Q] G

B3Rk > DevOpsfv 2 X 5B 3
#2 7% & ¥ FuDevOps B #H1L

(Testing, DevOps and Code Management: Code management and DevOps automation)

1101SE10
MBA, IM, NTPU (M6131) (Fall 2021)
Thu 11, 12, 13 (19:25-22:10) (209)

Min-Yuh Day
REH

B 2% Associate Professor
| B #%
Institute of Information Management, National Taipei University

RSt RE FREERALA [&] 3% [=]

https://web.ntpu.edu.tw/~myday
2021/12/23 EI L

https://web.ntpu.edu.tw/~myday/
https://web.ntpu.edu.tw/~myday/cindex.htm
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://www.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday

#4#2 A4 (Syllabus) G

aaaaaaaaaaaaaaaaaaaaaaaa

& (Week) B #j (Date) P % (Subject/Topics)
1 2021/09/23 #x %2 T #2453 (Introduction to Software Engineering)
2 2021/09/30 M E LB EZEIE B E LT - RAR:
(Software Products and Project Management:
Software product management and prototyping)

3 2021/10/07 #ifE#kfg T 42 @ I H % Scrum ~ A& FRAZ K K3
(Agile Software Engineering:
Agile methods, Scrum, and Extreme Programming)

4 2021/10/14 zh#e ~ 35 = A2 ZF (Features, Scenarios, and Stories)
5 2021/10/21 #k5EE 1T £24E L #F %% | (Case Study on Software Engineering 1)

6 2021/10/28 HKALHH : EAEX - A%HMR SRA LM
(Software Architecture: Architectural design,
System decomposition, and Distribution architecture)

#4#2 A4 (Syllabus) G

aaaaaaaaaaaaaaaaaaaaaaaa

Xk (Week) B Bj (Date) M2 (Subject/Topics)
7 2021/11/04 FENEah s ERALE S - REEP RS

(Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service)

8 2021/11/11 #j ¥ 3k % (Midterm Project Report)

9 2021/11/18 Z3EH W1 E s pE A 4%
(Cloud Computing and Cloud Software Architecture)
10 2021/11/25 #4ARF5224% RESTFUlBRTS ~ ARFS 3R E
(Microservices Architecture, RESTful services,
Service deployment)
11 2021/12/02 3242 #Fuf& 44 (Security and Privacy);
o] 5 6442 X 2% 3t (Reliable Programming)
12 2021/12/09 #kEE2 T 4218 52 |
(Case Study on Software Engineering Il)

B R (Week)

F 2 A& (Syllabus) G

H 25 (Date) M 2 (Subject/Topics)

13 2021/12/16 # 2T 2 % ¥ %

14

15
16
17
18

2021/12/23

2021/12/30
2022/01/06
2022/01/13
2022/01/20

(Industry Practices of Software Engineering)

Al ZhEER K >~ BlE 8 #1k

BlREEE G - RABE L

(Testing: Functional testing, Test automation,
Test-driven development, and Code reviews);
DevOpsfu 2 X 45 & 32 : £2 X #5 2 ¥ fvDevOps B #h1t
(DevOps and Code Management:

Code management and DevOps automation)

B K3k & | (Final Project Report |)
B R #k & 1l (Final Project Report Il)
24 g £ 2% (Self-learning)

24 g X2 (Self-learning)

Software Engineering
and
Project Management

é N\ [N\ [N\ [N\ [)
Analyze Design Build Test Deliver
Requirements > System and > Implementation > Integration > Operation

definition Software and and and
design unit testing system testing maintenance

. /L /L /L J O\ J

Project Management

Project-based software engineering

CUSTOMER

Problem

generates helps-with

Implemented-by

Software

CUSTOMER and DEVELOPER
DEVELOPER

ooooo : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Product software engineering

DEVELOPER
@ Opportunity

Inspires realizes

iImplemented-by

et 0! Software
features
DEVELOPER DEVELOPER

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Software execution models

Stand-alone execution Hybrid execution Software as a service
User’s computer User’s computer User’s computer
User interface User interface Usen ¢
Product functionality Partial functionality ser interface

User data User data (browser or app)

Additional functionality
Product updates User data backups
Product updates

Product functionality
User data

Vendor’s servers Vendor’s servers Vendor’s servers

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product ma nagement concerns

Business
needs

Product
manager

Technology Customer
constraints experience

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Technical interactions of
product managers

| management |

Product
vision

Product
backlog

| management |

Acceptance
testing

Product

manager

User
interface
design

J

User stories
and
scenarios

Customer
testing

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

10

Software Development Life Cycle (sowq)
The waterfall model

Requirements
definition
7\
System and
Software design
7y
Implementation
and unit testing
7\
Integration and
system testing

‘ ﬁperation and
Kmaintenance

Source :lan Sommerv ille (2015), Software Engineering, 10th Edition, Pearson. 11

Plan-based and Agile development

c -, - TS sEmEEEEEEEEEEEEEEEEEEEEESEE \

Plan-based development

Requirements Requirements Design and
engineering specification implementation

\ -~

Requirements change requests

Agile development

[
[
[
I Requirements Design and
[engineering mplementatlon
[
[
[

Source: lan Sommerville (2015), Software Engineering, 10th Edition, Pearson.

