
1

Min-Yuh Day
戴敏育

Associate Professor
副教授

Institute of Information Management, National Taipei University
國立臺北大學 資訊管理研究所

https://web.ntpu.edu.tw/~myday
2021-10-14

軟體工程
(Software Engineering)

1101SE04
MBA, IM, NTPU (M6131) (Fall 2021)
Thu 11, 12, 13 (19:25-22:10) (209)

功能、場景和故事
(Features, Scenarios, and Stories)

https://web.ntpu.edu.tw/~myday/
https://web.ntpu.edu.tw/~myday/cindex.htm
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://www.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday

週次 (Week) 日期 (Date) 內容 (Subject/Topics)
1 2021/09/23 軟體工程概論 (Introduction to Software Engineering)

2 2021/09/30 軟體產品與專案管理：軟體產品管理，原型設計
(Software Products and Project Management:

Software product management and prototyping)
3 2021/10/07 敏捷軟體工程：敏捷方法、Scrum、極限程式設計

(Agile Software Engineering:
Agile methods, Scrum, and Extreme Programming)

4 2021/10/14 功能、場景和故事 (Features, Scenarios, and Stories)

5 2021/10/21 軟體工程個案研究 I (Case Study on Software Engineering I)

6 2021/10/28 軟體架構：架構設計、系統分解、分散式架構
(Software Architecture: Architectural design,
System decomposition, and Distribution architecture)

2

課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)
7 2021/11/04 基於雲的軟體：虛擬化和容器、軟體即服務

(Cloud-Based Software: Virtualization and containers,
Everything as a service, Software as a service)

8 2021/11/11 期中報告 (Midterm Project Report)
9 2021/11/18 雲端運算與雲軟體架構

(Cloud Computing and Cloud Software Architecture)
10 2021/11/25 微服務架構：RESTful服務、服務部署

(Microservices Architecture, RESTful services,
Service deployment)

11 2021/12/02 軟體工程產業實務
(Industry Practices of Software Engineering)

12 2021/12/09 軟體工程個案研究 II
(Case Study on Software Engineering II)

3

課程大綱 (Syllabus)

週次 (Week) 日期 (Date) 內容 (Subject/Topics)
13 2021/12/16 安全和隱私 (Security and Privacy);

可靠的程式設計 (Reliable Programming)
14 2021/12/23 測試：功能測試、測試自動化、

測試驅動的開發、程式碼審查
(Testing: Functional testing, Test automation,
Test-driven development, and Code reviews);

DevOps和程式碼管理：程式碼管理和DevOps自動化
(DevOps and Code Management:
Code management and DevOps automation)

15 2021/12/30 期末報告 I (Final Project Report I)
16 2022/01/06 期末報告 II (Final Project Report II)
17 2022/01/13 學生自主學習 (Self-learning)
18 2022/01/20 學生自主學習 (Self-learning)

4

課程大綱 (Syllabus)

Software Engineering
and

Project Management

5

Analyze

Requirements
definition

Design

System and
Software

design

Build

Implementation
and

unit testing

Test

Integration
and

system testing

Deliver

Operation
and

maintenance

Project Management

Project-based software engineering

6

Problem

SoftwareRequirements

CUSTOMER

CUSTOMER and
DEVELOPER

DEVELOPER

generates

implemented-by

helps-with

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

Product software engineering

7Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Opportunity

SoftwareProduct
features

DEVELOPER

DEVELOPER DEVELOPER

inspires

implemented-by

realizes

1

Software execution models

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User interface
Product functionality

User data

Stand-alone execution Hybrid execution

Product updates

User’s computer

Vendor’s servers

User interface
Partial functionality

User data

Additional functionality
User data backups
Product updates

User’s computer

Vendor’s servers

Software as a service

User interface
(browser or app)

