Artificial Intelligence for Text Analytics

Natural Language Processing with Transformers

1102AITA04 MBA, IM, NTPU (M5026) (Spring 2022) Tue 2, 3, 4 (9:10-12:00) (B8F40)



Min-Yuh Day, Ph.D, Associate Professor

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

Syllabus

Week Date Subject/Topics

- 1 2022/02/22 Introduction to Artificial Intelligence for Text Analytics
- 2 2022/03/01 Foundations of Text Analytics:
 Natural Language Processing (NLP)
- 3 2022/03/08 Python for Natural Language Processing
- 4 2022/03/15 Natural Language Processing with Transformers
- 5 2022/03/22 Case Study on Artificial Intelligence for Text Analytics I
- 6 2022/03/29 Text Classification and Sentiment Analysis

Syllabus

Week Date Subject/Topics

- 7 2022/04/05 Tomb-Sweeping Day (Holiday, No Classes)
- 8 2022/04/12 Midterm Project Report
- 9 2022/04/19 Multilingual Named Entity Recognition (NER),
 Text Similarity and Clustering
- 10 2022/04/26 Text Summarization and Topic Models
- 11 2022/05/03 Text Generation
- 12 2022/05/10 Case Study on Artificial Intelligence for Text Analytics II

Syllabus

Week Date Subject/Topics

- 13 2022/05/17 Question Answering and Dialogue Systems
- 14 2022/05/24 Deep Learning, Transfer Learning,
 Zero-Shot, and Few-Shot Learning for Text Analytics
- 15 2022/05/31 Final Project Report I
- 16 2022/06/07 Final Project Report II
- 17 2022/06/14 Self-learning
- 18 2022/06/21 Self-learning

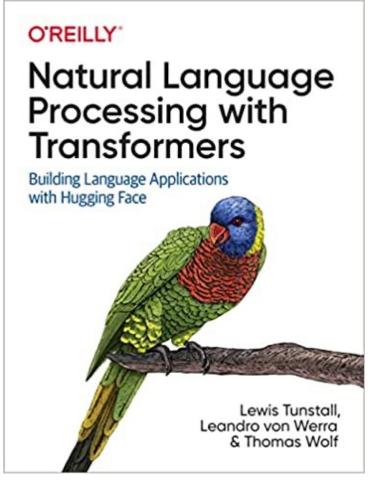
Natural Language Processing with Transformers

Outline

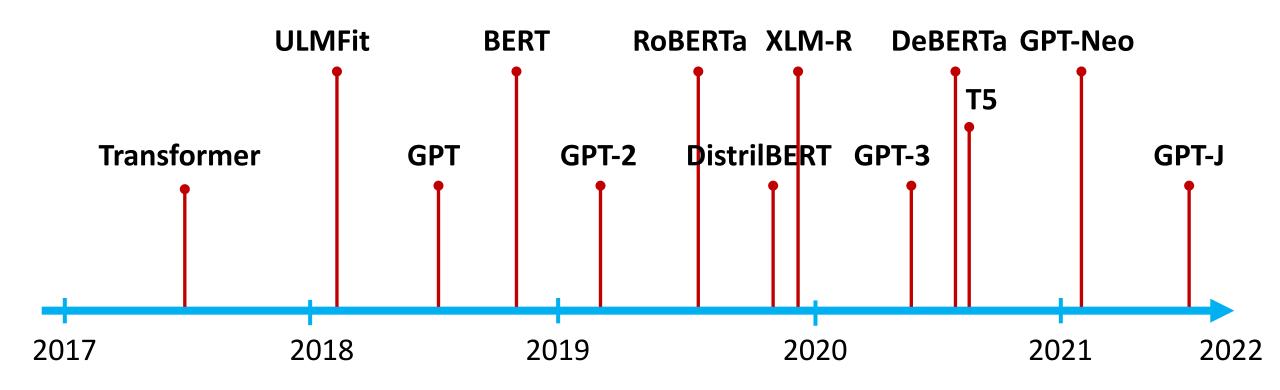
- Natural Language Processing with Transformers
 - Transformer (Attention is All You Need)
 - Encoder-Decoder
 - Attention Mechanisms
 - Transfer Learning in NLP
 - BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers:

Building Language Applications with Hugging Face, O'Reilly Media.

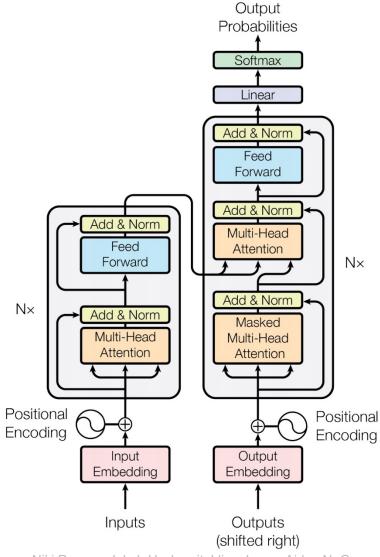


The Transformers Timeline



Transformer (Attention is All You Need)

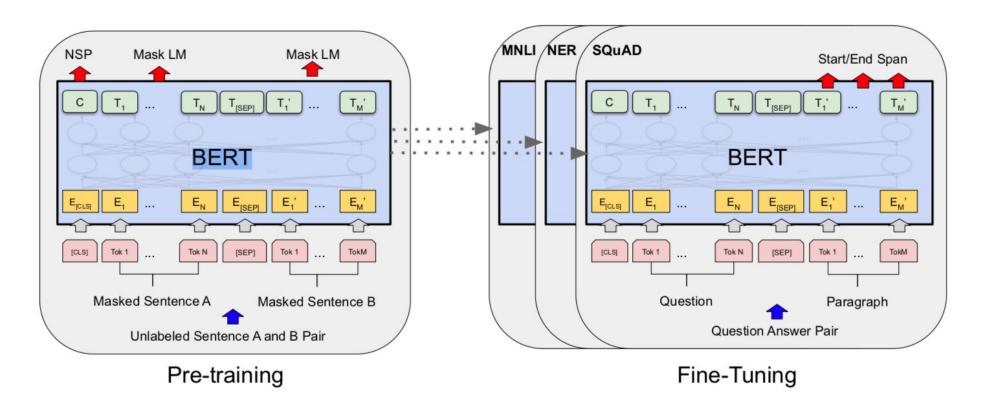
(Vaswani et al., 2017)



BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT (Bidirectional Encoder Representations from Transformers)

Overall pre-training and fine-tuning procedures for BERT



BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding

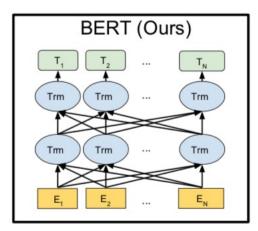
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

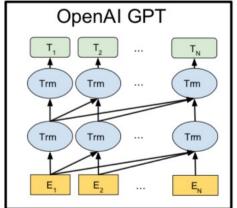
Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google AI Language

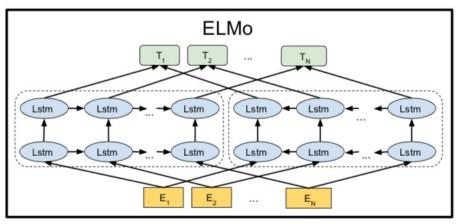
{jacobdevlin, mingweichang, kentonl, kristout}@google.com

BERT

Bidirectional Encoder Representations from Transformers







Pre-training model architectures

BERT uses a bidirectional Transformer.

OpenAl GPT uses a left-to-right Transformer.

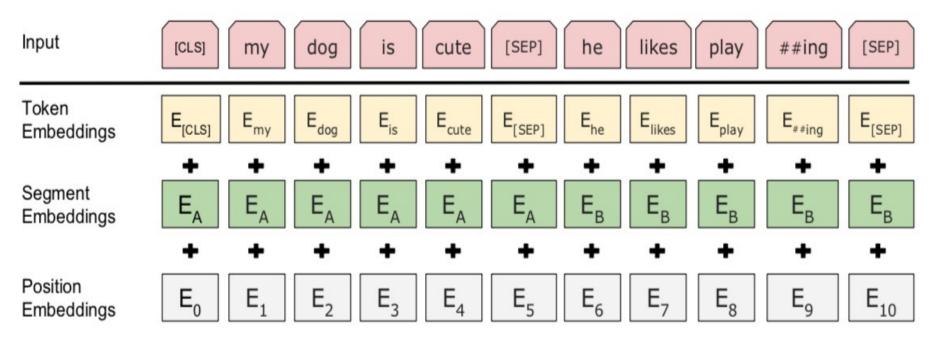
ELMo uses the concatenation of independently trained left-to-right and right- to-left LSTM to generate features for downstream tasks.

Among three, only BERT representations are jointly conditioned on both left and right context in all layers.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

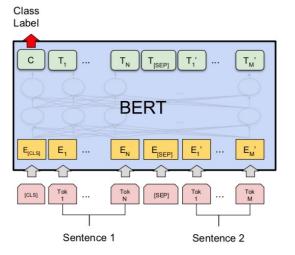
BERT (Bidirectional Encoder Representations from Transformers)

BERT input representation

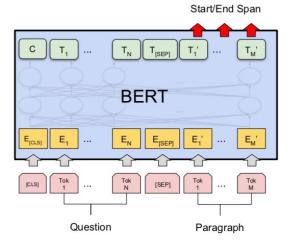


The input embeddings is the sum of the token embeddings, the segmentation embeddings and the position embeddings.

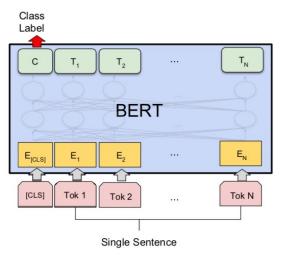
Fine-tuning BERT on NLP Tasks



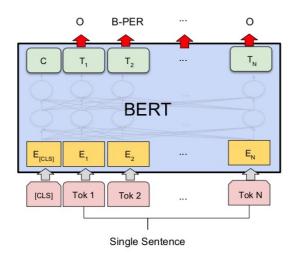
(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



