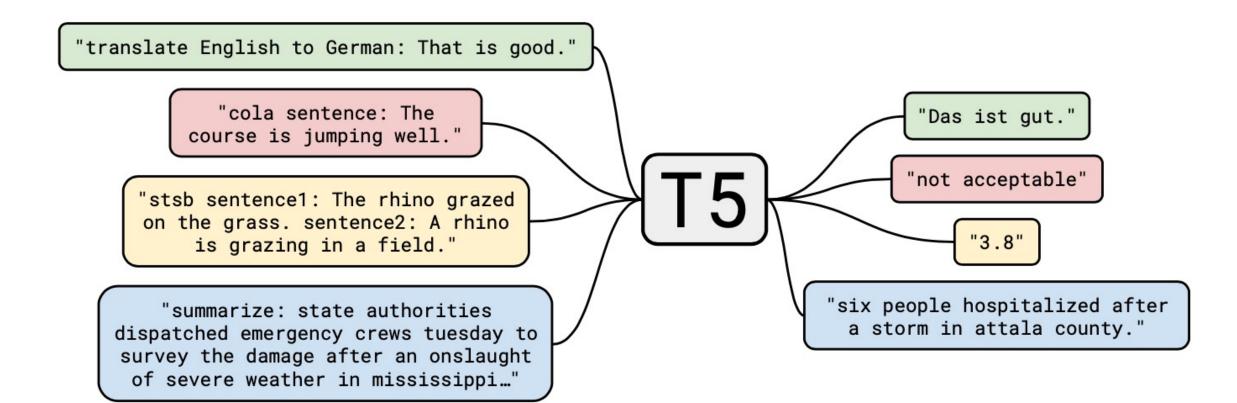

Source: Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. (2020) "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901

Transformer (Attention is All You Need)

(Vaswani et al., 2017)



Source: Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you need." In *Advances in neural information processing systems*, pp. 5998-6008. 2017. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding BERT (Bidirectional Encoder Representations from Transformers) Overall pre-training and fine-tuning procedures for BERT


Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018).

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

T5

Text-to-Text Transfer Transformer

Hugging Face Tasks Natural Language Processing

Text	Token	Question	ズ _A
Classification	Classification	Answering	Translation
3345 models	1492 models	1140 models	1467 models
ē	T	¢	
Summarization	Text Generation	Fill-Mask	Sentence
323 models	3959 models	2453 models	Similarity

https://huggingface.co/tasks

NLP with Transformers Github

♥ Why GitHub? ✓ Team Enterpris	se Explore \vee Marketplace Pricing \vee	Search	/ Sign	n in Sign up
Inip-with-transformers / notes <> Code ⊙ Issues îî Pull reque		Notification Insights	s 😵 Fork 170 🏠 Star	1.1k •
% main • % 1 branch • 0 tags Image: Second state % 0 tags <t< th=""><th></th><th>to file Code - ago (1) 71 commits 25 days ago</th><th>About Jupyter notebooks for the N Language Processing with T book</th><th></th></t<>		to file Code - ago (1) 71 commits 25 days ago	About Jupyter notebooks for the N Language Processing with T book	
 data images scripts .gitignore 	Move dataset to data directory Add README Update issue templates Initial commit	4 months ago last month 25 days ago 4 months ago	 ♥ transformersbook.com/ ♥ Readme ▲ Apache-2.0 License ☆ 1.1k stars ● 33 watching ♥ 170 forks 	O'REILLY' Natural Language Processing with Transformers Building Language Applications with Hugging Face
 01_introduction.ipynb 02_classification.ipynb 03_transformer-anatomy.ipynb 04_multilingual-ner.ipynb 	Remove Colab badges & fastdoc refs Merge pull request #8 from nlp-with-transformers/remove-display-o [Transformers Anatomy] Remove cells with figure references Merge pull request #8 from nlp-with-transformers/remove-display-o	22 days ago	Releases No releases published	Lewis Tursto Leandro von Wern
05_text-generation.ipynb	Merge pull request #8 from nlp-with-transformers/remove-display-	df 26 days ago	Packages	& Thomas Wo

https://github.com/nlp-with-transformers/notebooks

NLP with Transformers Github Notebooks

O'REILLY'