12

The Continuum of Life Cycles

- A
Incremental Agile
-
()
2
o
a
©
>
5
=2
S
t | Predictive Iterative
>
Low High
Degree of Change

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute 13

Predictive Life Cycle

[AnalyzeH Design H Build H Test H Deliver]

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

14

Analyze

Iterative Life Cycle

Prototype

Analyze
Design

Refine

7

r

Build
Test

‘

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Deliver

15

A Life Cycle of

Varying-Sized Increments

Analyze
Design
Build
Test
Deliver

r

_

Analyze
Design
Build
Test
Deliver

~

J

-

_

Analyze
Design
Build
Test
Deliver

\

J

Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

16

Ilteration-Based and Flow-Based
Agile Life Cycles

Iteration-Based Agile

4 Y Y Y Y Y Y A
Requirements | Requirements | Requirements | Requirements Requirements | Requirements
Analysis Analysis Analysis Analysis Repeat Analysis Analysis
Design Design Design Design as needed Design Design
Build Build Build Build Build Build
Test Test Test Test Test Test
. AL Al AL Al AL Al J

Flow-Based Agile
4 Y Y Y Y Y N
Requirements |Requirements Requirements Requirements Requirements
Analysis Analysis Analysis Analysis Analysis
Design Design Design Design Design
Build Build Build asR:ep:;: . Build Build
Test Test Test Test Test
the number of |the number of the number of the number of the number of
features in the features in features in the WIP features in the| featuresinthe WIP
WIP limit the WIP limit limit WIP limit limit
_ A A A A A J
Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute 17

From personas to features

0{ Personas | Away of representing users

inspire

Natural language descriptions of a user
interacting with a software product

Scenarios

are-developed-into

©

Inspire

Stories

O

[Features

Fragments of product functionality

define

Natural language
descriptions of
something that is
needed or wanted
by users

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 18

Multi-tier client-server architecture

<:éﬁent1
<:?Hent2

Web Application Database
Server Server Server

<:éﬁent3
<:§ﬁent".

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

N

Service-oriented Architecture

Client 1

<:§Hent2

<:%ﬁent3

Web
Server

Service
gateway

(:%ﬁent.

N

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineerin

Services

g, Pearson

20

VM

Virtual Virtual
web server mail server
rmmmmm—————— | (o ——————]
| 1 1 |
. | Server ||| Server ||
| 1 1 |
: software N software :
I |1 I
| 1 1 |
| | Guest | I 1| Guest ||
: oS & oS :
| 1 1 |
U o o o o e o e e o e o\ o o o o o o - J
Hypervisor
Host OS

Server Hardware

Container

User 1

Container 1

Application
software

Server
software

User 2

Container 2

Application
software

Server
software

Container manager

Host OS

Server Hardware

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

21

Everything as a service

Photo Software as a service Logistics
editing (Saa$) management
. Database
Cloud Platform as a service f
management (PaaS) Software
Monitoring development
Storage Infrastructure as a service | Computing
Network (IaaS) Virtualization
Cloud data center

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

22

Software as a service

Software
customers \ \ / /
SOfthare Software services
provider

Cloud
provider Cloud Infrastructure

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 23

Microservices architecture —
key design questions

& What are the

microservices that

-

How should data
be distributed and

g

~N

shared?

the system be

make up the system?
\J1a%E tp the system?)

~

I

Microservices
architecture
design

 How should the) 4
microservices in service failure be

\coordinated?

" How should

each other?

microservices
communicate with

\

J

How should)

detected, reported

\ and managed?

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

24

Types of security threat

An attacker attempts to An attacker attempts
deny access to the system to damage the
for legitimate users system or its data
Availability Integrity
PRODUCT
PROGRAM
Distributed denial of Virus
service (DDoS) attack DATA
Ransomware
Data theft T
Confidentiality
threats

An attacker tries to gain
access to private information
held by the system

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 25

Software product quality attributes
1 2

Reliability Availability

3

Resilience

Software
product
quality

attributes

6

Usability

Maintainability

Responsiveness

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

A refactoring process

0/\6

. Identif
Identify code .y
, , refactoring
smell
|) strategy

4,

(3,

Make small
Run automated))
improvement until
code tests
|) _strategy completed

N’

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

27

Functional testing

Start

Unit
Testing

e

Y

Feature
Testing

Release
Testing

System
Testing

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Test-driven development (TDD)