(c) Question Answering Tasks: SQuAD v1.1

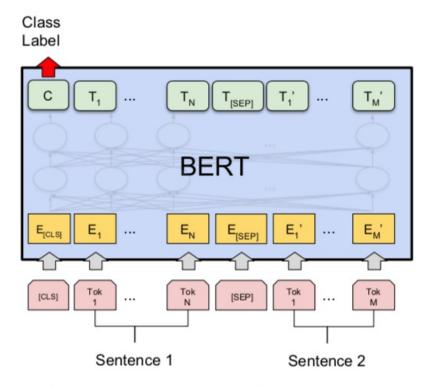


(b) Single Sentence Classification Tasks: SST-2, CoLA

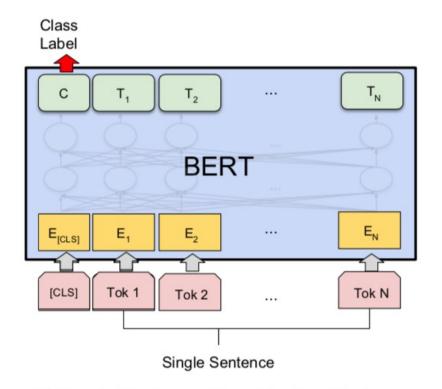


(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

BERT Sequence-level tasks

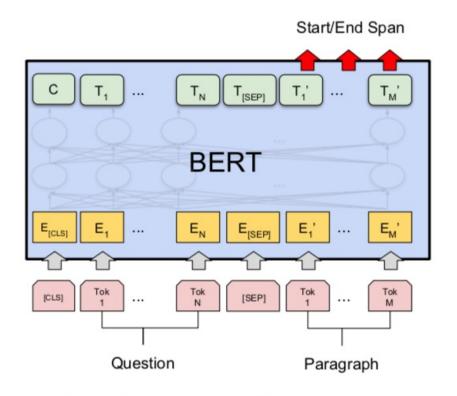


(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

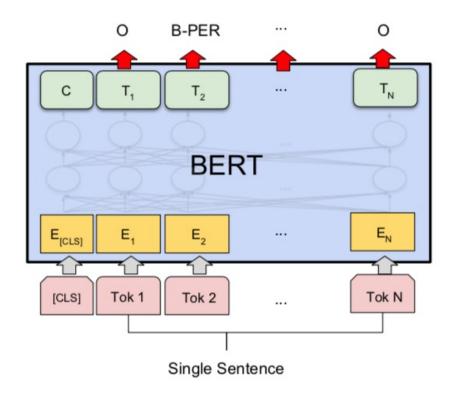


(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT Token-level tasks

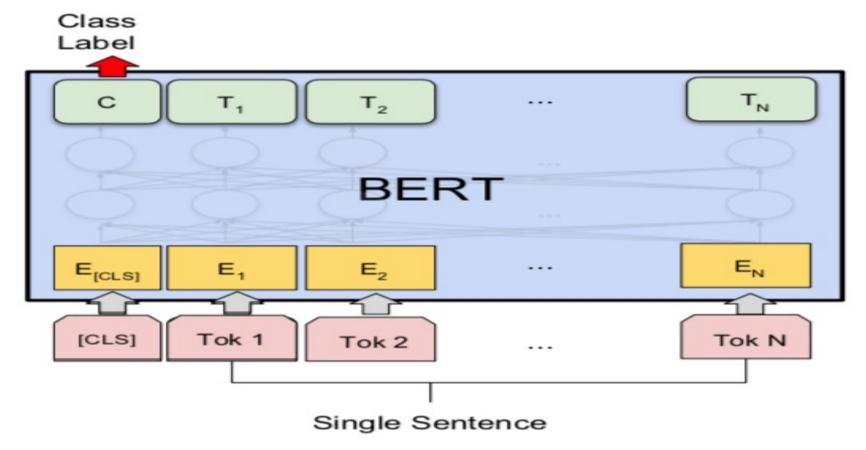


(c) Question Answering Tasks: SQuAD v1.1



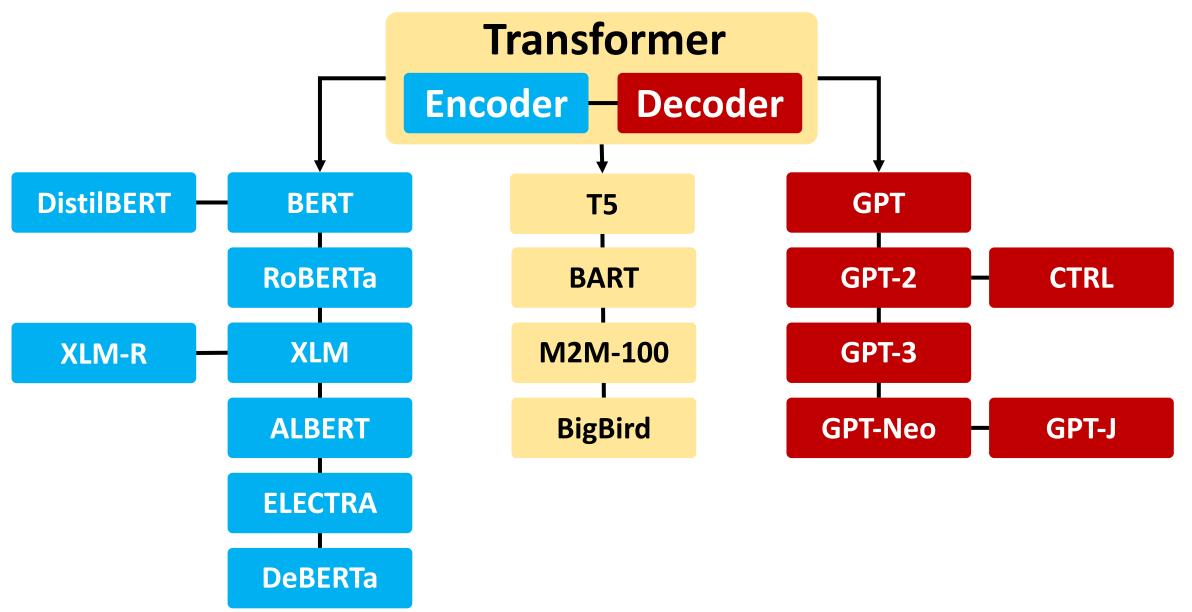
(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Sentiment Analysis: Single Sentence Classification

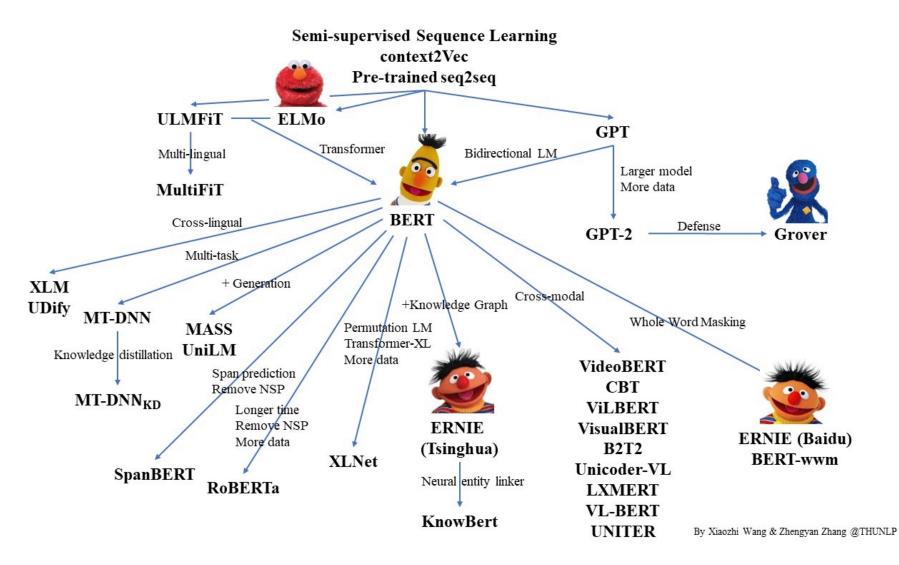


(b) Single Sentence Classification Tasks: SST-2, CoLA

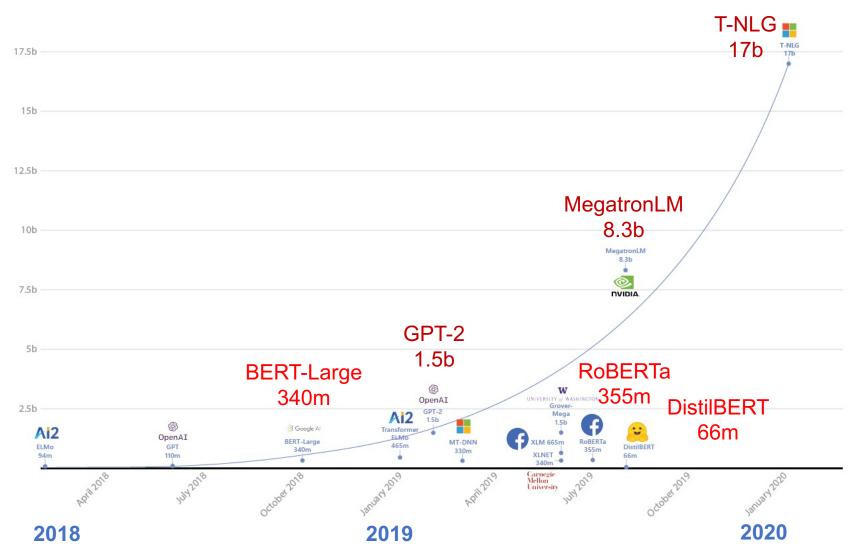
Transformer Models



Pre-trained Language Model (PLM)



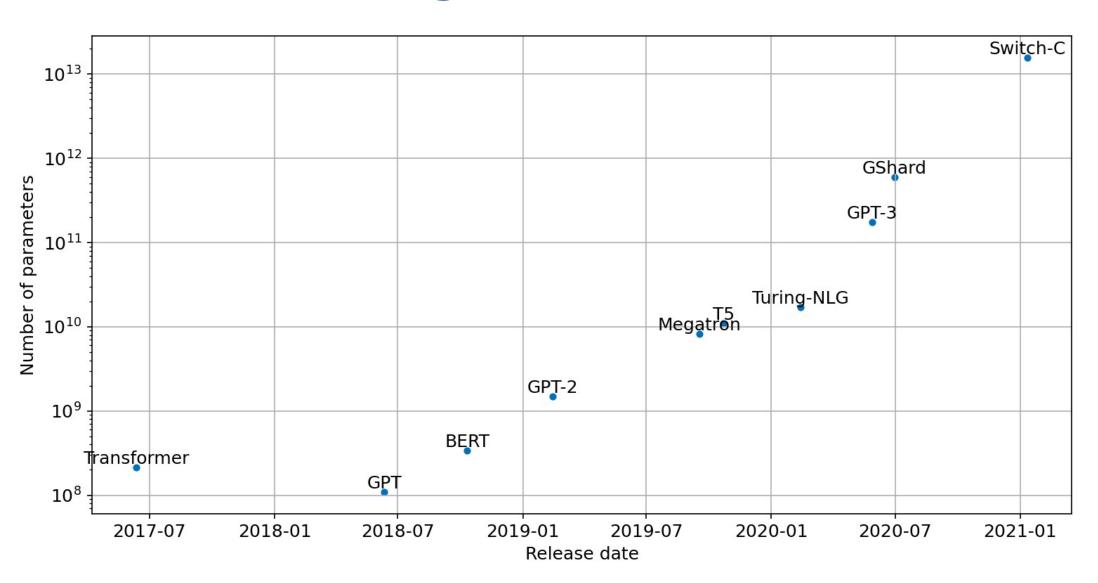
Transformers Pre-trained Language Model



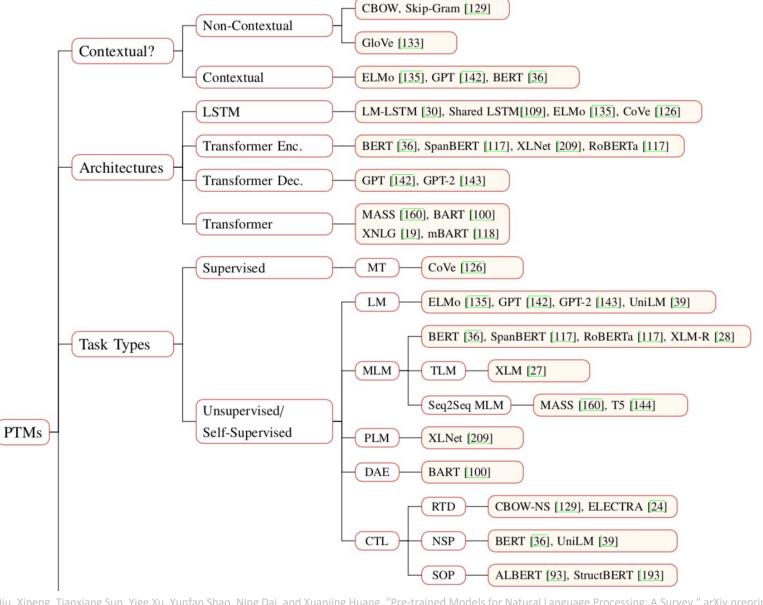
90+ Models

2022

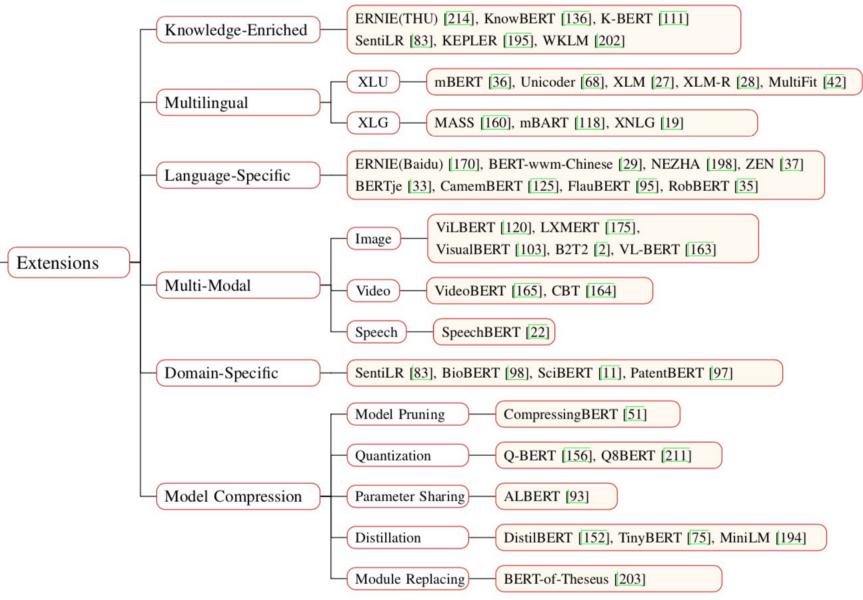
Scaling Transformers



Pre-trained Models (PTM)