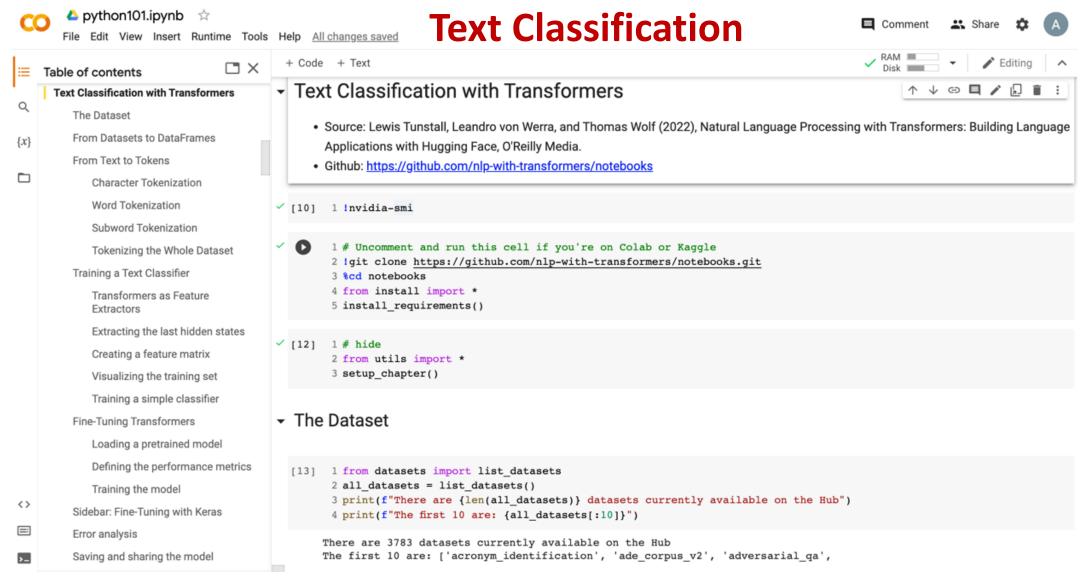
Natural Language Processing with Transformers

Building Language Applications with Hugging Face Lewis Tunstall, Leandro von Werra & Thomas Wolf

Running on a cloud platform

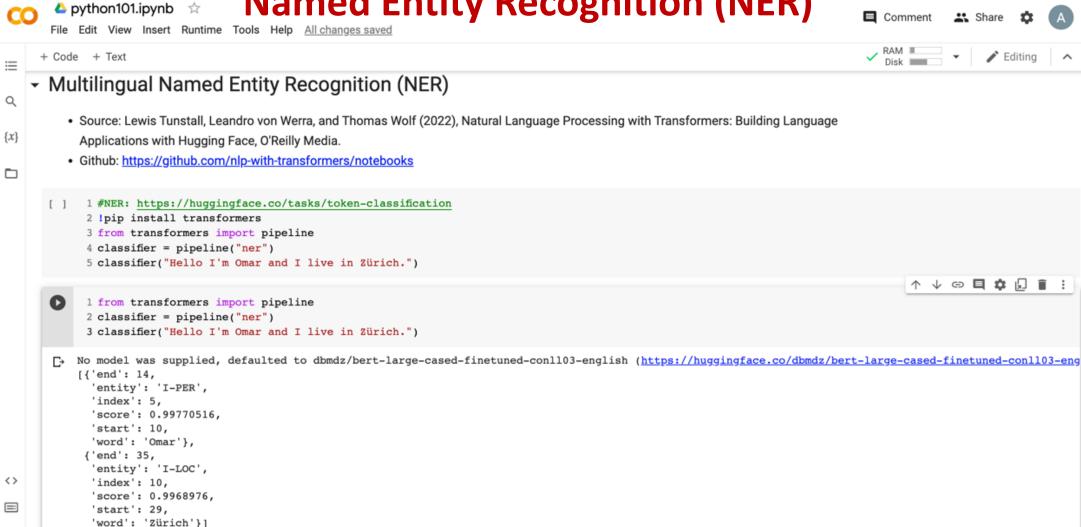
To run these notebooks on a cloud platform, just click on one of the badges in the table below:

Chapter	Colab	Kaggle	Gradient	Studio Lab
Introduction	CO Open in Colab	k Open in Kaggle	Run on Gradient	인 Open Studio Lab
Text Classification	CO Open in Colab	k Open in Kaggle	Run on Gradient	စို့။ Open Studio Lab
Transformer Anatomy	CO Open in Colab	k Open in Kaggle	Run on Gradient	စို့။ Open Studio Lab
Multilingual Named Entity Recognition	CC Open in Colab	K Open in Kaggle	Run on Gradient	CD Open Studio Lab
Text Generation	CO Open in Colab	k Open in Kaggle	Run on Gradient	စို့ြ၊ Open Studio Lab
Summarization	CO Open in Colab	k Open in Kaggle	Run on Gradient	စို့ြ Open Studio Lab
Question Answering	CO Open in Colab	k Open in Kaggle	Run on Gradient	စို့ြ Open Studio Lab
Making Transformers Efficient in Production	CO Open in Colab	k Open in Kaggle	Run on Gradient	CD Open Studio Lab
Dealing with Few to No Labels	CO Open in Colab	k Open in Kaggle	Run on Gradient	CD Open Studio Lab
Training Transformers from Scratch	CO Open in Colab	k Open in Kaggle	Run on Gradient	စို့ Open Studio Lab
Future Directions	CO Open in Colab	k Open in Kaggle	Run on Gradient	🖗 Open Studio Lab


Nowadays, the GPUs on Colab tend to be K80s (which have limited memory), so we recommend using Kaggle, Gradient, or SageMaker Studio Lab. These platforms tend to provide more performant GPUs like P100s, all for free!

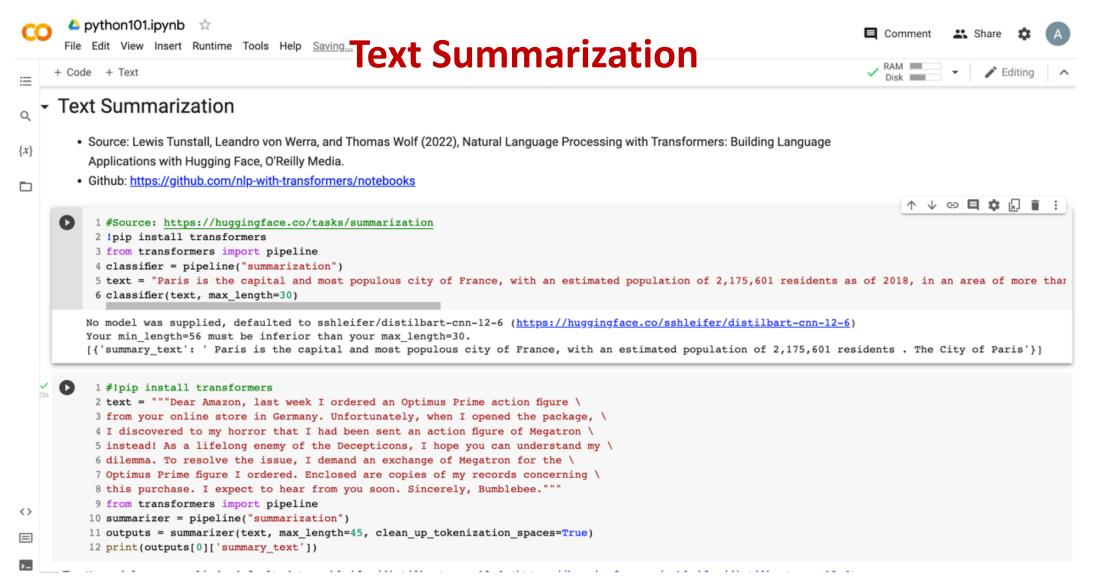
https://github.com/nlp-with-transformers/notebooks