5% Identify new
functionality

N

of functionality

Identify partial implementation

Functionality
complete

Functionality
incomplete

Refactor code
if required

All tests pass

Write code stub
that will fail test

Run all
automated test

| 4

Implement code that should
cause failing test to pass

Test failure

Run all
utomated test

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

29

Multi-skilled DevOps team

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

30

Code management and DevOps

DevOps automation

Continuous Continuous Continuous Infrastructure
integration deployment delivery as code
1 Code management system *
4 . .)
Branching and merging
Save and
Reco‘ver Code .
version . retrieve
information repository versions
S Transfer code to/from developer’s filestore)

f DevOps measurement *

Data
analysis

(ot] [] |

Report
generation

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

31

Testing:
Functional testing,

Test automation,
Test-driven development,

and Code reviews

Outline

* Software testing

* Functional testing

* Test automation

* Test-driven development
* Code reviews

Software testing

e Software testing is a process in which you execute your
program using data that simulates user inputs.

* You observe its behaviour to see whether or not your
program is doing what it is supposed to do.

— Tests pass if the behaviour is what you expect.
Tests fail if the behaviour differs from that expected.

— If your program does what you expect, this shows

that for the inputs used, the program behaves
correctly.

* If these inputs are representative of a larger set of
inputs, you can infer that the program will behave
correctly for all members of this larger mput set.

Source : lan Sommervi ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pea

34

Program bugs

* If the behaviour of the program does not match the
behaviour that you expect, then this means that there
are bugs in your program that need to be fixed.

 There are two causes of program bugs:

— Programming errors

* You have accidentally included faults in your program code.
For example: ‘off-by-1’ error

— Understanding errors
* You have misunderstood or have been unaware of some of
the details of what the program is supposed to do.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

35

Types of testing

4 . N
Functional o
. Test the functionality of the overall system.
testing
\ A
4 Y
U testi Test that the software product is useful to
>ertesting and usable by end-users.
\ A

and
_ load testing

" Performance |

N

Test that the software works quickly and
can handle the expected load placed
on the system by its users.

s
Security

testing

_

Test that the software maintains its integrity
and can protect user information
from theft and damage.

), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

36

Functional testing

* Functional testing involves developing a large set
of program tests so that, ideally, all of a
program’s code is executed at least once.

 The number of tests needed obviously depends
on the size and the functionality of the
application.

* For a business-focused web application, you may
have to develop thousands of tests to convince
yourself that your product is ready for release to
customers.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

37

Functional testing

* Functional testing is a staged activity in which
you initially test individual units of code.
You integrate code units with other units to
create larger units then do more testing.

* The process continues until you have created a
complete system ready for release.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

38

Functional testing

Start

Unit
Testing

e

Y

Feature
Testing

Release
Testing

System
Testing

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

A name checking function

def namecheck(s):

Checks that a name only includes alphabetic characters, - or
a single quote. Names must be between 2 and 40 characters long

quoted strings and -- are disallowed

namex = r"'"[a-zA-Z][a-2A-Z-"']1{1,39}s"
if re.match(namex, s):
if re.search("'.*'", s) or re.search("--", s):
return False
else:
return True
else:

return False

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 40

Equivalence partitions for the
name checking function

Correct names 1
The inputs only includes alphabetic characters and are
between 2 and 40 characters long.

Correct names 2
The inputs only includes alphabetic characters, hyphens or

apostrophes and are between 2 and 40 characters long.

Incorrect names 1
The inputs are between 2 and 40 characters long but include
disallowed characters.

Incorrect names 2
The inputs include allowed characters but are either a single
character or are more than 40 characters long.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 41

Unit testing guidelines (1)

Test edge cases

If your partition has upper and lower bounds (e.g. length of
strings, numbers, etc.) choose inputs at the edges of the
range.

Force errors

Choose test inputs that force the system to generate all error

messages. Choose test inputs that should generate invalid
outputs.

Fill buffers
Choose test inputs that cause all input buffers to overflow.

Repeat yourself
Repeat the same test input or series of inputs several times.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 42

Unit testing guidelines (2)

Overflow and underflow

If your program does numeric calculations, choose test inputs that
cause it to calculate very large or very small numbers.

Don’t forget null and zero

If your program uses pointers or strings, always test with null
pointers and strings.

Keep count

When dealing with lists and list transformation, keep count
of the number of elements in each list and check that these
are consistent after each transformation.

One is different
If your program deals with sequences, always test with
sequences that have a single value.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 43

Feature testing

* Features have to be tested to show that the
functionality is implemented as expected and
that the functionality meets the real needs of

users.

— For example, if your product has a feature that allows
users to login using their Google account, then you
have to check that this registers the user correctly
and informs them of what information will be shared
with Google.

— You may want to check that it gives users the option
to sign up for email information about your product.

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson 44

Feature testing

* Normally, a feature that does several things is
implemented by multiple, interacting, program
units.