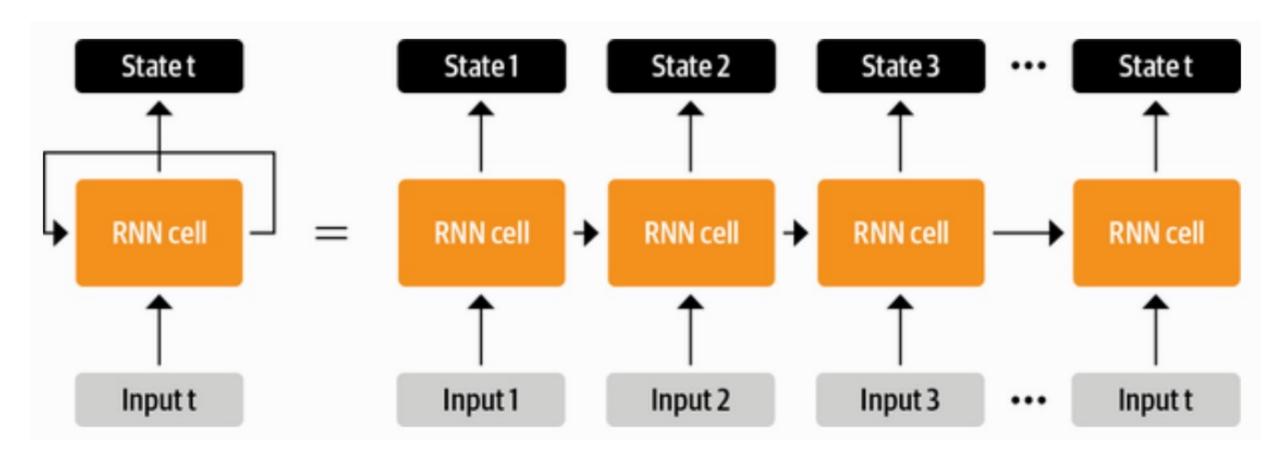
Pre-trained Models (PTM)



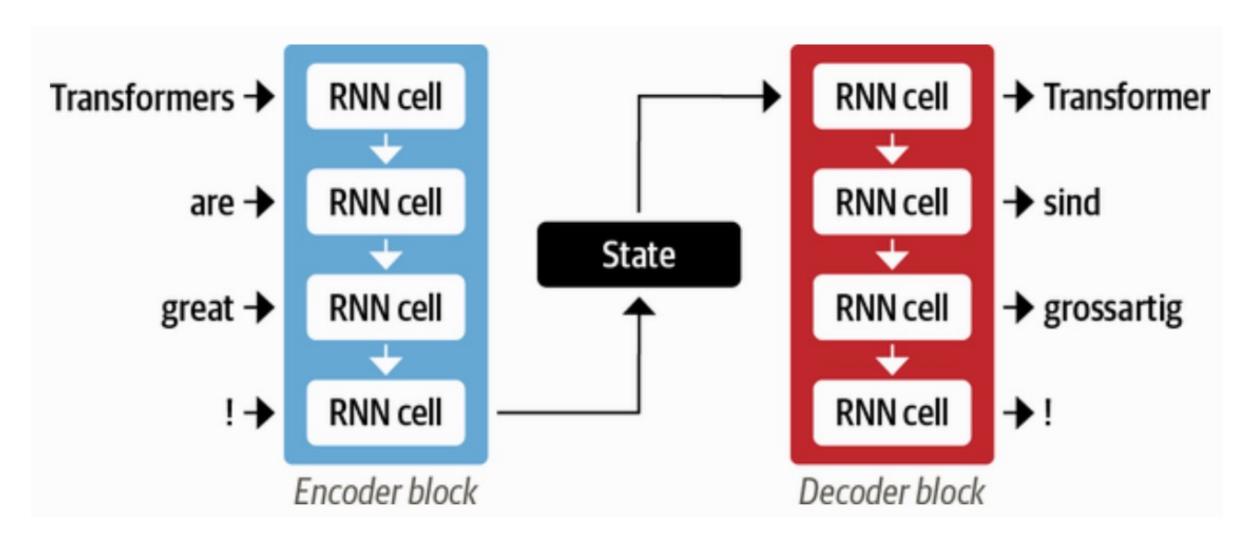
The Encoder-Decoder Framework

- The encoder-decoder framework
- Attention Mechanisms
- Transfer Learning in NLP

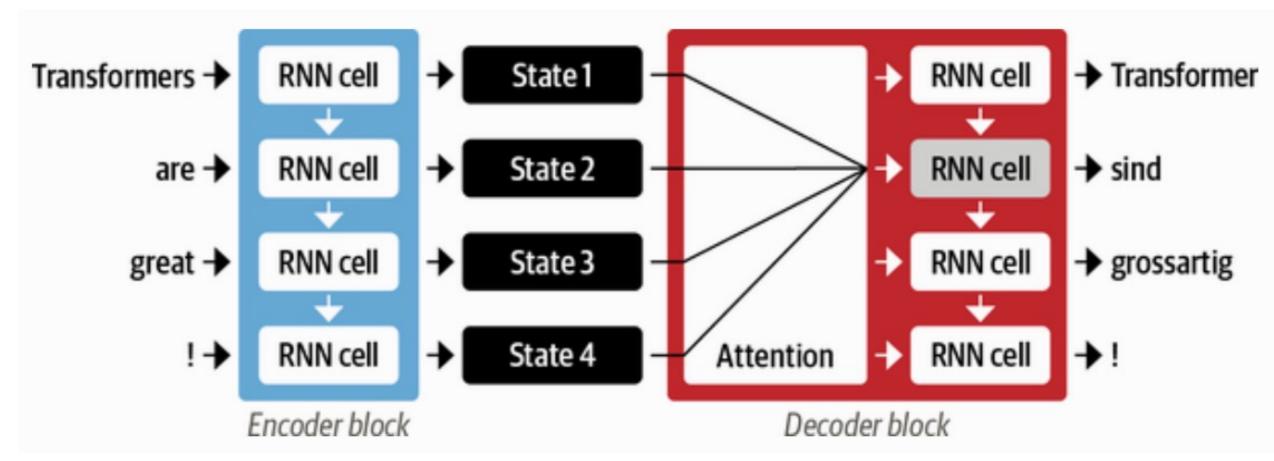
RNN



An encoder-decoder architecture with a pair of RNN



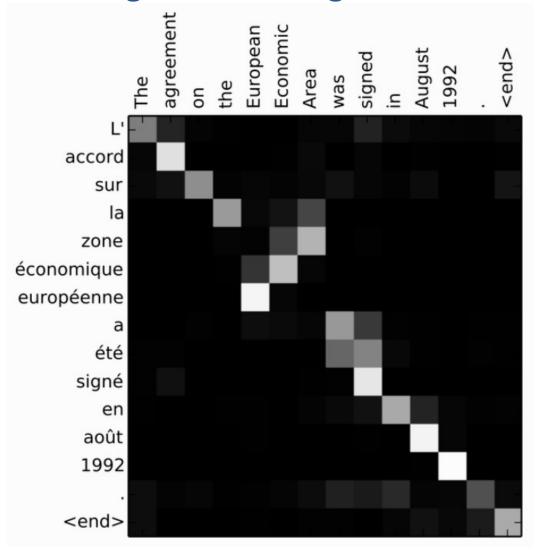
Attention Mechanisms



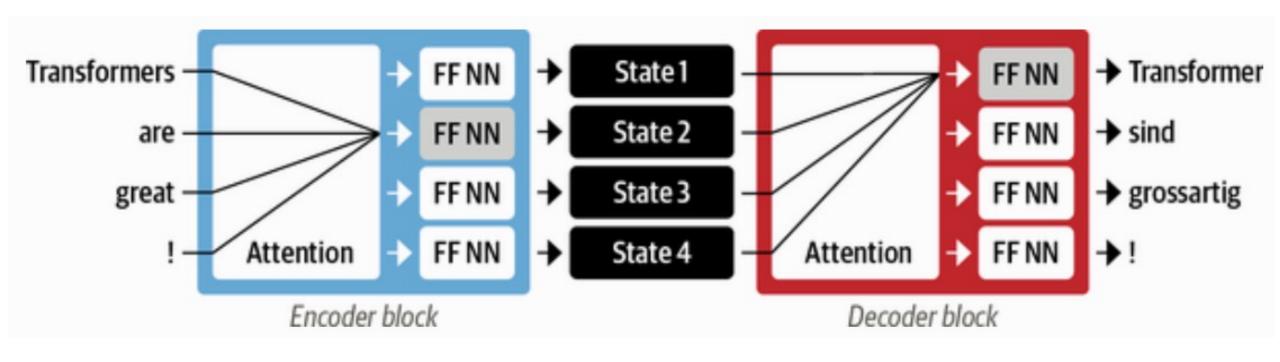
An encoder-decoder architecture with an attention mechanism

RNN Encoder-Decoder

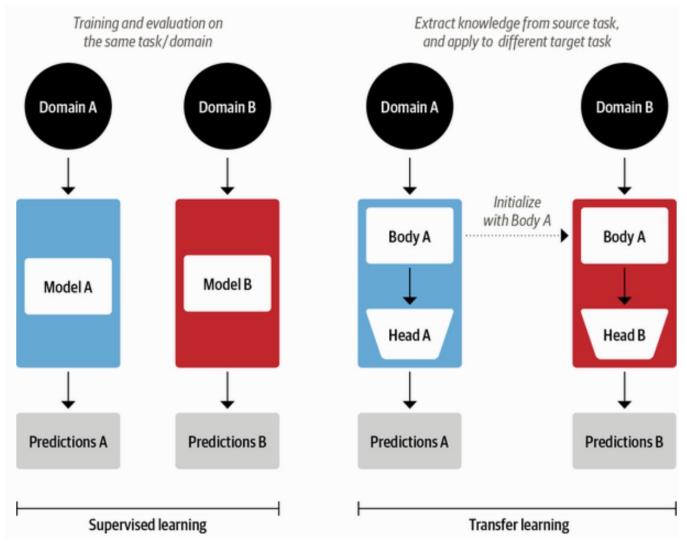
alignment of words in English and the generated translation in French



