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週次 (Week)    日期 (Date)    內容 (Subject/Topics)
1   2021/09/23   軟體工程概論 (Introduction to Software Engineering)

2   2021/09/30   軟體產品與專案管理：軟體產品管理，原型設計
(Software Products and Project Management: 

Software product management and prototyping)
3   2021/10/07   敏捷軟體工程：敏捷方法、Scrum、極限程式設計

(Agile Software Engineering: 
Agile methods, Scrum, and Extreme Programming)

4   2021/10/14   功能、場景和故事 (Features, Scenarios, and Stories)

5   2021/10/21   軟體工程個案研究 I (Case Study on Software Engineering I)

6   2021/10/28   軟體架構：架構設計、系統分解、分散式架構
(Software Architecture: Architectural design,
System decomposition, and Distribution architecture)
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週次 (Week)    日期 (Date)    內容 (Subject/Topics)
7   2021/11/04   基於雲的軟體：虛擬化和容器、軟體即服務

(Cloud-Based Software: Virtualization and  containers,
Everything as a service, Software as a service)

8   2021/11/11   期中報告 (Midterm Project Report)
9   2021/11/18   雲端運算與雲軟體架構

(Cloud Computing and Cloud Software Architecture)
10   2021/11/25   微服務架構：RESTful服務、服務部署

(Microservices Architecture, RESTful services,
Service deployment)

11   2021/12/02   軟體工程產業實務
(Industry Practices of Software Engineering)

12   2021/12/09   軟體工程個案研究 II 
(Case Study on Software Engineering II)
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週次 (Week)    日期 (Date)    內容 (Subject/Topics)
13   2021/12/16   安全和隱私 (Security and Privacy); 

可靠的程式設計 (Reliable Programming)
14   2021/12/23   測試：功能測試、測試自動化、

測試驅動的開發、程式碼審查
(Testing: Functional testing, Test automation, 
Test-driven development, and Code reviews); 

DevOps和程式碼管理：程式碼管理和DevOps自動化
(DevOps and Code Management: 
Code management and DevOps automation)

15   2021/12/30   期末報告 I (Final Project Report I)
16   2022/01/06   期末報告 II (Final Project Report II)
17   2022/01/13   學生自主學習 (Self-learning)
18   2022/01/20   學生自主學習 (Self-learning)
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Project-based software engineering
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Product software engineering
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Software execution models

Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Product management concerns

9Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Technical interactions of 
product managers

10Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software Development Life Cycle (SDLC)

The waterfall model
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Plan-based and Agile development
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The Continuum of Life Cycles

13Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Predictive Life Cycle

14Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iterative Life Cycle

15Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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A Life Cycle of 
Varying-Sized Increments

16Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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Iteration-Based and Flow-Based 
Agile Life Cycles

17Source: Project Management Institute (2017), Agile Practice Guide, Project Management Institute
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From personas to features
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Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Multi-tier client-server architecture

19Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Service-oriented Architecture

20Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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VM

21Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Everything as a service

22Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Software as a service

23Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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24Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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25Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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26Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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27Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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28Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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29Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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30Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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31Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Features, 
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stories
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From personas to features
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Software products
• Three factors that drive the design of software 

products
– Business and consumer needs that are not met by 

current products
– Dissatisfaction with existing business or consumer 

software products
– Changes in technology that make completely new 

types of product possible
• In the early stage of product development, you are 

trying to understand, what product features would be 
useful to users, and what they like and dislike about 
the products that they use.

34Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Software features

• A feature is a fragment of functionality such as 
a ‘print’ feature, a ‘change background 
feature’, a ‘new document’ feature and so on. 

• Before you start programming a product, you 
should aim to create a list of features to be 
included in your product. 

• The feature list should be your starting point 
for product design and development.

35Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User understanding
• It makes sense in any product development to spend 

time trying to understand the potential users and 
customers of your product. 

• A range of techniques have been developed for 
understanding the ways that people work and use 
software.
– These include user interviews, surveys, ethnography and task 

analysis. 
– Some of these techniques are expensive and unrealistic for 

small companies. 
• Informal user analysis and discussions, which simply involve 

asking users about their work, the software that they use, and its 
strengths and weaknesses are inexpensive and very valuable.

36Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Feature description

37Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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The ‘New Group’ feature description 

38Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.

Input
The name of the 

group chosen by the 
user

A new container is 
created with the 
specified name

An empty document 
container and an updated 

list of documents that 
includes the newly created 

group

Using the ‘New 
Group’ menu option 
or keyboard shortcut

Action

Output

Activation
New Group



Personas
• You need to have an understanding of your potential users 

to design features that they are likely to find useful and to 
design a user interface that is suited to them.

• Personas are ‘imagined users’ where you create a character 
portrait of a type of user that you think might use your 
product. 
– For example, if your product is aimed at managing 

appointments for dentists, you might create a dentist 
persona, a receptionist persona and a patient persona. 

• Personas of different types of user help you imagine what 
these users may want to do with your software and how it 
might be used. They help you envisage difficulties that they 
might have in understanding and using product features.

39Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Persona descriptions

• A persona should ‘paint a picture’ of a type of 
product user. They should be relatively short and 
easy-to-read.

• Describe their background and why they might 
want to use your product. 

• Say something about their educational 
background and technical skills. 

• These help you assess whether or not a software 
feature is likely to be useful, understandable and 
usable by typical product users. 

40Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Persona descriptions

41Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Persona benefits
• Personas help you and other development team members 

empathize with potential users of the software. 
• Personas help because they are a tool that allows developers 

to ‘step into the user’s shoes’. 
– Instead of thinking about what you would do in a 

particular situation, you can imagine how a persona would 
behave and react. 

• Personas can help you check your ideas to make sure that you 
are not including product features that aren’t really needed. 

• They help you to avoid making unwarranted assumptions, 
based on your own knowledge, and designing an over-
complicated or irrelevant product.

42Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Deriving personas
• Personas should be based on an understanding of the potential 

product users, their jobs, their background and their 
aspirations. 

• You should study and survey potential users to understand 
what they want and how they might use the product. 

• From this data, you can then abstract the essential information 
about the different types of product user and use this as a basis 
for creating personas. 

• Personas that are developed on the basis of limited user 
information are called proto-personas. 

• Proto-personas may be created as a collective team exercise 
using whatever information is available about potential product 
users. They can never be as accurate as personas developed 
from detailed user studies, but they are better than nothing. 

43Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Scenarios

• A scenario is a narrative that describes how a user, or 
a group of users, might use your system. 

• There is no need to include everything in a scenario –
the scenario isn’t a system specification. 

• It is simply a description of a situation where a user 
is using your product’s features to do something that 
they want to do.

• Scenario descriptions may vary in length from two to 
three paragraphs up to a page of text.

44Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Elements of a scenario description

45Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Writing scenarios
• Scenarios should always be written from the user’s 

perspective and based on identified personas or real 
users.

• Your starting point for scenario writing should be the 
personas that you have created. You should normally 
try to imagine several scenarios from each persona.

• Ideally, scenarios should be general and should not 
include implementation information. 

• However, describing an implementation is often the 
easiest way to explain how a task is done.

• It is important to ensure that you have coverage of all of 
the potential user roles when describing a system.

46Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User involvement
• It is easy for anyone to read and understand scenarios, so it is 

possible to get users involved in their development. 
• The best approach is to develop an imaginary scenario based 

on our understanding of how the system might be used then 
ask users to explain what you have got wrong. 

• They might ask about things they did not understand and 
suggest how the scenario could be extended and made more 
realistic.

• Our experience was that users are not good at writing 
scenarios.

• The scenarios that they created were based on how they 
worked at the moment. They were far too detailed and the 
users couldn’t easily generalize their experience.

47Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories

48

WHO As a <role> 

WHAT I <want | need> to <do something> 

WHY so that <reason> 

Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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User stories
• As a <role>, 

I <want | need> to <do something>
– As a teacher, 

I want to tell all members of my group when new 
information is available

• As a <role> 
I <want | need> to <do something> 
so that <reason>
– As a teacher, 

I need to be able to report who is attending a class trip 
so that the school maintains the required health and 
safety records.

49Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories

• Scenarios are high-level stories of system use. 
They should describe a sequence of 
interactions with the system but should not 
include details of these interactions.

• User stories are finer-grain narratives that set 
out in a more detailed and structured way a 
single thing that a user wants from a software 
system. 
– As an author, I need a way to organize the book 

that I’m writing into chapters and sections. 

50Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories
• This story reflects what has become the standard 

format of a user story:
• As a <role>, I <want | need> to <do something>

– As a teacher, I want to tell all members of my group 
when new information is available

• A variant of this standard format adds a justification 
for the action:
– As a <role> I <want | need> to <do something> so 

that <reason>
• As a teacher, I need to be able to report who is 

attending a class trip so that the school 
maintains the required health and safety records.

51Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories in planning
• An important use of user stories is in planning.
–Many users of the Scrum method represent 

the product backlog as a set of user stories. 
• User stories should focus on a clearly defined 

system feature or aspect of a feature that can 
be implemented within a single sprint. 

52Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories in planning
• If the story is about a more complex feature that 

might take several sprints to implement, then it is 
called an epic.
– As a system manager, I need a way to backup the 

system and restore either individual applications, 
files, directories or the whole system.

– There is a lot of functionality associated with this 
user story. For implementation, it should be broken 
down into simpler stories with each story focusing 
on a single aspect of the backup system.

53Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories from Emma’s scenario

54Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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As a teacher and parent, 
I want to be able to select the appropriate iLearn account 

so that I don’t have to have separate credentials for each account.



Feature description 
using user stories

• Stories can be used to describe features in 
your product that should be implemented.

• Each feature can have a set of associated 
stories that describe how that feature is used.

55Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



User stories describing the 
Groups feature

56Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Stories and scenarios
• As you can express all of the functionality described in a 

scenario as user stories, do you really need scenarios?’
• Scenarios are more natural and are helpful for the following 

reasons:
– Scenarios read more naturally because they describe what a user of a 

system is actually doing with that system. People often find it easier to 
relate to this specific information rather than the statement of wants 
or needs set out in a set of user stories.

– If you are interviewing real users or are checking a scenario with real 
users, they don’t talk in the stylized way that is used in user stories. 
People relate better to the more natural narrative in scenarios.

– Scenarios often provide more context - information about what the 
user is trying to do and their normal ways of working. You can do this 
in user stories, but it means that they are no longer simple statements 
about the use of a system feature.

57Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Feature identification

• Your aim in the initial stage of product design 
should be to create a list of features that 
define your product. 

• A feature is a way of allowing users to access 
and use your product’s functionality so the 
feature list defines the overall functionality of 
the system.

• Features should be independent, coherent
and relevant.

58Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Feature identification
• Features should be independent, coherent and 

relevant:
– Independence

Features should not depend on how other system features 
are implemented and should not be affected by the order 
of activation of other features.

– Coherence
Features should be linked to a single item of functionality. 
They should not do more than one thing and they should 
never have side-effects.

– Relevance
Features should reflect the way that users normally carry 
out some task. They should not provide obscure 
functionality that is hardly ever required.

59Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.



Feature design

60Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Factors in feature set design

61Source: Ian Sommerville (2019), Engineering Software Products:  An Introduction to Modern Software Engineering, Pearson.
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Feature trade-offs
• Simplicity and functionality 

– You need to find a balance between providing a simple, easy-to-use 
system and including enough functionality to attract users with a variety 
of needs.

• Familiarity and novelty
– Users prefer that new software should support the familiar everyday 

tasks that are part of their work or life. To encourage them to adopt your 
system, you need to find a balance between familiar features and new 
features that convince users that your product can do more than its 
competitors. 

• Automation and control
– Some users like automation, where the software does things for them. 

Others prefer to have control. You have to think carefully about what can 
be automated, how it is automated and how users can configure the 
automation so that the system can be tailored to their preferences. 
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Feature creep
• Feature creep occurs when new features are added in 

response to user requests without considering whether or 
not these features are generally useful or whether they can 
be implemented in some other way.