* These units may be implemented by different
developers and all of these developers should be
involved in the feature testing process.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

45

Types of feature test

* |nteraction tests

— These test the interactions between the units that implement
the feature. The developers of the units that are combined to
make up the feature may have different understandings of
what is required of that feature.

— These misunderstandings will not show up in unit tests but
may only come to light when the units are integrated.

— The integration may also reveal bugs in program units, which
were not exposed by unit testing.

e Usefulness tests

— These test that the feature implements what users
are likely to want.

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

46

User stories for the
sign-in with Google feature

* User registration
As a user, | want to be able to login without creating a
new account so that | don’t have to remember another

login id and password.

* Information sharing
As a user, | want to know what information you will
share with other companies. | want to be able to cancel
my registration if | don’t want to share this information.

* Email choice
As a user, | want to be able to choose the types of email
that I'll get from you when | register for an account.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 47

Feature tests for
sigh-in with Google

* Initial login screen
Test that the screen displaying a request for Google
account credentials is correctly displayed when a user
clicks on the ‘Sign-in with Google’ link. Test that the
login is completed if the user is already logged in to
Google.

* Incorrect credentials
Test that the error message and retry screen is displayed
if the user inputs incorrect Google credentials.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 48

Feature tests for
sigh-in with Google

e Shared information
Test that the information shared with Google is
displayed, along with a cancel or confirm option. Test
that the registration is cancelled if the cancel option is
chosen.

* Email opt-in
Test that the user is offered a menu of options for email

information and can choose multiple items to opt-in to

emails. Test that the user is not registered for any emails
if no options are selected.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 49

System and release testing

e System testing involves testing the system as a
whole, rather than the individual system
features.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

50

System testing

* System testing should focus on four things:

— Testing to discover if there are unexpected and
unwanted interactions between the features in a
system.

— Testing to discover if the system features work
together effectively to support what users really want
to do with the system.

— Testing the system to make sure it operates in the
expected way in the different environments where it
will be used.

— Testing the responsiveness, throughput, security and
other quality attributes of the system.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

51

Scenario-based testing

 The best way to systematically test a system is to
start with a set of scenarios that describe
possible uses of the system and then work
through these scenarios each time a new version
of the system is created.

* Using the scenario, you identify a set of
end-to-end pathways that users might follow
when using the system.

* An end-to-end pathway is a sequence of actions
from starting to use the system for the task,
through to completlon of the task

ooooo : lan Sommerville (2019), Engineering Software Products: An Introduc o Modern Software Engineering, Pearson. 52

Choosing a holiday destination
End-to-end pathways

User inputs departure airport and chooses to see only
direct flights. User quits.

User inputs departure airport and chooses to see all flights.

User quits.

User chooses destination country and chooses to see all
flights. User quits.

User inputs departure airport and chooses to see direct
flights. User sets filter specifying departure times and
prices. User quits.

User inputs departure airport and chooses to see direct
flights. User sets filter specifying departure times and prices.
User selects a displayed flight and clicks through to airline
website. User returns to holiday planner after booking flight.

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

53

Release testing

e Release testing is a type of system testing where
a system that’s intended for release to customers

is tested.

* Preparing a system for release involves packaging
that system for deployment (e.g. in a container if
it is a cloud service) and installing software and
libraries that are used by your product.

* You must define configuration parameters such
as the name of a root directory, the database size
limit per user and so on.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 54

Release testing and System testing

 The fundamental differences between
release testing and system testing are:

— Release testing tests the system in its real operational
environment rather than in a test environment.
Problems commonly arise with real user data, which

is sometimes more complex and less reliable than
test data.

— The aim of release testing is to decide if the system is
good enough to release, not to detect bugs in the
system. Therefore, some tests that ‘fail’ may be
ignored if these have minimal consequences for most
users.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

55

Test automation
Automated testing is based on the idea that
tests should be executable.

An executable test includes the input data to the
unit that is being tested, the expected result and

a check that the unit returns the expected result.

You run the test and the test passes if the
unit returns the expected result.

Normally, you should develop hundreds or
thousands of executable tests for a software
product.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

56

Automated testing

Files of executable tests

!

Code

eing tested

L //
Test Testing
runner framework

}

Test
Report

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

57

Test methods for an interest calculator

TestInterestCalculator inherits attributes and methods from the class

TestCase in the testing framework unittest

class TestInterestCalculator(unittest.TestCase):
Define a set of unit tests where each test tests one thing only
Tests should start with test and the name should explain what is being tested
def test_ zeroprincipal (self):
#Arrange - set up the test parameters
p=0; r=3; n= 31
result should be = 0
#Action - Call the method to be tested
interest = interest calculator (p, r, n)
#Assert - test what should be true
self.assertEqual (result should be, interest)

def test yearly interest(self):
#Arrange - set up the test parameters
p = 17000; r = 3; n = 365
#Action - Call the method to be tested
result should be = 270.36
interest = interest calculator(p, r, n)
#Assert - test what should be true
self.assertEqual (result should be, interest)

Automated tests

* [tis good practice to
structure automated tests into three parts:

1. Arrange

* You set up the system to run the test. This involves defining the
test parameters and, if necessary, mock objects that emulate the
functionality of code that has not yet been developed.