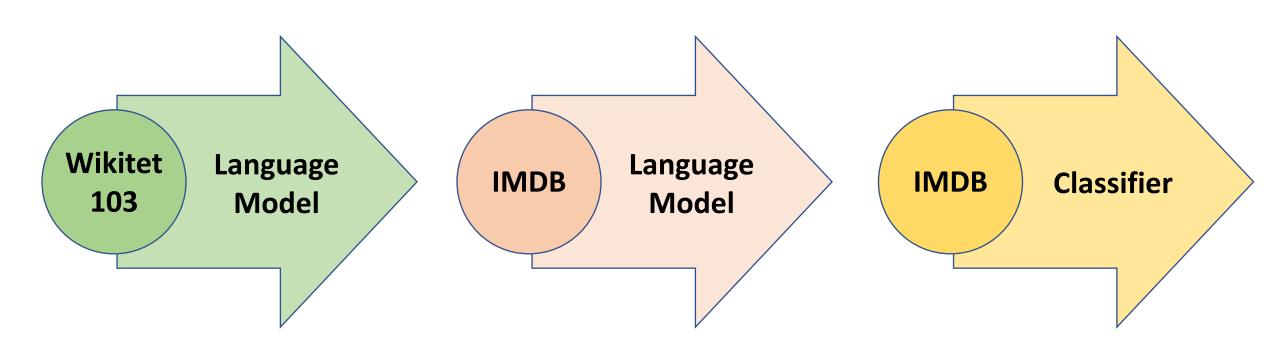
Encoder-Decoder Architecture of the Original Transformer



Comparison of Traditional Supervised Learning and Transfer Learning



ULMFiT: 3 Steps Transfer Learning in NLP

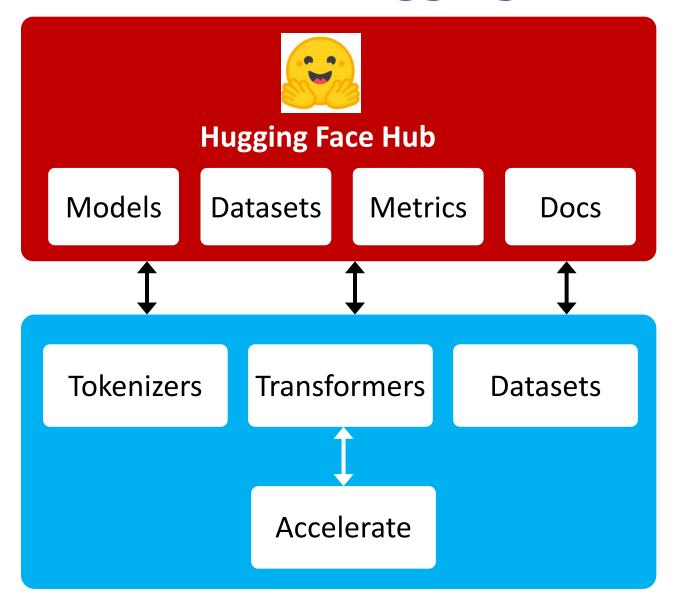


1. Pretraining

2. Domain adaptation

3. Fine-tuning

An overview of the Hugging Face Ecosystem



A typical pipeline for training transformer models

with the Datasets, Tokenizers, and Transformers libraries

Datasets

Tokenizers

Transformers

Datasets

Load and process datasets

Tokenize input texts

Load models, train and infer

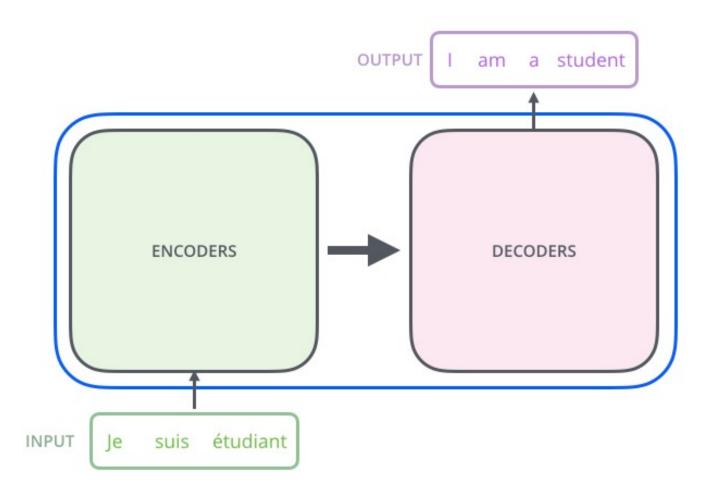
Load metrics evaluate models

The Illustrated Transformer

Jay Alammar (2018)

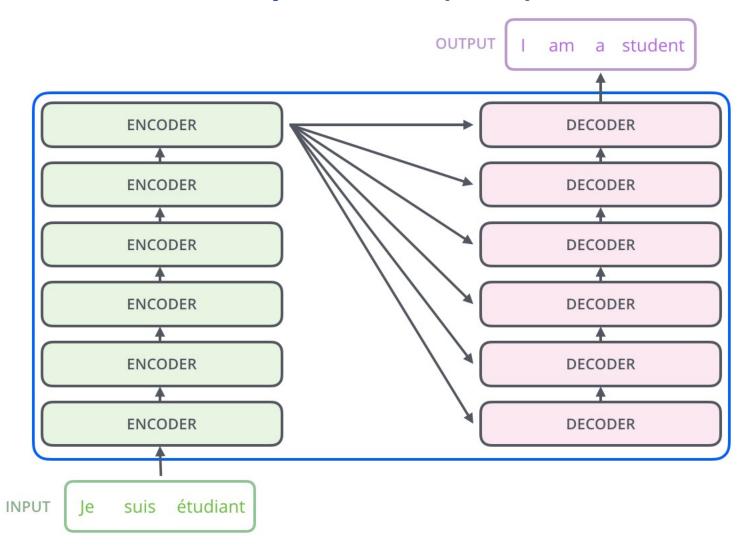
The Illustrated Transformer

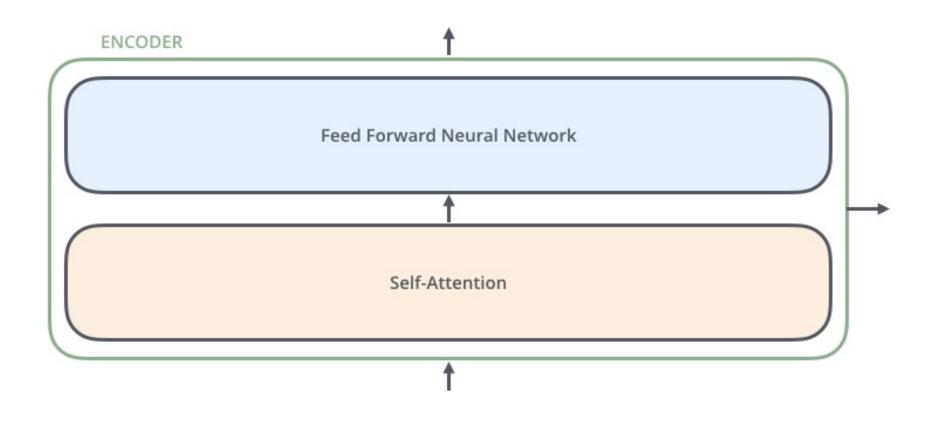
Jay Alammar (2018)

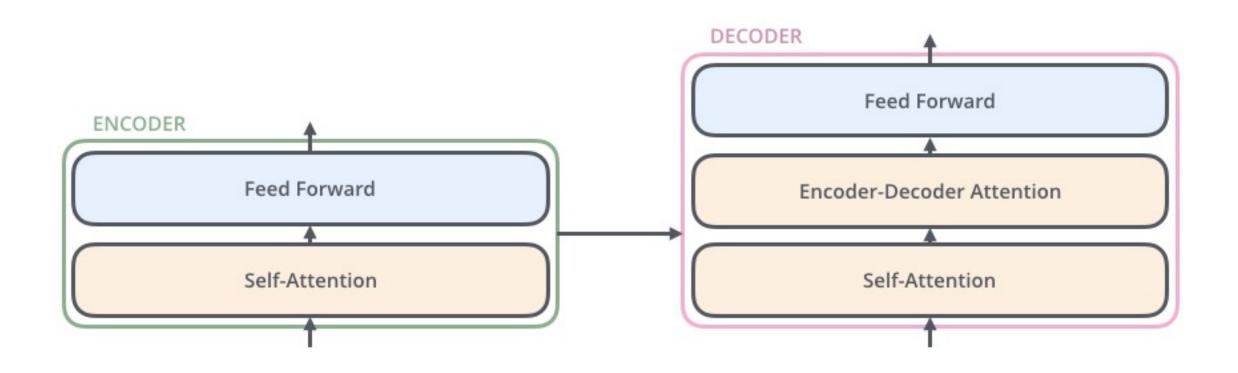


The Illustrated Transformer

Jay Alammar (2018)

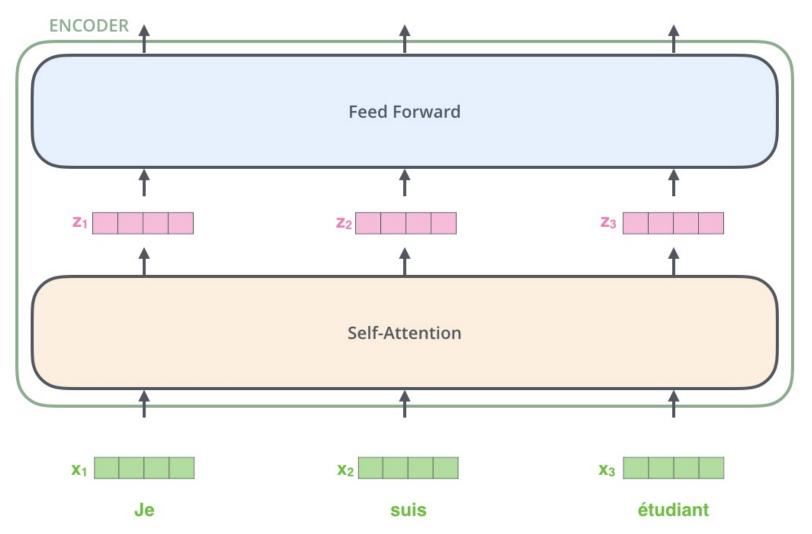


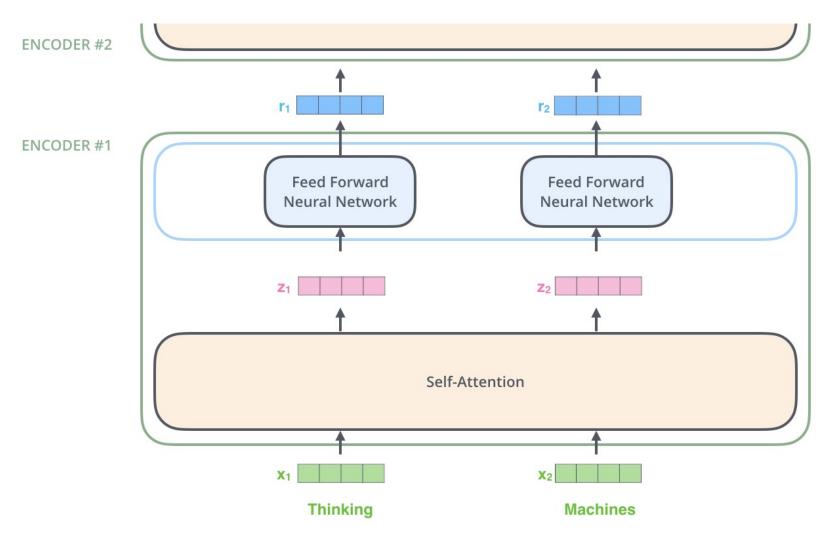


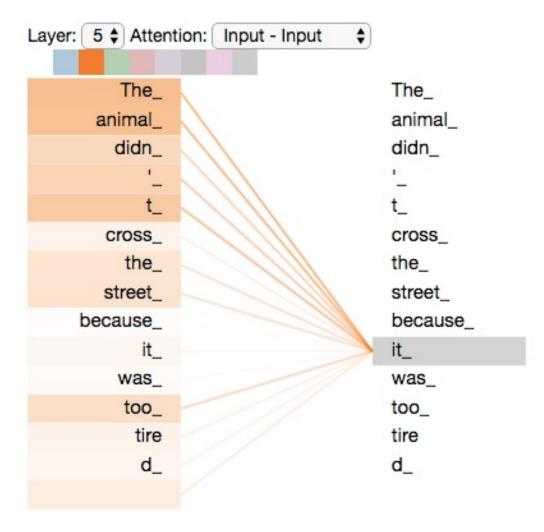


Jay Alammar (2018)

Each word is embedded into a vector of size 512.