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT


Table of contents	× + Code + Text	V RAM Disk V Editing
Natural Language Processing with Transformers Text Clssification Named Entity Recognition Question Answering Summarization Translation	 Natural Language Processing with Transformers Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformer Applications with Hugging Face, O'Reilly Media. Github: <u>https://github.com/nlp-with-transformers/notebooks</u> [1] 1 lgit clone <u>https://github.com/nlp-with-transformers/notebooks.git</u> % cd notebooks 3 from install import * 	↑ ↓ ⇔ 🔲 🖍 💭 🗎 🗄
Text Generation Al in Finance Normative Finance and Financial Theories	<pre>4 install_requirements() </pre> [3] 1 from utils import * 2 setup_chapter()	
Uncertainty and Risk Expected Utility Theory (EUT) Mean-Variance Portfolio Theory (MVPT) Capital Asset Pricing Model (CAPM)	[12] 1 text = """Dear Amazon, last week I ordered an Optimus Prime action figure \ 2 from your online store in Germany. Unfortunately, when I opened the package, \ 3 I discovered to my horror that I had been sent an action figure of Megatron \ 4 instead! As a lifelong enemy of the Decepticons, I hope you can understand my \ 5 dilemma. To resolve the issue, I demand an exchange of Megatron for the \ 6 Optimus Prime figure I ordered. Enclosed are copies of my records concerning \ 7 this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""	
Arbitrage Pricing Theory (APT) Data Driven Finance		
Financial Econometrics and Regression Data Availability	<pre>/ [13] 1 from transformers import pipeline 2 classifier = pipeline("text-classification")</pre>	
Normative Theories Revisited Mean-Variance Portfolio Theory	[14] 1 import pandas as pd	

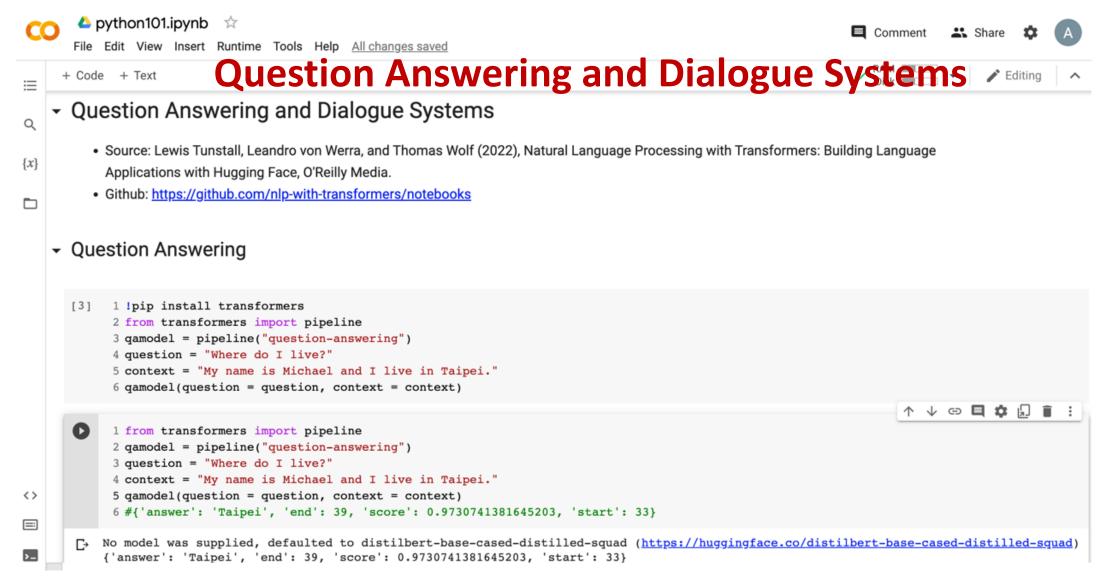
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT


Named Entity Recognition (NER)

https://tinyurl.com/aintpupython101

-د


https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

C	0		python101.ipynb ☆ Edit View Insert Runtime Tools Help <u>All changes saved</u> Text Generation Comment 🗳 Share 🌣	A
≔	+	- Cod	de + Text - Editing	^
Q	•	Te	A ↓ ⇔ ■ A ↓ ⇔ ■	:
{ <i>x</i> }			 Source: Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media. Github: <u>https://github.com/nlp-with-transformers/notebooks</u> 	
	155	[9]	<pre>1 #Source: https://huggingface.co/tasks/text-generation 2 #!pip install transformers 3 from transformers import pipeline 4 generator = pipeline('text-generation', model = 'gpt2') 5 generator("Hello, I'm a language model", max_length = 30, num_return_sequences=3)</pre>	
			Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation. [{'generated_text': "Hello, I'm a language model.\n\nBut then, one day, I'm not trying to teach the language in my head.\n\n"}, {'generated_text': "Hello, I'm a language model. I'm an implementation for the type system. I'm working with types and programming language constructs. {'generated_text': "Hello, I'm a language modeler, not a programmer. As you know, languages are not a linear model. The thing that jumps out at"}]	Ιē
	185	0	<pre>1 from transformers import pipeline 2 generator = pipeline('text-generation', model = 'gpt2') 3 outputs = generator("Once upon a time", max_length = 30, num_return_sequences=3) 4 print(outputs[0]['generated_text'])</pre>	
<>		C→	Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation. Once upon a time, every person who ever saw Jesus, knew that He was Christ. And even though he might not have known Him, He was	
>_	58s	[1]	1 from transformers import pipeline	
			https://tinyurl.com/aintpupython101	

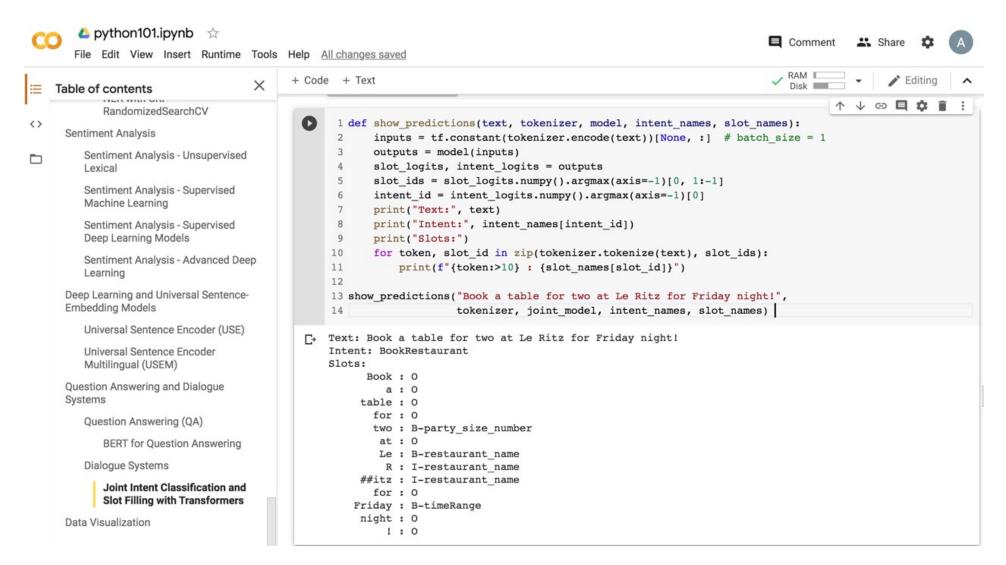
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