2. Action

* You call the unit that is being tested with the test parameters.

3. Assert

* You make an assertion about what should hold if the unit
being tested has executed successfully.
AssertEquals: checks if its parameters are equal.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

59

Executable tests for the namecheck function (1)

import unittest

from RE_

checker import namecheck

class TestNameCheck (unittest.TestCase):

def

def

def

def

def

def

test alphaname (self):

self.assertTrue (namecheck ('Sommerville'))

test doublequote (self):
self.assertFalse (namecheck ("Thisis'maliciouscode'"))

test namestartswithhyphen (self):

self.assertFalse (namecheck ('-Sommerville'))

test namestartswithquote (self):
self.assertFalse (namecheck ("'Reilly"))

test nametoolong (self):

self.assertFalse (namecheck ('Thisisalongstringwithmorethen40charactersfrombeginningtoend'))

test nametooshort (self):
self.assertFalse (namecheck ('S'))

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

60

Executable tests for the namecheck function (2)

def

def

def

def

def

def

def

def

test namewithdigit (self):
self.assertFalse (namecheck('C-3P0'))

test namewithdoublehyphen (self):
self.assertFalse (namecheck ('--badcode’))

test namewithhyphen (self):
self.assertTrue (namecheck ('Washington-Wilson'))

test namewithinvalidchar (self):
self.assertFalse (namecheck('Sommer ville'))

test namewithquote (self):
self.assertTrue (namecheck ("O'Reilly"))

test namewithspaces (self):
self.assertFalse (namecheck ('Washington Wilson'))

test shortname (self):

self.assertTrue ('Sx')

test thiswillfail (self)

self.assertTrue (namecheck ("O Reilly"))

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

61

Code to run unit tests from files

import unittest

loader = unittest.TestLoader ()

#Find the test files in the current directory
tests = loader.discover('.')

#Specify the level of information provided by
the test runner

testRunner = unittest.runner.TextTestRunner (verbosity=2)

testRunner.run(tests)

The test pyramid

Increased automation

Reduced costs
System

tests

/ Feature tests \

Unit tests

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

63

Feature editing through an API

Browser or
mobile app interface

Loy

Feature AP
tests

Y Y
Feature 1 Feature 2
Y Y
Feature 3 Feature 4

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Interaction recording and playback

Browser or
mobile app interface

User action Interaction User action
recording session records playback

System API

System being tested

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

Test-driven development (TDD)

Test-driven development (TDD) is an approach to program
development that is based around the general idea that you
should write an executable test or tests for code that you are
writing before you write the code.

It was introduced by early users of the Extreme Programming
agile method, but it can be used with any incremental
development approach.

Test-driven development works best for the development of
individual program units and it is more difficult to apply to
system testing.

Even the strongest advocates of TDD accept that it is
challenging to use this approach when you are developing and
testing systems with graphical user interfaces.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

66

Test-driven development (TDD)

5% Identify new
functionality

N

of functionality

Identify partial implementation

Functionality
complete

Functionality
incomplete

Refactor code
if required

All tests pass

Write code stub
that will fail test

Run all
automated test

| 4

Implement code that should
cause failing test to pass

Test failure

Run all
utomated test

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

67

Stages of test-driven development

Identify partial implementation

Break down the implementation of the functionality required
into smaller mini-units. Choose one of these mini-units for
implementation.

Write mini-unit tests

Write one or more automated tests for the mini-unit that you
have chosen for implementation. The mini-unit should pass
these tests if it is properly implemented.

Write a code stub that will fail test

Write incomplete code that will be called to implement the mini-
unit. You know this will fail.

Run all existing automated tests
All previous tests should pass. The test for the incomplete code

should fail.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 68

Stages of test-driven development

5. Implement code that should cause the failing test to pass
Write code to implement the mini-unit, which should cause it to
operate correctly

6. Rerun all automated tests
If any tests fail, your code is probably incorrect. Keep working on
it until all tests pass.

7. Refactor code if necessary
If all tests pass, you can move on to implementing the next mini-
unit. If you see ways of improving your code, you should do this
before the next stage of implementation.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 69

Benefits of test-driven development

It is a systematic approach to testing in which tests are clearly
linked to sections of the program code.

— This means you can be confident that your tests cover all of
the code that has been developed and that there are no
untested code sections in the delivered code.

The tests act as a written specification for the program code. In
principle at least, it should be possible to understand what the
program does by reading the tests.