Multiplying x1 by the WQ weight matrix produces q1, the "query" vector associated with that word.

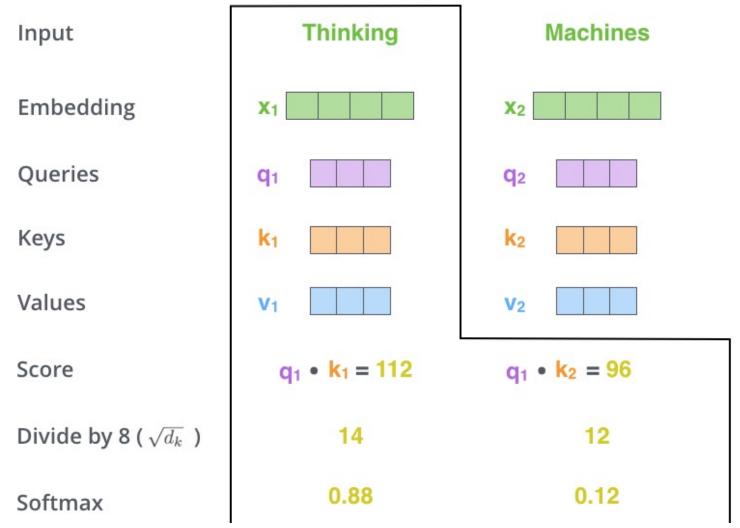
We end up creating a "query", a "key", and a "value" projection of each word in the input sentence.

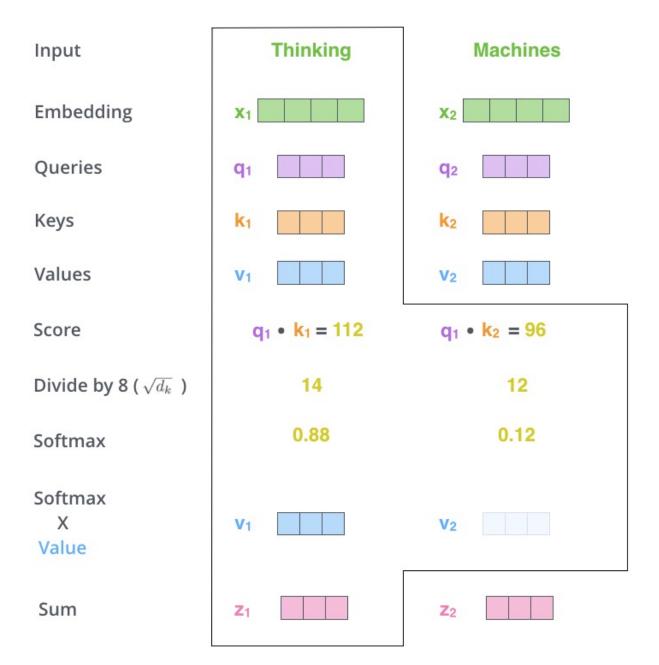
Input	Thinking	Machines	
Embedding	X ₁	X ₂	
Queries	q ₁	q ₂	Mo
Keys	k ₁	k ₂	Wĸ
Values	V ₁	V ₂	wv

Jay Alammar (2018)

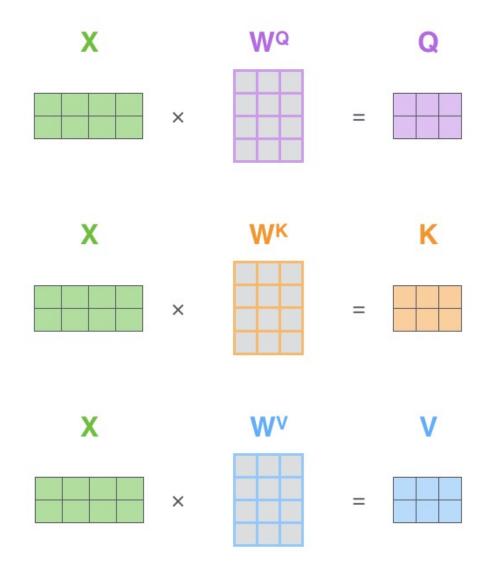
Input **Embedding** Queries Keys Values Score

Thinking Machines X_1 q_2 q_1 k_1 k₂ V₁ V₂ $q_1 \cdot k_2 = 96$

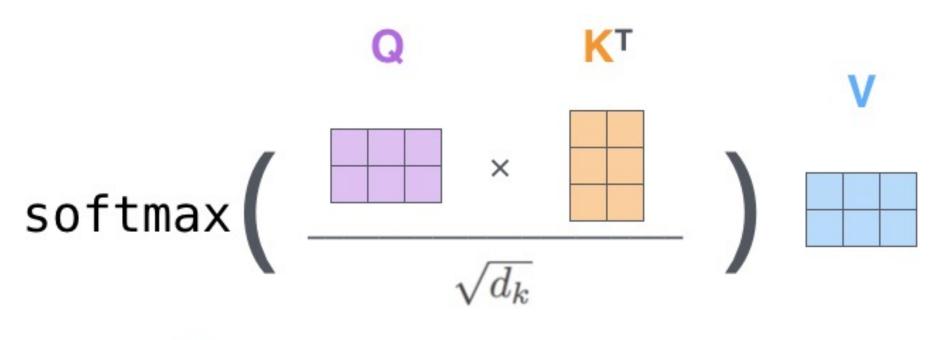


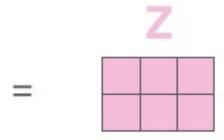


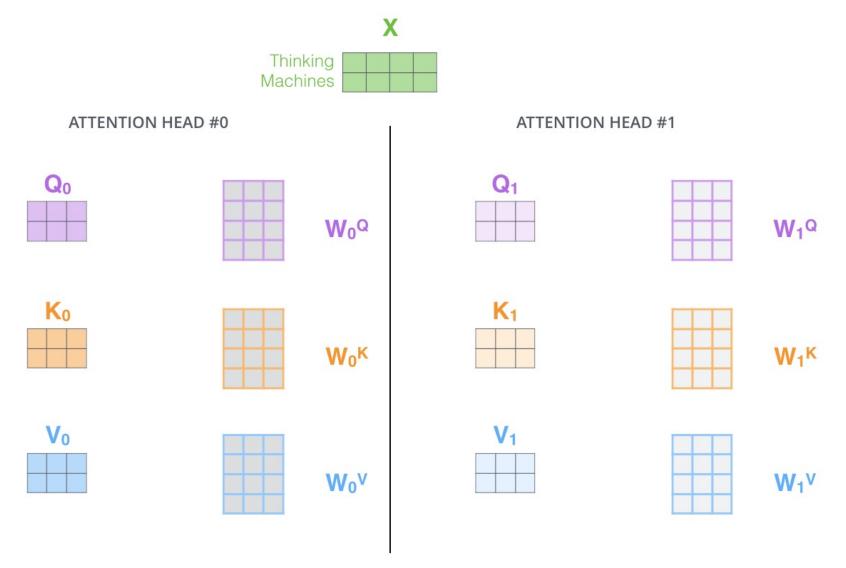
Matrix Calculation of Self-Attention

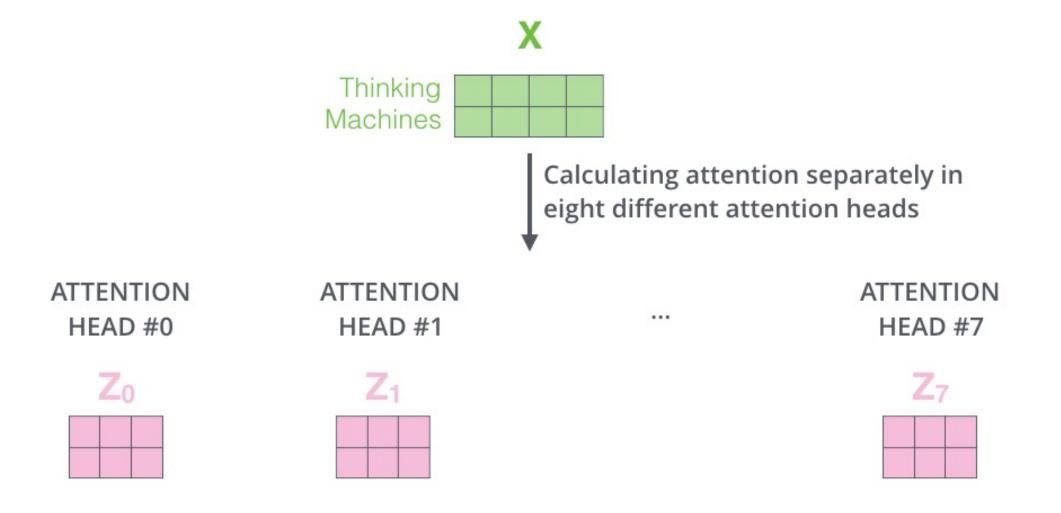


The self-attention calculation in matrix form







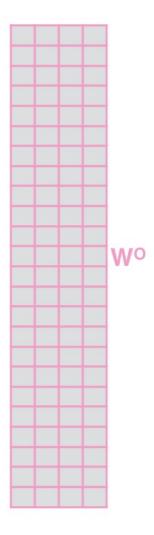


1) Concatenate all the attention heads

2) Multiply with a weight matrix W^o that was trained jointly with the model

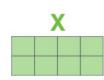
X

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

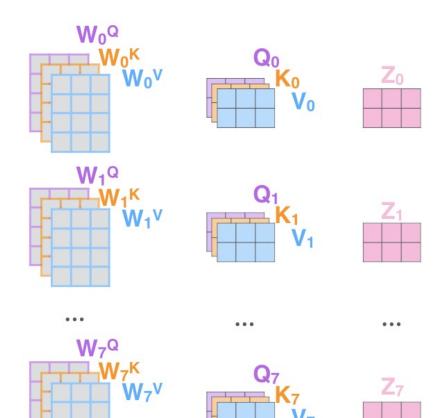


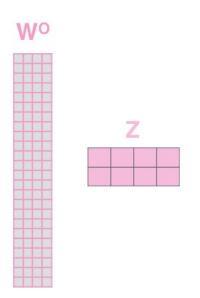
- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W^o to produce the output of the layer