Product functionality
User data

User’s computer

Vendor’s servers

Product management concerns

9Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Business
needs

Technology
constraints

Customer
experience

Technical interactions of
product managers

10Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Product
manager

Product
backlog

management

Product
vision

management

Acceptance
testing

User
interface

design

Customer
testing

User stories
and

scenarios

Software Development Life Cycle (SDLC)

The waterfall model

11

Requirements
definition

System and
Software design

Implementation
and unit testing

Integration and
system testing

Operation and
maintenance

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

Plan-based and Agile development

12

Requirements
specification

Requirements
engineering

Design and
implementation

Requirements
engineering

Design and
implementation

Agile development

Plan-based development

Requirements change requests

Source: Ian Sommerville (2015), Software Engineering, 10th Edition, Pearson.

The Continuum of Life Cycles

13Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

IterativePredictive

Incremental Agile

Degree of Change

Fr
eq

ue
nc

y
of

 D
el

iv
er

y
Lo

w
Hi

gh

Low High

Predictive Life Cycle

14Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Design Build Test Deliver

Iterative Life Cycle

15Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze Analyze
Design

Build
Test Deliver

Prototype Refine

A Life Cycle of
Varying-Sized Increments

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Analyze
Design
Build
Test

Deliver

Iteration-Based and Flow-Based
Agile Life Cycles

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

Requirements
Analysis
Design
Build
Test

Iteration-Based Agile

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in

the WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Repeat
as needed

…

Requirements
Analysis
Design
Build
Test

the number of
features in the

WIP limit

Requirements
Analysis
Design
Build
Test

the number of
features in the WIP

limit

Flow-Based Agile

From personas to features

18

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Multi-tier client-server architecture

19Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Application
Server

Database
Server

Service-oriented Architecture

20Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Client 1

Client 2

Client 3

Client …

Web
Server

Service
gateway

S1

S2

S3

S4

S5

S6

Services

VM

21Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Server
software

Application
software

Container manager

Host OS

Server Hardware

User 1
Container 1

User 2
Container 2

Server
software

Application
software

Server
software

Guest
OS

Hypervisor

Host OS

Server Hardware

Server
software

Guest
OS

Virtual
web server

Virtual
mail server

Container

Everything as a service

22Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Infrastructure as a service
(IaaS)

Cloud data center

Photo
editing

Logistics
management

Computing
Virtualization

Platform as a service
(PaaS)

Software as a service
(SaaS)

Cloud
management
Monitoring

Storage
Network

Database
Software

development

Software as a service

23Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Cloud Infrastructure
Cloud

provider

Software
provider

Software
customers

Software services

24Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Microservices architecture –
key design questions

Microservices
architecture

design

How should
microservices

communicate with
each other?

How should
service failure be

detected, reported
and managed?

How should data
be distributed and

shared?

What are the
microservices that

make up the system?

How should the
microservices in

the system be
coordinated?

25Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Types of security threat

Availability
threats

DATA

SOFTWARE
PRODUCT

An attacker attempts to
deny access to the system

for legitimate users

PROGRAM

Integrity
threats

An attacker attempts
to damage the

system or its data

Confidentiality
threats

An attacker tries to gain
access to private information

held by the system

Distributed denial of
service (DDoS) attack

Virus

Ransomware
Data theft

26Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software product quality attributes

Software
product
quality

attributes

Reliability

Usability Maintainability

Security

Responsiveness

Resilience

Availability

1 2

3

4

5

6

7

27Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

A refactoring process

Start
Identify code

‘smell’

Identify
refactoring

strategy

Make small
improvement until
strategy completed

Run automated
code tests

1 2

34

28Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Functional testing
Start

Unit
Testing

Feature
Testing

System
Testing

Release
Testing

1

2

3

4

29Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Test-driven development (TDD)
Start Identify new

functionality

1

Identify partial implementation
of functionality

Write code stub
that will fail test

Run all
automated test

Run all
automated test

Implement code that should
cause failing test to pass

Refactor code
if required

Functionality
incomplete

Functionality
complete

All tests pass

Test failure

2

3

4

5

6

7

30Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

DevOps

Development

Deployment Support

Multi-skilled DevOps team

31Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Code management and DevOps