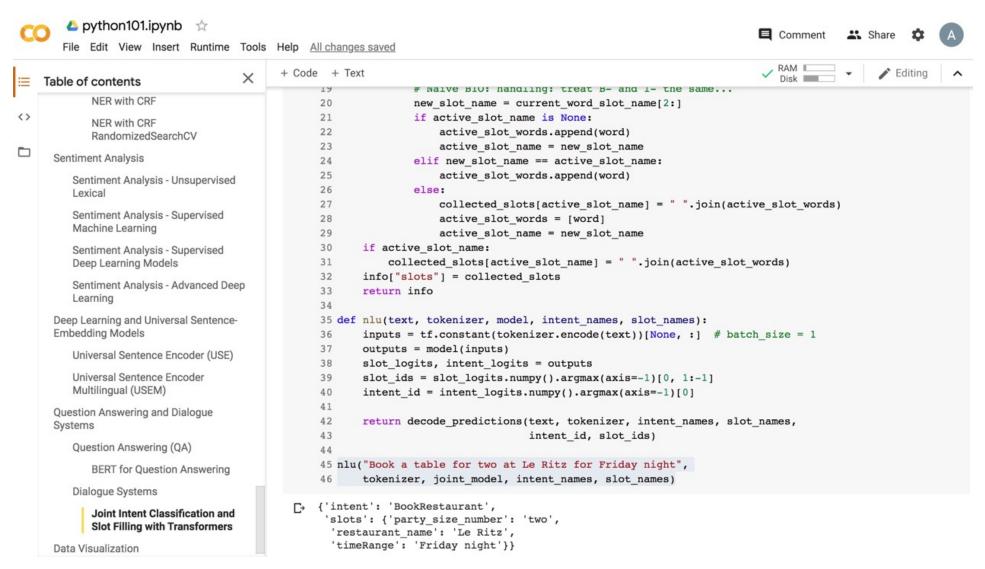
CO		python101.ipynb 🛣 Edit View Insert Runtime Tools Help <u>All changes saved</u>	Q	Comment	*	Share	\$	A
=	+ Coo	e + Text Question Answering	~	RAM Disk	•	/	Editing	^
Q 5 {x}	[12]	<pre>1 from transformers import pipeline 2 qamodel = pipeline("question-answering", model ='deepset/roberta-base-squad2') 3 question = "What causes precipitation to fall?" 4 context = """In meteorology, precipitation is any product of the condensation of atmospheric wa 5 output = qamodel(question = question, context = context) 6 print(output['answer']) gravity</pre>	ter	vapor that	fal	ls u	nder (gravi
70	[13]	<pre>1 from transformers import pipeline 2 qamodel = pipeline("question-answering", model ='deepset/roberta-base-squad2') 3 question = "What is another main form of precipitation besides drizzle, rain, snow, sleet and h 4 context = """In meteorology, precipitation is any product of the condensation of atmospheric was 5 output = qamodel(question = question, context = context) 6 print(output['answer'])</pre>			fal	ls u	nder (gravi [.]
<>	0	<pre>graupel 1 #from transformers import pipeline 2 #qamodel = pipeline("question-answering", model ='deepset/roberta-base-squad2') 3 question = "Where do water droplets collide with ice crystals to form precipitation?" 4 context = """In meteorology, precipitation is any product of the condensation of atmospheric wa 5 output = qamodel(question = question, context = context) 6 print(output['answer'])</pre>	ter			l 🌣		i : gravi
>_	C→	within a cloud						