Thinking Machines

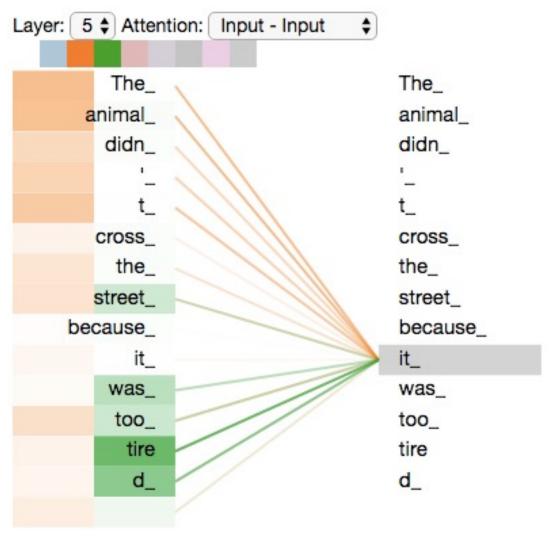


* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

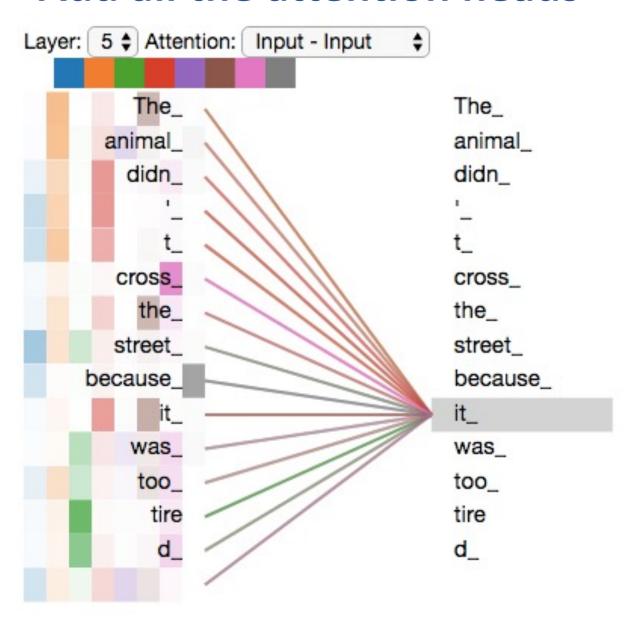




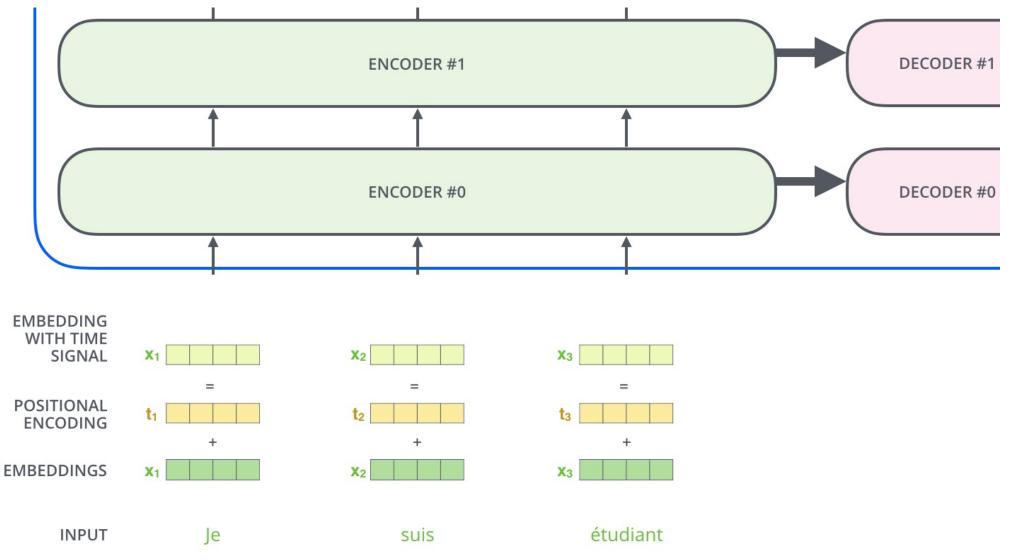
As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing on "tired" -- in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".



Add all the attention heads

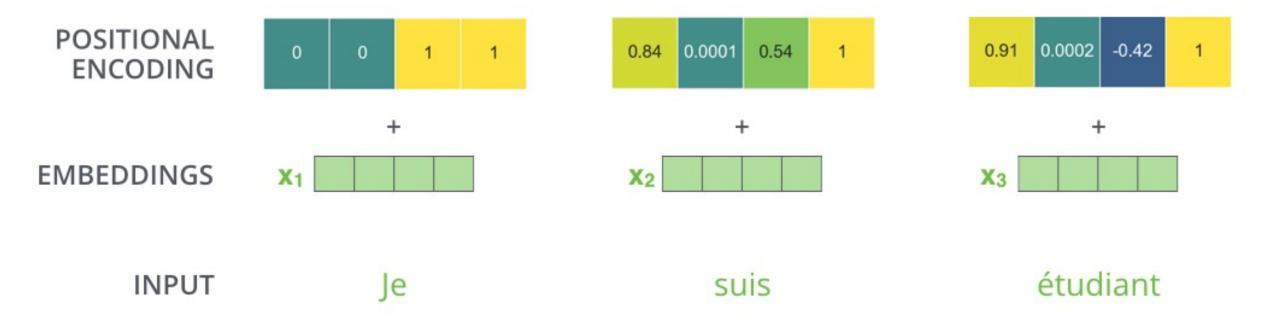


Positional Encoding



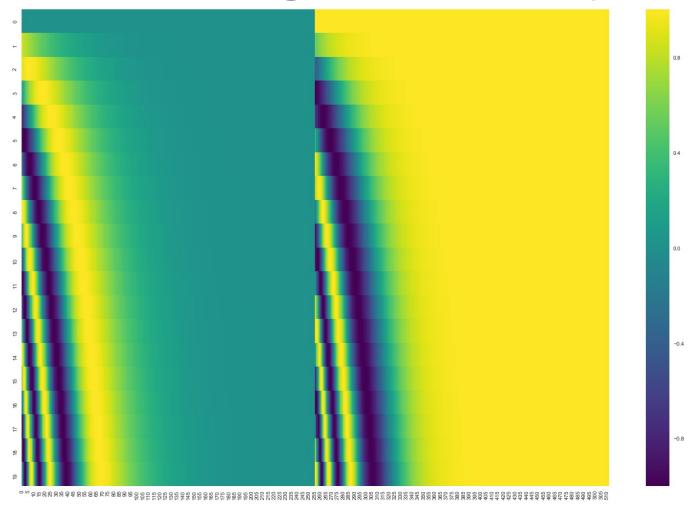
To give the model a sense of the order of the words, we add positional encoding vectors -- the values of which follow a specific pattern.

Positional Encoding



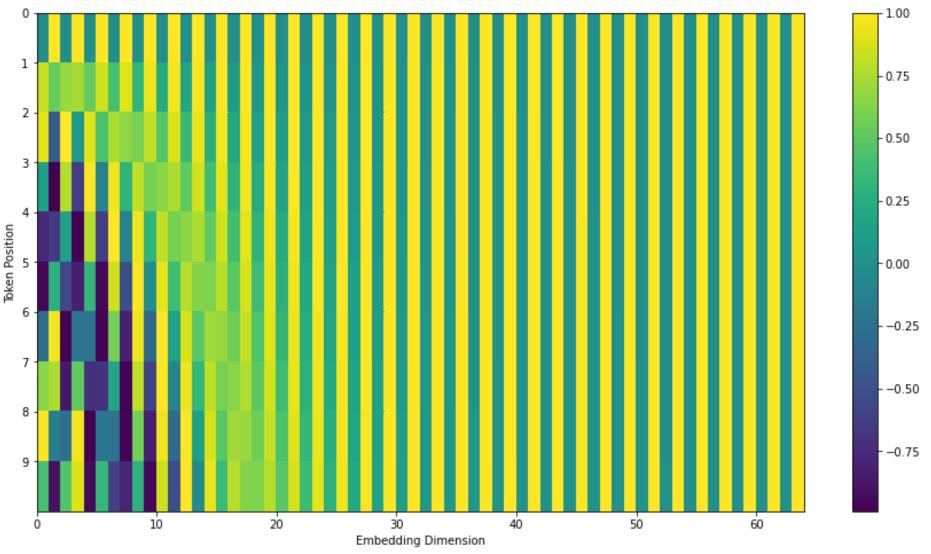
Positional encoding with a toy embedding size of 4

Positional encoding for 20 words (rows) with an embedding size of 512 (columns)

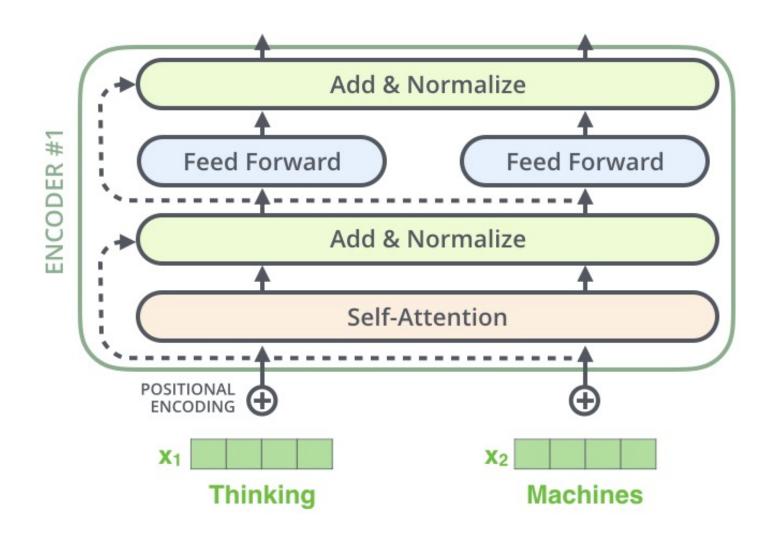


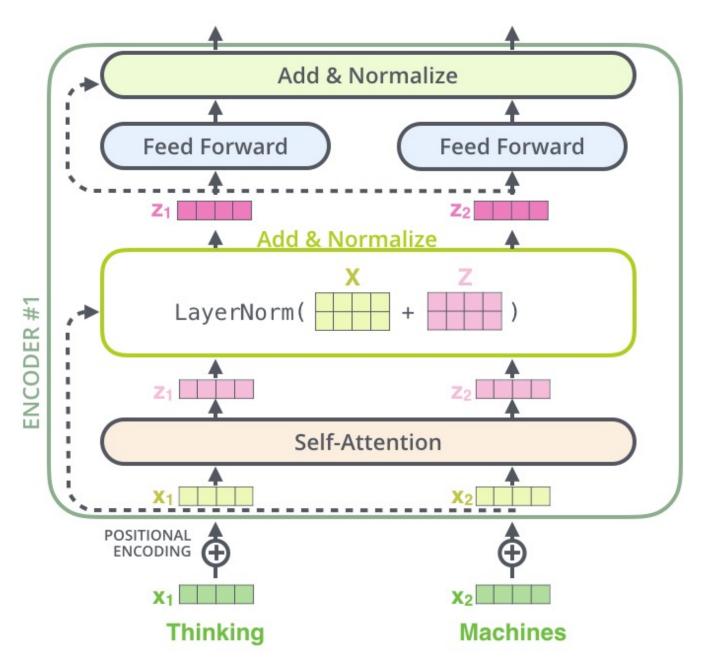
You can see that it appears split in half down the center. That's because the values of the left half are generated by one function (which uses sine), and the right half is generated by another function (which uses cosine). They're then concatenated to form each of the positional encoding vectors.