Debugging is simplified because, when a program failure is
observed, you can immediately link this to the last increment of
code that you added to the system.

TDD leads to simpler code as programmers only write code that’s
necessary to pass tests. They don’t over-engineer their code with
complex features that aren’t needed.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

70

Reasons for not using TDD

TDD discourages radical program change
| focused on the tests rather than the problem |

was trying to solve

| spent too much time thinking about
implementation details rather than the

programming problem

It is hard to write ‘bad data’ tests

Source : lan Sommerv ille (2019), Engineering Software Products: An Intr

odu

ction to Modern Software Engineering, Pearson

71

Security testing

e Security testing aims to find vulnerabilities that may be
exploited by an attacker and to provide convincing
evidence that the system is sufficiently secure.

* The tests should demonstrate that the system can resist
attacks on its availability, attacks that try to inject
malware and attacks that try to corrupt or steal users’
data and identity.

 Comprehensive security testing requires specialist
knowledge of software vulnerabilities and approaches to
testing that can find these vulnerabilities.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 72

Risk-based security testing

A risk-based approach to security testing involves
identifying common risks and developing tests to

demonstrate that the system protects itself from these
risks.

You may also use automated tools that scan your system

to check for known vulnerabilities, such as unused HTTP
ports being left open.

Based on the risks that have been identified, you then
design tests and checks to see if the system is vulnerable.

It may be possible to construct automated tests for some
of these checks, but others inevitably involve manual
checking of the system’s behaviour and its files.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

73

Risk analysis

* Once you have identified security risks, you then
analyze them to assess how they might arise.

— The user has set weak passwords that can be guessed
by an attacker.

— The system’s password file has been stolen and
passwords discovered by attacker.
* Develop tests to check some of these
possibilities.
— For example, you might run a test to check that the

code that allows users to set their passwords always
checks the strength of passwords.

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

74

Code reviews

Code reviews involve one or more people examining the
code to check for errors and anomalies and discussing
issues with the developer.

If problems are identified, it is the developer’s
responsibility to change the code to fix the problems.

Code reviews complement testing. They are effective in
finding bugs that arise through misunderstandings and
bugs that may only arise when unusual sequences of code
are executed.

Many software companies insist that all code has to go
through a process of code review before it is integrated
into the product codebase.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

75

Code reviews

Programmer Reviewer Programmer
EVIEW code to-do list
Prepare)
code
Write review Make code
Distribute report Changes
code/tests
Review Code :
)] Review Follow-up
preparation checking

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

The aim of program testing is to find bugs and to show

that a program does what its developers expect it to
do.

Four types of testing that are relevant to

software products are

functional testing, user testing,

load and performance testing and security testing.

Unit testing involves testing program units such as
functions or class methods that have a single
responsibility.

Feature testing focuses on testing individual system
features.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

77

Summary

* System testing tests the system as a whole to check
for unwanted interactions between features and
between the system and its environment.

 |dentifying equivalence partitions, in which all
inputs have the same characteristics, and choosing
test inputs at the boundaries of these partitions, is
an effective way of finding bugs in a program.

* User stories may be used as a basis for deriving
feature tests.

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

78

Summary

* Test automation is based on the idea that tests
should be executable. You develop a set of
executable tests and run these each time you
make a change to a system.

* The structure of an automated unit test should
be arrange-action-assert. You set up the test
parameters, call the function or method being
tested, and make an assertion of what should be
true after the action has been completed.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 79

Summary

* Test-driven development is an approach to
development where executable tests are written

before the code. Code is then developed to pass
the tests.

* A disadvantage of test-driven development is
that programmers focus on the detail of passing
tests rather than considering the broader
structure of their code and algorithms used.

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

80

Summary

e Security testing may be risk driven where a list
of security risks is used to identify tests that may

identify system vulnerabilities.

* Code reviews are an effective supplement to
testing. They involve people checking the code
to comment on the code quality and to look for
bugs.

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

81

DevOps and
Code Management:
Code management

and
DevOps automation

Outline

* Source code management
* DevOps automation
* DevOps measurement

Software support

* Traditionally, separate teams were responsible software
development, software release and software support.

* The development team passed over a ‘final’ version of
the software to a release team.

— Built a release version, tested this and prepared release
documentation before releasing the software to customers.

* A third team was responsible for providing customer
support.

— The original development team were sometimes also
responsible for implementing software changes.

— Alternatively, the software may have been maintained by a
separate ‘maintenance team’.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

84

Software Development,
release and support

Problem and bug
reports

Software]

Software
Support

Software
Development

Release

Deployed software
ready for use

Tested software
ready for release

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 85

DevOps

 There are inevitable delays and overheads in the
traditional support model.

* To speed up the release and support processes,
an alternative approach called
DevOps (Development + Operations)
has been developed.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

86

DevOps

* Three factors led to the development and
widespread adoption of DevOps:

— Agile software engineering reduced the development time
for software, but the traditional release process introduced
a bottleneck between development and deployment.