Code
repository

DevOps automation

Code management system

DevOps measurement

Continuous
integration

Continuous
deployment

Continuous
delivery

Infrastructure
as code

Data
collection

Data
analysis

Report
generation

Recover
version

information

Save and
retrieve
versions

Branching and merging

Transfer code to/from developer’s filestore

Personas,
Features,

scenarios and
stories

32

From personas to features

33

Natural language descriptions of a user
interacting with a software product

A way of representing users

Fragments of product functionality

Natural language
descriptions of
something that is
needed or wanted
by users

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

inspire

are-developed-into

define

inspire

Personas

Scenarios

Stories

Features

1

2

3

4

Software products
• Three factors that drive the design of software

products
– Business and consumer needs that are not met by

current products
– Dissatisfaction with existing business or consumer

software products
– Changes in technology that make completely new

types of product possible
• In the early stage of product development, you are

trying to understand, what product features would be
useful to users, and what they like and dislike about
the products that they use.

34Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Software features

• A feature is a fragment of functionality such as
a ‘print’ feature, a ‘change background
feature’, a ‘new document’ feature and so on.

• Before you start programming a product, you
should aim to create a list of features to be
included in your product.

• The feature list should be your starting point
for product design and development.

35Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User understanding
• It makes sense in any product development to spend

time trying to understand the potential users and
customers of your product.

• A range of techniques have been developed for
understanding the ways that people work and use
software.
– These include user interviews, surveys, ethnography and task

analysis.
– Some of these techniques are expensive and unrealistic for

small companies.
• Informal user analysis and discussions, which simply involve

asking users about their work, the software that they use, and its
strengths and weaknesses are inexpensive and very valuable.

36Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature description

37Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Input

The input from the
user and other

A description of
how the input data

is process

The output to the
user and the system

How the feature is
activated by the

user

Action

Output

Activation
Feature name

The ‘New Group’ feature description

38Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Input
The name of the

group chosen by the
user

A new container is
created with the
specified name

An empty document
container and an updated

list of documents that
includes the newly created

group

Using the ‘New
Group’ menu option
or keyboard shortcut

Action

Output

Activation
New Group

Personas
• You need to have an understanding of your potential users

to design features that they are likely to find useful and to
design a user interface that is suited to them.

• Personas are ‘imagined users’ where you create a character
portrait of a type of user that you think might use your
product.
– For example, if your product is aimed at managing

appointments for dentists, you might create a dentist
persona, a receptionist persona and a patient persona.

• Personas of different types of user help you imagine what
these users may want to do with your software and how it
might be used. They help you envisage difficulties that they
might have in understanding and using product features.

39Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Persona descriptions

• A persona should ‘paint a picture’ of a type of
product user. They should be relatively short and
easy-to-read.

• Describe their background and why they might
want to use your product.

• Say something about their educational
background and technical skills.

• These help you assess whether or not a software
feature is likely to be useful, understandable and
usable by typical product users.

40Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Persona descriptions

41Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Personalization Job-related

EducationRelevance

Persona

Include personal
information about

the individual

Include details of
the individual’s job

Include details of
their education and

experience

Include details of
their interest in the

product

Persona benefits
• Personas help you and other development team members

empathize with potential users of the software.
• Personas help because they are a tool that allows developers

to ‘step into the user’s shoes’.
– Instead of thinking about what you would do in a

particular situation, you can imagine how a persona would
behave and react.

• Personas can help you check your ideas to make sure that you
are not including product features that aren’t really needed.

• They help you to avoid making unwarranted assumptions,
based on your own knowledge, and designing an over-
complicated or irrelevant product.

42Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Deriving personas
• Personas should be based on an understanding of the potential

product users, their jobs, their background and their
aspirations.