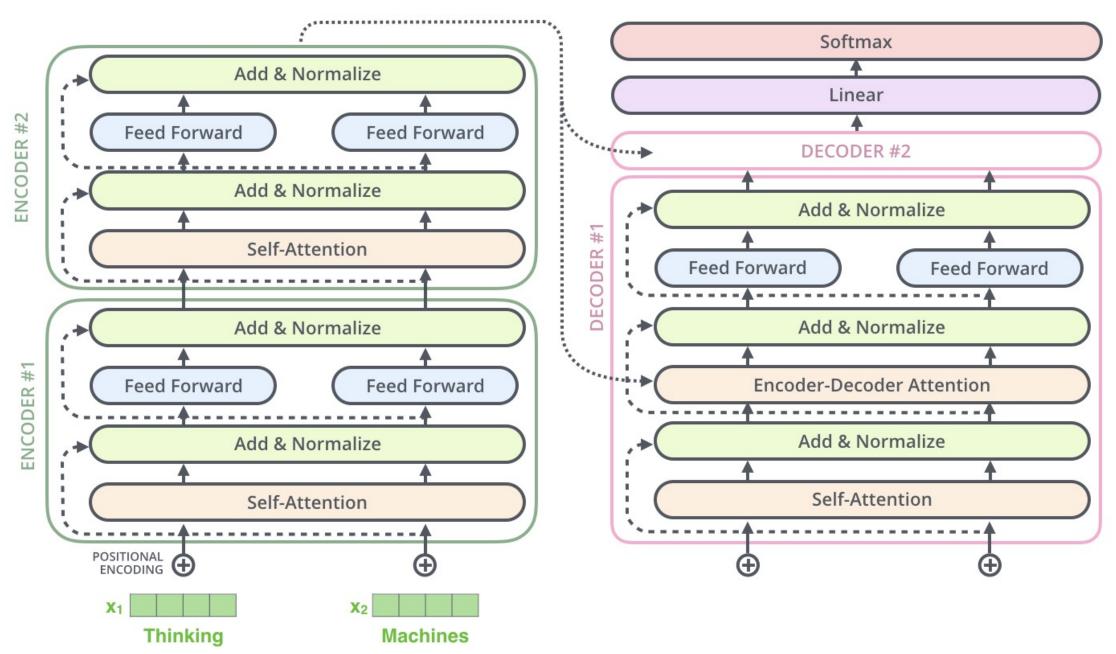
Transformers Positional Encoding



The Residuals

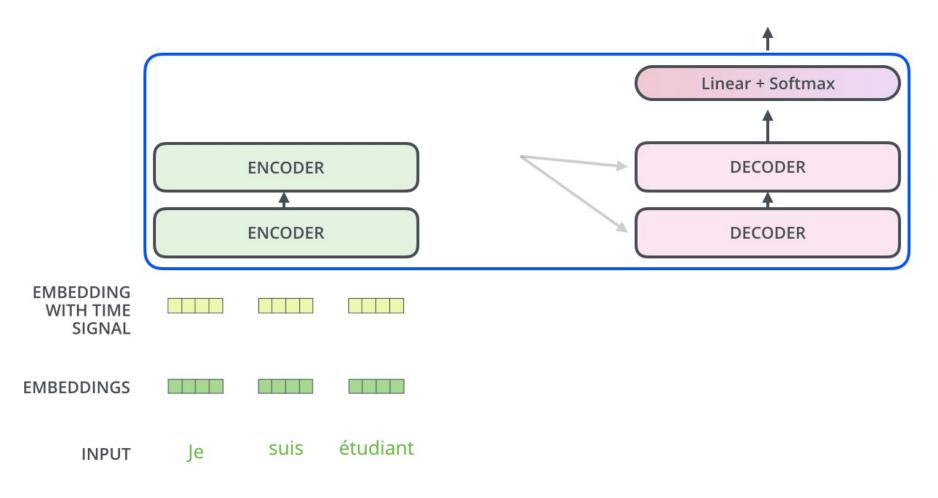






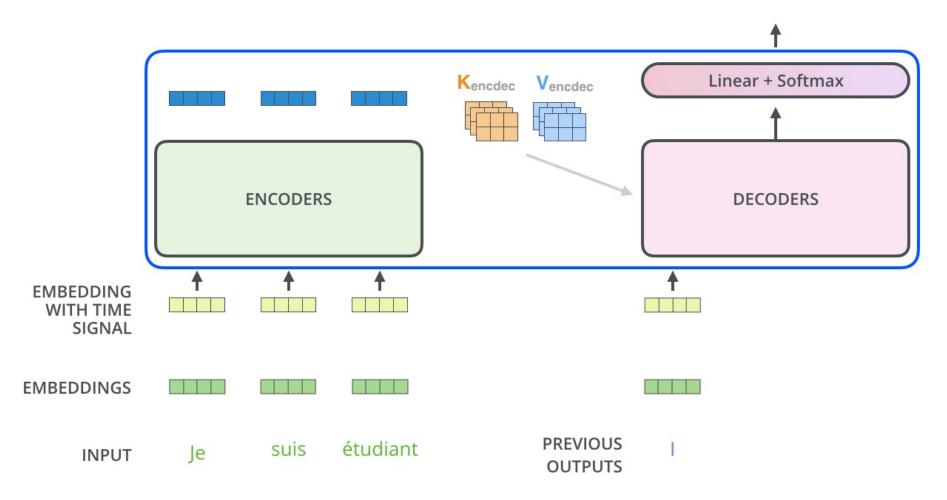
The Decoder Side

Decoding time step: 1 2 3 4 5 6 OUTPUT



The Decoder Side

Decoding time step: 1 2 3 4 5 6 OUTPUT



The Final Linear and Softmax Layer

Which word in our vocabulary am is associated with this index? Get the index of the cell 5 with the highest value (argmax) log_probs 0 1 2 3 4 5 ... vocab size Softmax logits 0 1 2 3 4 5 ... vocab_size Linear Decoder stack output

The output vocabulary

Output Vocabulary

WORD	a	am	I	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

The output vocabulary of our model is created in the preprocessing phase before we even begin training.

Example: one-hot encoding of output vocabulary

Output Vocabulary

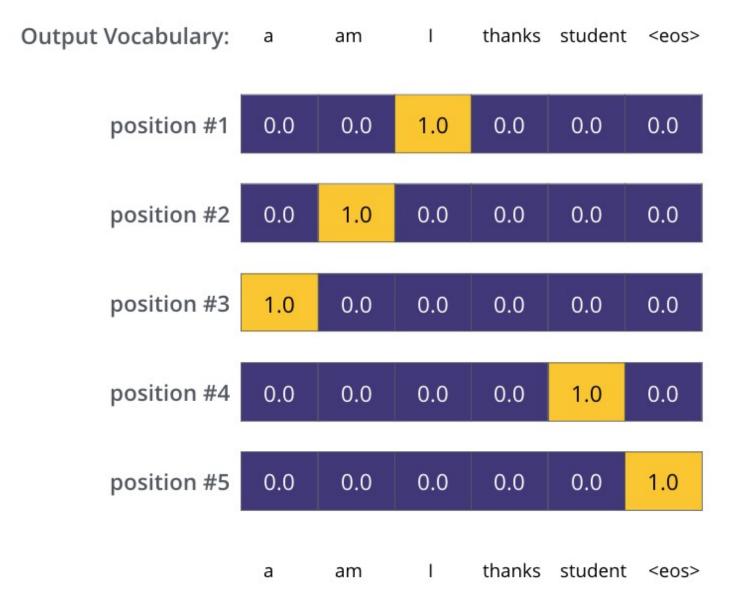
WORD	а	am	I	thanks	student	<eos></eos>
INDEX	0	1	2	3	4	5

One-hot encoding of the word "am"

The Loss Function



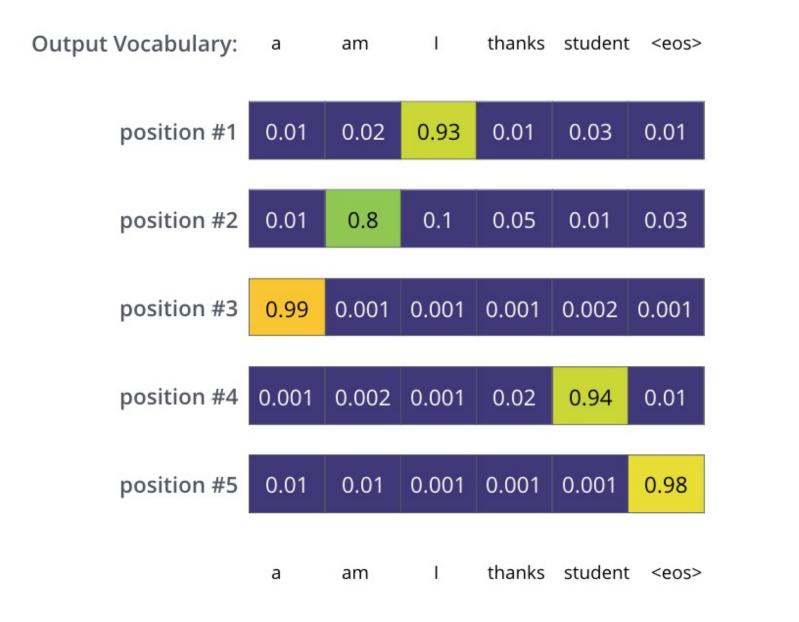
Target Model Outputs



-0.4

-0.8

Trained Model Outputs



State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch

- Transformers
 - pytorch-transformers
 - pytorch-pretrained-bert
- provides state-of-the-art general-purpose architectures
 - (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...)
 - for Natural Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained models in 100+ languages and deep interoperability between TensorFlow 2.0 and PyTorch.

Hugging Face

Q Search models, datas

Models

Datasets

Spaces

Docs

Solutions

Pricing

Log In

Sign Up

The AI community building the future.

Build, train and deploy state of the art models powered by the reference open source in machine learning.

58,696

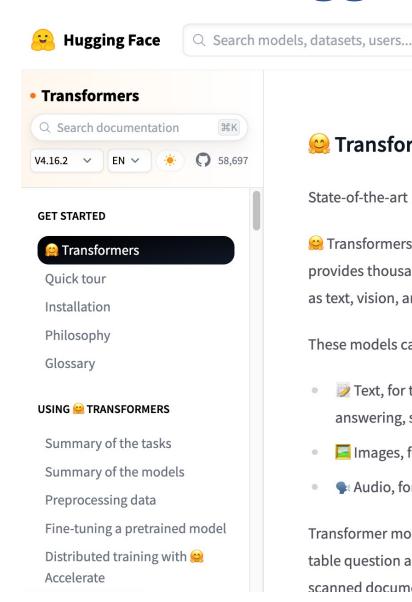
Hugging Face Transformers

Datasets

Spaces

Solutions

Pricing



Transformers

State-of-the-art Machine Learning for Jax, Pytorch and TensorFlow

Models

Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

These models can applied on:

- Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
- Images, for tasks like image classification, object detection, and segmentation.
- Audio, for tasks like speech recognition and audio classification.

Transformer models can also perform tasks on several modalities combined, such as table question answering, optical character recognition, information extraction from scanned documents, video classification, and visual question answering.