— Amazon re-engineered their software around services and
introduced an approach in which a service was developed
and supported by the same team. Amazon’s claim that this

led to significant improvements in reliability was widely
publicized.

— It became possible to release software as a service, running
on a public or private cloud. Software products did not have
to be released to users on physical media or downloads.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

87

Multi-skilled DevOps team

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

88

DevOps principles

* Everyone is responsible for everything
All team members have joint responsibility for developing,
delivering and supporting the software.

* Everything that can be automated should be automated
All activities involved in testing, deployment and support
should be automated if it is possible to do so. There should
be minimal manual involvement in deploying software.

 Measure first, change later
DevOps should be driven by a measurement program where
you collect data about the system and its operation. You
then use the collected data to inform decisions about
changing DevOps processes and tools.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

89

Benefits of DevOps

-

B Yg
Faster Software can be deployed to production more quickly

because communication delays between the people
dep|0yment)k involved in the process are dramatically reduced.

_
4 Y
Reduced The increment of functionality in each release is small
_ so there is less chance of feature interactions and
rISk other changes causing system failures and outages.
_ A
4 Y
Faster DevOps teams work together to get the
repair software up and running again as soon as possible.
_ A
f More A
e DevOps teams are happier and more productive
P than the teams involved in the separate activities.
_ teams A

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

90

Code management

 Code management is a set of software-supported
practices that is used to manage an evolving
codebase.

* During the development of a software product,
the development team will probably create tens
of thousands of lines of code and automated
tests.

* These will be organized into hundreds of files.
Dozens of libraries may be used, and several,
different programs may be involved in creating
and runnmg the code

oooooooooooooo ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

91

Code management

* You need code management to ensure that
changes made by different developers do not
interfere with each other, and to create different
product versions.

* Code management tools make it easy to create
an executable product from its source code files
and to run automated tests on that product.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

92

Code management and DevOps

Source code management, combined with
automated system building, is essential for
professional software engineering.

In companies that use DevOps, a modern code
management system is a fundamental requirement
for ‘automating everything’.

Not only does it store the project code that is
ultimately deployed, it also stores all other
information that is used in DevOps processes.

DevOps automation and measurement tools all
interact with the code management system

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 93

Code management and Devops

DevOps automation

Continuous
integration

)

Continuous
deployment

Continuous
delivery

Infrastructure
as code

|

1 Code management system *

4 . i
Branching and merging
Save and
Reco‘ver Code .
version) retrieve
information repository versions
S Transfer code to/from developer’s filestore

f DevOps measurement *

Data

analysis

Data
collection

Report
generation

| Lo) |

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

94

Code management fundamentals

Code management systems provide a set of features
that support four general areas:

Code transfer
— Developers take code into their personal file store to work on it then
return it to the shared code management system.
Version storage and retrieval
— Files may be stored in several different versions and specific versions of
these files can be retrieved.
Merging and branching
— Parallel development branches may be created for concurrent working.
Changes made by developers in different branches may be merged.
Version information

— Information about the different versions maintained in the system may
be stored and retrieved

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

95

Code repository

* All source code management systems have the
general form with a shared repository and a set
of features to manage the files in that repository:

— All source code files and file versions are stored in the
repository, as are other artefacts such as
configuration files, build scripts, shared libraries and
versions of tools used.

— The repository includes a database of information
about the stored files such as version information,
information about who has changed the files, what

changes were made at what times, and so on.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

96

Code repository

* Files can be transferred to and from the
repository and information about the different
versions of files and their relationships may be
updated.

— Specific versions of files and information about these
versions can always be retrieved from the repository.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

97

Features of
code management systems

Version and release identification

Change history recording

Independent development

Project support

Storage management

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

98

O git Git

* In 2005, Linus Torvalds, the developer of Linux,

revolutionized source code management by developing
a distributed version control system (DVCS) called Git to

manage the code of the Linux kernel.

* This was geared to supporting large-scale open source
development. It took advantage of the fact that storage
costs had fallen to such an extent that most users did
not have to be concerned with local storage

management.

* Instead of only keeping the copies of the files that users
are working on, Git maintains a clone of the repository
on every user’s computer

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson

99

100

Source: https://git-scm.com/

Benefits of
distributed code management

Resilience J
Speed J
Flexibility]

SSSSSS : lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 101

Branchi

ng and merging

Branching and merging are fundamental ideas that

are supported by a

A branch is an inde
is created when a d

The changes made

| code management systems.
nendent, stand-alone version that

eveloper wishes to change a file.
by developers in their own

branches may be merged to create a new shared

branch.

The repository ensures that branch files that have
been changed cannot overwrite repository files
without a merge operation.