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Named Entity Recognition (NER) NER with CRF NER with CRF RandomizedSearchCV		Question Answering and Dialog	gue Systems			
NER with CRF						
	-					
Randonnizedocaronov		Question Answering (QA)	Question Answering and			
Sentiment Analysis						
Sentiment Analysis - Unsupervised Lexical	-	BERT for Question Answering	Dialogue Systems			
Sentiment Analysis - Supervised Machine Learning		Source: Apoorv Nandan (2020), BERT (from Huggi https://keras.io/examples/nlp/text_extraction_wit				
Sentiment Analysis - Supervised Deep Learning Models		Description: Fine tune pretrained BERT from HuggingFace Transformers on SQuAD.				
Sentiment Analysis - Advanced Deep Learning		Introduction				
Deep Learning and Universal Sentence- Embedding Models	This demonstration uses SQuAD (Stanford Question-Answering Dataset). In SQuAD, an input consists of a question, and a paragraph context. The goal is to find the span of text in the paragraph that answers the question. We evaluate our performance on this data wi					
Universal Sentence Encoder (USE)		"Exact Match" metric, which measures the percent	tage of predictions that exactly match any one of the ground-truth answers.			
Universal Sentence Encoder Multilingual (USEM)		We fine-tune a BERT model to perform this task as	s follows:			
Question Answering and Dialogue Systems		 Feed the context and the question as inputs Take two vectors S and T with dimensions end 				
Question Answering (QA)		3. Compute the probability of each token being	the start and end of the answer span. The probability of a token being the start of the answer			
BERT for Question Answering			representatio of the token in the last layer of BERT, followed by a softmax over all tokens. The			
Dialogue Systems		probability of a token being the end of the ar	이 것이 하는 것 같은 것에서 가지만 것이다. 것이 같은 것이 있는 것이 같은 것이 가지만 것이 같은 것이 같이 있다. 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이			
Joint Intent Classification and Slot Filling with Transformers		4. Fine-tune BERT and learn S and T along the v References:	way.			
Data Visualization						
Section		BERT SQUAD				


https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

O C python101.ipynb	Fools Help	All changes saved			🔲 Comment 🔒	Share	\$	
Table of contents	× + Co	de + Text			V RAM Disk	1	Editing	
RandomizedSearchCV		Downloading: 100%	433/433 [00:29<00:00,	14.5B/s]				
Sentiment Analysis								
Sentiment Analysis - Unsupervised Lexical		Downloading: 100%	536M/536M [00:29<00	:00, 18.3MB/s]				
Sentiment Analysis - Supervised Machine Learning		Layer (type)	Output Shape	Param #	Connected to			
Sentiment Analysis - Supervised Deep Learning Models		input_1 (InputLayer)	[(None, 384)]	0				
Sentiment Analysis - Advanced Deep	,	<pre>input_3 (InputLayer)</pre>	[(None, 384)]	0				
Learning		input_2 (InputLayer)	[(None, 384)]	0				_
Deep Learning and Universal Sentence- Embedding Models		tf_bert_model (TFBertModel)	((None, 384, 768), (109482240	input_1[0][0]			_
Universal Sentence Encoder (USE)		<pre>start_logit (Dense)</pre>	(None, 384, 1)	768	tf_bert_model[0][0]			_
Universal Sentence Encoder Multilingual (USEM)		end_logit (Dense)	(None, 384, 1)	768	tf_bert_model[0][0]			_
Question Answering and Dialogue		flatten (Flatten)	(None, 384)	0	<pre>start_logit[0][0]</pre>			
Systems		flatten_1 (Flatten)	(None, 384)	0	end_logit[0][0]			_
Question Answering (QA)		activation 7 (Activation)	(None, 384)	0	flatten[0][0]			_
BERT for Question Answering			(
Dialogue Systems		activation_8 (Activation)	(None, 384)	0	flatten_1[0][0]			
Joint Intent Classification and Slot Filling with Transformers		Total params: 109,483,776 Trainable params: 109,483,776 Non-trainable params: 0						
Data Visualization			75 a total. 20 5 -					
Section		CPU times: user 20.8 s, sys: 7 Wall time: 1min 42s	./5 s, total: 28.5 S					