Transformers

If you are looking for custom support from the Hugging Face team

Log In

Sign Up

Features

Contents

Supported models

Supported frameworks

https://huggingface.co/docs/transformers/index

Hugging Face Tasks Natural Language Processing

Text Classification

3345 models

Token Classification

1492 models

Question Answering

1140 models

Translation

1467 models

Summarization

323 models

Text Generation

3959 models

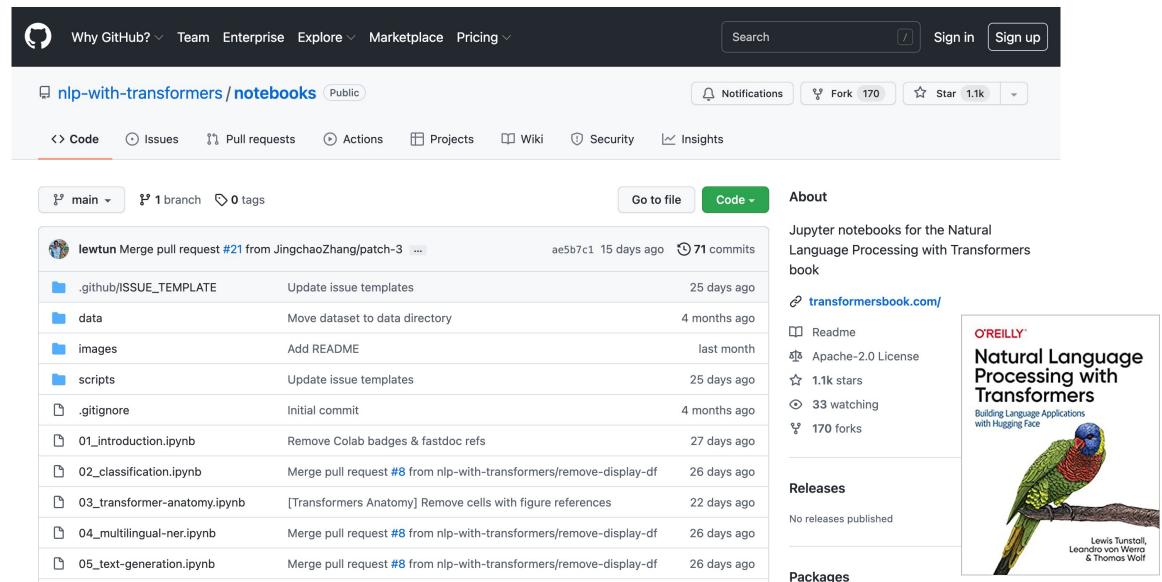
Fill-Mask

2453 models

Sentence Similarity

352 models

NLP with Transformers Github



NLP with Transformers Github Notebooks



Running on a cloud platform

To run these notebooks on a cloud platform, just click on one of the badges in the table below:

Chapter	Colab	Kaggle	Gradient	Studio Lab
Introduction	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Text Classification	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Transformer Anatomy	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Multilingual Named Entity Recognition	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Text Generation	Open in Colab	k Open in Kaggle	Run on Gradient	۩ Open Studio Lab
Summarization	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Question Answering	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Making Transformers Efficient in Production	Open in Colab	k Open in Kaggle	Run on Gradient	۩ Open Studio Lab
Dealing with Few to No Labels	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Training Transformers from Scratch	Open in Colab	k Open in Kaggle	Run on Gradient	€ Open Studio Lab
Future Directions	Open in Colab	k Open in Kaggle	Run on Gradient	۩ Open Studio Lab

Nowadays, the GPUs on Colab tend to be K80s (which have limited memory), so we recommend using Kaggle, Gradient, or SageMaker Studio Lab. These platforms tend to provide more performant GPUs like P100s, all for free!

NLP with Transformers

```
!git clone https://github.com/nlp-with-transformers/notebooks.git
%cd notebooks
from install import *
install_requirements()
```

```
from utils import *
setup chapter()
```

Text Classification

text = """Dear Amazon, last week I ordered an Optimus Prime action figure \
from your online store in Germany. Unfortunately, when I opened the package, \
I discovered to my horror that I had been sent an action figure of Megatron \
instead! As a lifelong enemy of the Deceptions, I hope you can understand my \
dilemma. To resolve the issue, I demand an exchange of Megatron for the \
Optimus Prime figure I ordered. Enclosed are copies of my records concerning \
this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""

Text Classification

```
text = """Dear Amazon, last week I ordered an Optimus Prime action figure \
from your online store in Germany. Unfortunately, when I opened the package, \
I discovered to my horror that I had been sent an action figure of Megatron \
instead! As a lifelong enemy of the Deceptions, I hope you can understand my \
dilemma. To resolve the issue, I demand an exchange of Megatron for the \
Optimus Prime figure I ordered. Enclosed are copies of my records concerning \
this purchase. I expect to hear from you soon. Sincerely, Bumblebee."""
```

```
from transformers import pipeline
classifier = pipeline("text-classification")
```

```
import pandas as pd
outputs = classifier(text)
pd.DataFrame(outputs)
```

label score
NEGATIVE 0.901546

Text Classification

```
from transformers import pipeline
classifier = pipeline("text-classification")
```

```
import pandas as pd
outputs = classifier(text)
pd.DataFrame(outputs)
```

label score

0 NEGATIVE 0.901546

Named Entity Recognition

```
ner_tagger = pipeline("ner", aggregation_strategy="simple")
outputs = ner_tagger(text)
pd.DataFrame(outputs)
```

	entity_group	score	word	start	end
0	ORG	0.879010	Amazon	5	11
1	MISC	0.990859	Optimus Prime	36	49
2	LOC	0.999755	Germany	90	97
3	MISC	0.556570	Mega	208	212
4	PER	0.590256	##tron	212	216
5	ORG	0.669692	Decept	253	259
6	MISC	0.498349	##icons	259	264
7	MISC	0.775362	Megatron	350	358
8	MISC	0.987854	Optimus Prime	367	380
9	PER	0.812096	Bumblebee	502	511

Question Answering

```
reader = pipeline("question-answering")
question = "What does the customer want?"
outputs = reader(question=question, context=text)
pd.DataFrame([outputs])
```

	score	start	end	answer
0	0.631292	335	358	an exchange of Megatron

Summarization

```
summarizer = pipeline("summarization")
outputs = summarizer(text, max_length=45, clean_up_tokenization_spaces=True)
print(outputs[0]['summary_text'])
```

Bumblebee ordered an Optimus Prime action figure from your online store in Germany. Unfortunately, when I opened the package, I discovered to my horror that I had been sent an action figure of Megatron instead.

Translation

Sehr geehrter Amazon, letzte Woche habe ich eine Optimus Prime Action Figur aus Ihrem Online-Shop in Deutschland bestellt. Leider, als ich das Paket öffnete, entdeckte ich zu meinem Entsetzen, dass ich stattdessen eine Action Figur von Megatron geschickt worden war! Als lebenslanger Feind der Decepticons, Ich hoffe, Sie können mein Dilemma verstehen. Um das Problem zu lösen, Ich fordere einen Austausch von Megatron für die Optimus Prime Figur habe ich bestellt. Anbei sind Kopien meiner Aufzeichnungen über diesen Kauf. Ich erwarte, bald von Ihnen zu hören. Aufrichtig, Bumblebee.

Text Generation

```
from transformers import set_seed
set_seed(42) # Set the seed to get reproducible results

generator = pipeline("text-generation")
response = "Dear Bumblebee, I am sorry to hear that your order was mixed up."
prompt = text + "\n\nCustomer service response:\n" + response
outputs = generator(prompt, max_length=200)
print(outputs[0]['generated text'])
```

Customer service response:

Dear Bumblebee, I am sorry to hear that your order was mixed up. The order was completely mislabeled, which is very common in our online store, but I can appreciate it because it was my understanding from this site and our customer service of the previous day that your order was not made correct in our mind and that we are in a process of resolving this matter. We can assure you that your order

Text Generation

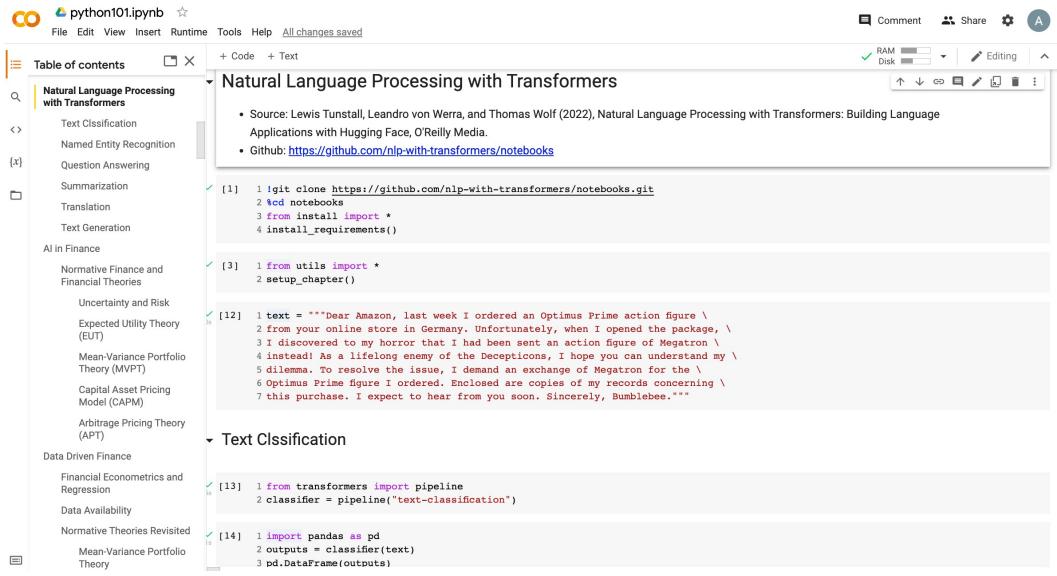
Dear Amazon, last week I ordered an Optimus Prime action figure from your online store in Germany. Unfortunately, when I opened the package, I discovered to my horror that I had been sent an action figure of Megatron instead! As a lifelong enemy of the Decepticons, I hope you can understand my dilemma. To resolve the issue, I demand an exchange of Megatron for the Optimus Prime figure I ordered. Enclosed are copies of my records concerning this purchase. I expect to hear from you soon. Sincerely, Bumblebee.

Customer service response:

Dear Bumblebee, I am sorry to hear that your order was mixed up. The order was completely mislabeled, which is very common in our online store, but I can appreciate it because it was my understanding from this site and our customer service of the previous day that your order was not made correct in our mind and that we are in a process of resolving this matter. We can assure you that your order

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



Summary

- Natural Language Processing with Transformers
 - Transformer (Attention is All You Need)
 - Encoder-Decoder
 - Attention Mechanisms
 - Transfer Learning in NLP
 - BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

References

- Lewis Tunstall, Leandro von Werra, and Thomas Wolf (2022), Natural Language Processing with Transformers: Building Language Applications with Hugging Face, O'Reilly Media.
- Denis Rothman (2021), Transformers for Natural Language Processing: Build innovative deep neural network architectures for NLP with Python, PyTorch, TensorFlow, BERT, RoBERTa, and more, Packt Publishing.
- Savaş Yıldırım and Meysam Asgari-Chenaghlu (2021), Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques, Packt Publishing.
- Sowmya Vajjala, Bodhisattwa Majumder, Anuj Gupta (2020), Practical Natural Language Processing: A Comprehensive Guide to Building Real-World NLP Systems, O'Reilly Media.
- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition,
 Pearson.
- Dipanjan Sarkar (2019), Text Analytics with Python: A Practitioner's Guide to Natural Language Processing, Second Edition. APress.
- Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda (2018), Applied Text Analysis with Python: Enabling Language-Aware Data Products with Machine Learning, O'Reilly.
- Charu C. Aggarwal (2018), Machine Learning for Text, Springer.
- Gabe Ignatow and Rada F. Mihalcea (2017), An Introduction to Text Mining: Research Design, Data Collection, and Analysis, SAGE Publications.
- Rajesh Arumugam (2018), Hands-On Natural Language Processing with Python: A practical guide to applying deep learning architectures to your NLP
 applications, Packt.
- Jake VanderPlas (2016), Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media.
- Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805.
- The Super Duper NLP Repo, https://notebooks.quantumstat.com/
- Jay Alammar (2018), The Illustrated Transformer, http://jalammar.github.io/illustrated-transformer/
- Jay Alammar (2019), A Visual Guide to Using BERT for the First Time, http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/
- NLP with Transformer, https://github.com/nlp-with-transformers/notebooks
- Min-Yuh Day (2022), Python 101, https://tinyurl.com/aintpupython101