Source : lan Sommerv ille (2019), Engineering

Software Products: An Introduction to Modern Software Engineering, Pearson. 102

Branching and merging

Feature experiment branch

Alice

Master branch
Merge

Bob

Bug fix branch

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 103

DevOps automation

By using DevOps with automated support, you can
dramatically reduce the time and costs for integration,
deployment and delivery.

Everything that can be, should be automated is a
fundamental principle of DevOps.

As well as reducing the costs and time required for
integration, deployment and delivery, process
automation also makes these processes more reliable
and reproducible.

Automation information is encoded in scripts and
system models that can be checked, reviewed, versioned

and stored in the project repository.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 104

Aspects of DevOps automation

4 Y)
Continuous Each time a developer commits a change to Fhe
. . project’s master branch, an executable version
L Integration I of the system is built and tested.
4 Y)
Continuous A simulation of the product’s operating environment
delivery is created and the executable software version is tested.
g A)
f A A I f th ' d ilabl j
Continuous new release o .t e system |s-ma e avallable
to users every time a change is made to the
\deplovmentjk master branch of the software.
g Y Machine-readable models of the infrastructure]
Infrastructu re (network, servers, routers, etc.)
as code on which the product executes are used by configuration
_ A management tools to build the software’s execution platform. |

Source: lan Sommervil

le (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

105

Characteristics of
infrastructure as code

N

Visibility
,
.

Reproducibility
,
-
Reliability

,
-

Recovery
,

n Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 106

DevOps measurement

* After you have adopted DevOps, you should try
to continuously improve your DevOps process to

achieve faster deployment of better-quality
software.

 There are four types of
software development measurement:

— Process measurement
—Service measurement
—Usage measurement

— Business success measurement

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 107

Automating measurement

e As far as possible, the DevOps principle of automating
everything should be applied to software measurement.

* You should instrument your software to collect data
about itself and you should use a monitoring system to
collect data about your software’s performance and
availability.

* Some process measurements can also be automated.

— However, there are problems in process
measurement because people are involved. They
work in different ways, may record information
differently and are affected by outside influences that
affect the way they work.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 108

Metrics used in the
DevOps scorecard

Process metrics

Change
volume

Deployment
frequency

Lead time from
development to

Percentage of
failed deploymen
deployment

Percentage
increase in
customer numbers

ber of customer

complaints

Mean time
to recovery

metrics

N

Performance
Availability

Service metrics

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 109

Summary

 DevOps is the integration of software development and
the management of that software once it has been
deployed for use. The same team is responsible for

development, deployment and software support.

* The benefits of DevOps are faster deployment, reduced

risk, faster repair of buggy code and more productive
teams.

e Source code management is essential to avoid changes
made by different developers interfering with each
other.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 110

Summary

* All code management systems are based around a
shared code repository with a set of features that
support code transfer, version storage and retrieval,
branching and merging and maintaining version
information.

e Gitis a distributed code management system that is the
most widely used system for software product
development. Each developer works with their own
copy of the repository which may be merged with the
shared project repository.

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 111

Summary

 DevOps is the integration of software development and
the management of that software once it has been
deployed for use. The same team is responsible for

development, deployment and software support.

* The benefits of DevOps are faster deployment, reduced

risk, faster repair of buggy code and more productive
teams.

e Source code management is essential to avoid changes
made by different developers interfering with each
other.

Source :lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 112

Summary

* Continuous integration means that as soon as a change
is committed to a project repository, it is integrated
with existing code and a new version of the system is
created for testing.

* Automated system building tools reduce the time
needed to compile and integrate the system by only
recompiling those components and their dependents
that have changed.

e Continuous deployment means that as soon as a
change is made, the deployed version of the system is
automatically updated. This is only possible when the
software product is delivered as a cloud-based service.

Source : lan Sommerv ille (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 113

Summary

Infrastructure as code means that the infrastructure
(network, installed software, etc.) on which software
executes is defined as a machine-readable model.
Automated tools, such as Chef and Puppet, can
provision servers based on the infrastructure model.

Measurement is a fundamental principle of DevOps.
You may make both process and product
measurements. Important process metrics are
deployment frequency, percentage of failed
deployments, and mean time to recovery from failure.

Source: lan Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson. 114

References

lan Sommerville (2019), Engineering Software Products: An
Introduction to Modern Software Engineering, Pearson.

lan Sommerville (2015), Software Engineering, 10th Edition,
Pearson.

Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software
Engineering at Google: Lessons Learned from Programming Over
Time, O'Reilly Media.

Project Management Institute (2021), A Guide to the Project

Management Body of Knowledge (PMBOK Guide) — Seventh Edition
and The Standard for Project Management, PMI

Project Management Institute (2017), A Guide to the Project
Management Body of Knowledge (PMBOK Guide), Sixth Edition,
Project Management Institute

Project Management Institute (2017), Agile Practice Guide, Project
Management Institute