• Too many features make products hard to use and 
understand

• There are three reasons why feature creep occurs:
– Product managers are reluctant to say ‘no’ when users 

ask for specific features.
– Developers try to match features in competing products.
– The product includes features to support both 

inexperienced and experienced users.
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Avoiding feature creep
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Feature 
questions

Does this feature really add 
anything new or is it simply an 

alternative way of doing 
something that is already 

supported?

Is this feature likely to be 
important to and used by most 

software users?

Can this feature be implemented 
by extending an existing feature 

rather than adding another 
feature to the system?

Does this feature provide 
general functionality or is it a 

very specific feature?



Feature derivation

• Features can be identified directly from the 
product vision or from scenarios.

• You can highlight phrases in narrative 
description to identify features to be included 
in the software.
– You should think about the features needed to 

support user actions, identified by active verbs, 
such as use and choose.
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The iLearn system vision
• FOR teachers and educators WHO need a way to help 

students use web-based learning resources and applications, 
THE iLearn system is an open learning environment THAT
allows the set of resources used by classes and students to be 
easily configured for these students and classes by teachers 
themselves.

• UNLIKE Virtual Learning Environments, such as Moodle, the 
focus of iLearn is the learning process itself, rather than the 
administration and management of materials, assessments 
and coursework. OUR product enables teachers to create 
subject and age-specific environments for their students 
using any web-based resources, such as videos, simulations 
and written materials that are appropriate
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Features from the product vision

• A feature that allows users to access and use 
existing web-based resources;

• A feature that allows the system to exist in 
multiple different instantiations;

• A feature that allows user configuration of the 
system to create a specific instantiation.
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Feature description using user stories
• Description

– As a system manager, I want to create and configure an iLearn environment by 
adding and removing services to/from that environment so that I can create 
environments for specific purposes. 

– As a system manager, I want to set up sub-environments that include a subset of 
services that are included in another environment. 

– As a system manager, I want to assign administrators to created environments. 
– As a system manager, I want to limit the rights of environment administrators so 

that they cannot accidentally or deliberately disrupt the operation of key services. 
– As a teacher, I want to be able to add services that are not integrated with the 

iLearn authentication system. 

• Constraints
– The use of some tools may be limited for license reasons so there may be 

a need to access license management tools during configuration.

• Comments
– Based on Elena’s and Jack’s scenarios 
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Innovation and feature identification
• Scenarios and user stories should always be your starting point 

for identifying product features. 
• Scenarios tell you how users work at the moment. They don’t 

show how they might change their way of working if they had 
the right software to support them. 

• Stories and scenarios are ‘tools for thinking’ and they help you 
gain an understanding of how your software might be used. You 
can identify a feature set from stories and scenarios.

• User research, on its own, rarely helps you innovate and invent 
new ways of working. 

• You should also think creatively about alternative or additional 
features that help users to work more efficiently or to do things 
differently. 
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Summary
• A software product feature is a fragment of 

functionality that implements something that a 
user may need or want when using the product.

• The first stage of product development is to 
identify the list of product features in which you 
identify each feature and give a brief 
description of its functionality.

• Personas are ‘imagined users’ where you create 
a character portrait of a type of user that you 
think might use your product. 
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Summary

• A persona description should ‘paint a picture’ 
of a typical product user. It should describe 
their educational background, technology 
experience and why they might want to use 
your product. 

• A scenario is a narrative that describes a 
situation where a user is accessing product 
features to do something that they want to do. 
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Summary
• Scenarios should always be written from the 

user’s perspective and should be based on 
identified personas or real users. 

• User stories are finer-grain narratives that set 
out, in a structured way, something that a user 
wants from a software system. 
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Summary
• User stories may be used as a way of extending 

and adding detail to a scenario or as part of the 
description of system features.

• The key influences in feature identification and 
design are user research, domain knowledge, 
product knowledge, and technology knowledge.

• You can identify features from scenarios and 
stories by highlighting user actions in these 
narratives and thinking about the features that 
you need to support these actions.
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