• You should study and survey potential users to understand
what they want and how they might use the product.

• From this data, you can then abstract the essential information
about the different types of product user and use this as a basis
for creating personas.

• Personas that are developed on the basis of limited user
information are called proto-personas.

• Proto-personas may be created as a collective team exercise
using whatever information is available about potential product
users. They can never be as accurate as personas developed
from detailed user studies, but they are better than nothing.

43Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scenarios

• A scenario is a narrative that describes how a user, or
a group of users, might use your system.

• There is no need to include everything in a scenario –
the scenario isn’t a system specification.

• It is simply a description of a situation where a user
is using your product’s features to do something that
they want to do.

• Scenario descriptions may vary in length from two to
three paragraphs up to a page of text.

44Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Elements of a scenario description

45Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Scenario
description

Scenario
name

Overall
objective

What’s involved in
reaching the objective

Possible way that the
problem could be

tackled

Personas of actors
involved in the

scenarios

Problem that can’t be
addressed by existing

system

Writing scenarios
• Scenarios should always be written from the user’s

perspective and based on identified personas or real
users.

• Your starting point for scenario writing should be the
personas that you have created. You should normally
try to imagine several scenarios from each persona.

• Ideally, scenarios should be general and should not
include implementation information.

• However, describing an implementation is often the
easiest way to explain how a task is done.

• It is important to ensure that you have coverage of all of
the potential user roles when describing a system.

46Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User involvement
• It is easy for anyone to read and understand scenarios, so it is

possible to get users involved in their development.
• The best approach is to develop an imaginary scenario based

on our understanding of how the system might be used then
ask users to explain what you have got wrong.

• They might ask about things they did not understand and
suggest how the scenario could be extended and made more
realistic.

• Our experience was that users are not good at writing
scenarios.

• The scenarios that they created were based on how they
worked at the moment. They were far too detailed and the
users couldn’t easily generalize their experience.

47Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories

48

WHO As a <role>

WHAT I <want | need> to <do something>

WHY so that <reason>

Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

1

2

3

User stories
• As a <role>,

I <want | need> to <do something>
– As a teacher,

I want to tell all members of my group when new
information is available

• As a <role>
I <want | need> to <do something>
so that <reason>
– As a teacher,

I need to be able to report who is attending a class trip
so that the school maintains the required health and
safety records.

49Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories

• Scenarios are high-level stories of system use.
They should describe a sequence of
interactions with the system but should not
include details of these interactions.

• User stories are finer-grain narratives that set
out in a more detailed and structured way a
single thing that a user wants from a software
system.
– As an author, I need a way to organize the book

that I’m writing into chapters and sections.

50Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories
• This story reflects what has become the standard

format of a user story:
• As a <role>, I <want | need> to <do something>

– As a teacher, I want to tell all members of my group
when new information is available

• A variant of this standard format adds a justification
for the action:
– As a <role> I <want | need> to <do something> so

that <reason>
• As a teacher, I need to be able to report who is

attending a class trip so that the school
maintains the required health and safety records.

51Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories in planning
• An important use of user stories is in planning.
–Many users of the Scrum method represent

the product backlog as a set of user stories.
• User stories should focus on a clearly defined

system feature or aspect of a feature that can
be implemented within a single sprint.

52Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories in planning
• If the story is about a more complex feature that

might take several sprints to implement, then it is
called an epic.
– As a system manager, I need a way to backup the

system and restore either individual applications,
files, directories or the whole system.

– There is a lot of functionality associated with this
user story. For implementation, it should be broken
down into simpler stories with each story focusing
on a single aspect of the backup system.

53Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories from Emma’s scenario

54Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories

As a teacher,
I want to be able to log in to my

iLearn account from home using my
Google credentials

so that I don’t have to remember
another login id and password.

As a teacher,
I want to access the apps

that I use for class
management and

administration.