https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

able of contents ×		+ Code + Text	✓ RAM Disk ✓ Fditing				
RandomizedSearchCV Sentiment Analysis		Dialogue Systems Dialogue Systems	tems				
Sentiment Analysis - Unsupervis Lexical	ed	<pre>[] 1 #Source: Olivier Grisel (2020), Transformers (BERT fi 2 #https://github.com/m2dsupsdlclass/lectures-labs/blob</pre>					
Sentiment Analysis - Supervised Machine Learning Sentiment Analysis - Supervised Deep Learning Models			↑↓ © ■ / i				
		 Joint Intent Classification and Slot Filling with Transformed 	ers				
		The goal of this notebook is to fine-tune a pretrained transformer-based	neural network model to convert a user query				
Sentiment Analysis - Advanced Learning	Deep	expressed in English into a representation that is structured enough to b	be processed by an automated service.				
Deep Learning and Universal Senter Embedding Models	ce-	Here is an example of interpretation computed by such a Natural Langu	age Understanding system:				
Universal Sentence Encoder (USE)		>>> nlu("Book a table for two at Le Ritz for Friday night",					
Universal Sentence Encoder Multilingual (USEM)		<pre>tokenizer, joint_model, intent_names, slot_names)</pre>					
Question Answering and Dialogue Systems		{ 'intent': 'BookRestaurant',					
Question Answering (QA) BERT for Question Answering		'slots': { 'party_size_number': 'two', 'restaurant name': 'Le Ritz',					
Joint Intent Classification a Slot Filling with Transforme		}					
Data Visualization							
Section		Intent classification is a simple sequence classification problem. The tri ("Slot Filling") as token-level classification problem using BIO-annotation	. .				

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Summary

- Deep Learning
 - Transfer Learning
 - Pre-training, Fine-Tuning (FT)
- Few-Shot Learning (FSL)
 - Meta Learning: Learn to Learn
- One-Shot Learning (1SL)
- Zero-Shot Learning (OSL)(ZSL)

References

- Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.
- Denis Rothman (2021), Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more, Packt Publishing.
- Savaş Yıldırım and Meysam Asgari-Chenaghlu (2021), Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques, Packt Publishing.
- Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta (2020), Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems, O'Reilly Media.
- Dipanjan Sarkar (2019), Text Analytics with Python: A Practitioner's Guide to Natural Language Processing, Second Edition. APress.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla Dhariwal, Arvind Neelakantan et al. (2020) "Language models are few-shot learners." Advances in neural information processing systems 33 (2020): 1877-1901
- Yaqing Wang, Quanming Yao, James T. Kwok, and Lionel M. Ni (2020). "Generalizing from a few examples: A survey on few-shot learning." ACM computing surveys (csur) 53, no. 3 (2020): 1-34.
- Yao Ge, Yuting Guo, Yuan-Chi Yang, Mohammed Ali Al-Garadi, and Abeed Sarker (2022). "Few-shot learning for medical text: A systematic review." arXiv preprint arXiv:2204.14081 (2022).
- Maria Tsimpoukelli, Jacob L. Menick, Serkan Cabi, S. M. Eslami, Oriol Vinyals, and Felix Hill (2021). "Multimodal few-shot learning with frozen language models." Advances in Neural Information Processing Systems 34 (2021): 200-212.
- Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda (2018), Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning, O'Reilly.
- Charu C. Aggarwal (2018), Machine Learning for Text, Springer.
- Gabe Ignatow and Rada F. Mihalcea (2017), An Introduction to Text Mining: Research Design, Data Collection, and Analysis, SAGE Publications.
- Rajesh Arumugam (2018), Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP applications, Packt.
- Jake VanderPlas (2016), Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media.
- Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805.
- The Super Duper NLP Repo, https://notebooks.quantumstat.com/
- Jay Alammar (2018), The Illustrated Transformer, http://jalammar.github.io/illustrated-transformer/
- Jay Alammar (2019), A Visual Guide to Using BERT for the First Time, http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
- NLP with Transformer, <u>https://github.com/nlp-with-transformers/notebooks</u>
- Min-Yuh Day (2022), Python 101, https://tinyurl.com/aintpupython101