As a teacher and parent,
I want to be able to select the appropriate iLearn account

so that I don’t have to have separate credentials for each account.

Feature description
using user stories

• Stories can be used to describe features in
your product that should be implemented.

• Each feature can have a set of associated
stories that describe how that feature is used.

55Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories describing the
Groups feature

56Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

User stories

As a teacher,
I want to be able to send

email to all group
members using a single

email address.

As a teacher,
I want to be able to create a group of

students and teachers
so that I can share information with

that group.

As a teacher,
I want to be able to

share uploaded
information with other

group members

As a teacher,
I want to the iLearn system

to automatically set up
sharing mechanisms such
as wikis, blogs and web

sites.

As a teacher,
I want the system to make it easy for

me to select the students and
teachers to be added to a group.

Stories and scenarios
• As you can express all of the functionality described in a

scenario as user stories, do you really need scenarios?’
• Scenarios are more natural and are helpful for the following

reasons:
– Scenarios read more naturally because they describe what a user of a

system is actually doing with that system. People often find it easier to
relate to this specific information rather than the statement of wants
or needs set out in a set of user stories.

– If you are interviewing real users or are checking a scenario with real
users, they don’t talk in the stylized way that is used in user stories.
People relate better to the more natural narrative in scenarios.

– Scenarios often provide more context - information about what the
user is trying to do and their normal ways of working. You can do this
in user stories, but it means that they are no longer simple statements
about the use of a system feature.

57Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature identification

• Your aim in the initial stage of product design
should be to create a list of features that
define your product.

• A feature is a way of allowing users to access
and use your product’s functionality so the
feature list defines the overall functionality of
the system.

• Features should be independent, coherent
and relevant.

58Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature identification
• Features should be independent, coherent and

relevant:
– Independence

Features should not depend on how other system features
are implemented and should not be affected by the order
of activation of other features.

– Coherence
Features should be linked to a single item of functionality.
They should not do more than one thing and they should
never have side-effects.

– Relevance
Features should reflect the way that users normally carry
out some task. They should not provide obscure
functionality that is hardly ever required.

59Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature design

60Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature
design

User
knowledge

Product
knowledge

Domain
knowledge

Technology
knowledge

Factors in feature set design

61Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Simplicity Functionality

Familiarity Novelty

Automation Control

Feature set
design
factors

Feature trade-offs
• Simplicity and functionality

– You need to find a balance between providing a simple, easy-to-use
system and including enough functionality to attract users with a variety
of needs.

• Familiarity and novelty
– Users prefer that new software should support the familiar everyday

tasks that are part of their work or life. To encourage them to adopt your
system, you need to find a balance between familiar features and new
features that convince users that your product can do more than its
competitors.

• Automation and control
– Some users like automation, where the software does things for them.

Others prefer to have control. You have to think carefully about what can
be automated, how it is automated and how users can configure the
automation so that the system can be tailored to their preferences.

62Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature creep
• Feature creep occurs when new features are added in

response to user requests without considering whether or
not these features are generally useful or whether they can
be implemented in some other way.

• Too many features make products hard to use and
understand

• There are three reasons why feature creep occurs:
– Product managers are reluctant to say ‘no’ when users

ask for specific features.
– Developers try to match features in competing products.
– The product includes features to support both

inexperienced and experienced users.
63Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Avoiding feature creep

64Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature
questions

Does this feature really add
anything new or is it simply an

alternative way of doing
something that is already

supported?

Is this feature likely to be
important to and used by most

software users?

Can this feature be implemented
by extending an existing feature

rather than adding another
feature to the system?

Does this feature provide
general functionality or is it a

very specific feature?

Feature derivation

• Features can be identified directly from the
product vision or from scenarios.

• You can highlight phrases in narrative
description to identify features to be included
in the software.
– You should think about the features needed to

support user actions, identified by active verbs,
such as use and choose.

65Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

The iLearn system vision
• FOR teachers and educators WHO need a way to help

students use web-based learning resources and applications,
THE iLearn system is an open learning environment THAT
allows the set of resources used by classes and students to be
easily configured for these students and classes by teachers
themselves.

• UNLIKE Virtual Learning Environments, such as Moodle, the
focus of iLearn is the learning process itself, rather than the
administration and management of materials, assessments
and coursework. OUR product enables teachers to create
subject and age-specific environments for their students
using any web-based resources, such as videos, simulations
and written materials that are appropriate

66Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Features from the product vision

• A feature that allows users to access and use
existing web-based resources;

• A feature that allows the system to exist in
multiple different instantiations;

• A feature that allows user configuration of the
system to create a specific instantiation.

67Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Feature description using user stories
• Description

– As a system manager, I want to create and configure an iLearn environment by
adding and removing services to/from that environment so that I can create
environments for specific purposes.

– As a system manager, I want to set up sub-environments that include a subset of
services that are included in another environment.

– As a system manager, I want to assign administrators to created environments.
– As a system manager, I want to limit the rights of environment administrators so

that they cannot accidentally or deliberately disrupt the operation of key services.
– As a teacher, I want to be able to add services that are not integrated with the

iLearn authentication system.

• Constraints
– The use of some tools may be limited for license reasons so there may be

a need to access license management tools during configuration.

• Comments
– Based on Elena’s and Jack’s scenarios

68Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Innovation and feature identification
• Scenarios and user stories should always be your starting point

for identifying product features.
• Scenarios tell you how users work at the moment. They don’t

show how they might change their way of working if they had
the right software to support them.

• Stories and scenarios are ‘tools for thinking’ and they help you
gain an understanding of how your software might be used. You
can identify a feature set from stories and scenarios.

• User research, on its own, rarely helps you innovate and invent
new ways of working.

• You should also think creatively about alternative or additional
features that help users to work more efficiently or to do things
differently.

69Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• A software product feature is a fragment of

functionality that implements something that a
user may need or want when using the product.

• The first stage of product development is to
identify the list of product features in which you
identify each feature and give a brief
description of its functionality.

• Personas are ‘imagined users’ where you create
a character portrait of a type of user that you
think might use your product.

70Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary

• A persona description should ‘paint a picture’
of a typical product user. It should describe
their educational background, technology
experience and why they might want to use
your product.

• A scenario is a narrative that describes a
situation where a user is accessing product
features to do something that they want to do.

71Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• Scenarios should always be written from the

user’s perspective and should be based on
identified personas or real users.

• User stories are finer-grain narratives that set
out, in a structured way, something that a user
wants from a software system.

72Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

Summary
• User stories may be used as a way of extending

and adding detail to a scenario or as part of the
description of system features.

• The key influences in feature identification and
design are user research, domain knowledge,
product knowledge, and technology knowledge.

• You can identify features from scenarios and
stories by highlighting user actions in these
narratives and thinking about the features that
you need to support these actions.

73Source: Ian Sommerville (2019), Engineering Software Products: An Introduction to Modern Software Engineering, Pearson.

References
• Ian Sommerville (2019), Engineering Software Products: An

Introduction to Modern Software Engineering, Pearson.
• Ian Sommerville (2015), Software Engineering, 10th Edition,

Pearson.
• Titus Winters, Tom Manshreck, and Hyrum Wright (2020), Software

Engineering at Google: Lessons Learned from Programming Over
Time, O'Reilly Media.

• Project Management Institute (2021), A Guide to the Project
Management Body of Knowledge (PMBOK Guide) – Seventh Edition
and The Standard for Project Management, PMI

• Project Management Institute (2017), A Guide to the Project
Management Body of Knowledge (PMBOK Guide), Sixth Edition,
Project Management Institute

• Project Management Institute (2017), Agile Practice Guide, Project
Management Institute

74

