

(Artificial Intelligence in Finance and Quantitative Analysis)

演算法交易 (Algorithmic Trading) 風險管理 (Risk Management); 交易機器人與基於事件的回測 (Trading Bot and Event-Based Backtesting)

1101AIFQA10 MBA, IM, NTPU (M6132) (Fall 2021) Tue 2, 3, 4 (9:10-12:00) (8F40)

<u>戴敏育</u>副教授 Min-Yuh Day, Ph.D, Associate Professor

國立臺北大學 資訊管理研究所

Institute of Information Management, National Taipei University

https://web.ntpu.edu.tw/~myday

2021-12-28

週次(Week) 日期(Date) 內容(Subject/Topics)

- 1 2021/09/28 智慧金融量化分析概論 (Introduction to Artificial Intelligence in Finance and Quantitative Analysis)
- 2 2021/10/05 AI 金融科技: 金融服務創新應用 (AI in FinTech: Financial Services Innovation and Application)
- 3 2021/10/12 投資心理學與行為財務學 (Investing Psychology and Behavioral Finance)
- 4 2021/10/19 財務金融事件研究法 (Event Studies in Finance)
- 5 2021/10/26 智慧金融量化分析個案研究 I (Case Study on AI in Finance and Quantitative Analysis I)
- 6 2021/11/02 財務金融理論 (Finance Theory)

週次(Week) 日期(Date) 內容(Subject/Topics)

- 7 2021/11/09 數據驅動財務金融 (Data-Driven Finance)
- 8 2021/11/16 期中報告 (Midterm Project Report)
- 9 2021/11/23 金融計量經濟學 (Financial Econometrics)
- 10 2021/11/30 人工智慧優先金融 (AI-First Finance)
- 11 2021/12/07 智慧金融量化分析產業實務 (Industry Practices of AI in Finance and Quantitative Analysis)

[演講主題:指數設計的方法論、數據分析與量化投資應用,演講者:李政剛,基金經理/元大投信] [Invited Talk: Index Design – Methodology、Data Analysis and the Application of Quantitative Investing, Invited Speaker: Jervis J.G. Li, Fund Manager, Yuanta SITC]

12 2021/12/14 智慧金融量化分析個案研究 II (Case Study on AI in Finance and Quantitative Analysis II)

週次(Week) 日期(Date) 內容(Subject/Topics)

13 2021/12/21 財務金融深度學習 (Deep Learning in Finance); 財務金融強化學習 (Reinforcement Learning in Finance)

14 2021/12/28 演算法交易 (Algorithmic Trading); 風險管理 (Risk Management); 交易機器人與基於事件的回測 (Trading Bot and Event-Based Backtesting)

- 15 2022/01/04 期末報告 I (Final Project Report I)
- 16 2022/01/11 期末報告 II (Final Project Report II)
- 17 2022/01/18 學生自主學習 (Self-learning)
- 18 2022/01/25 學生自主學習 (Self-learning)

Algorithmic Trading Risk Management Trading Bot Event-Based Backtesting

Outline

- Algorithmic Trading
- Risk Management
- Trading Bot
- Event-Based Backtesting

Algorithmic Trading

Algorithmic Trading

Source: Ernest P. Chan (2017), Machine Trading: Deploying Computer Algorithms to Conquer the Markets, Wiley

Sharpe Ratio

Sharpe Ratio Portofolio Return – Risk Free Return

Portofolio Risk

Sharpe Ratio

Sharpe Ratio
$$SR = \frac{r_P - r_F}{\sigma_P}$$

Where $r_P = \text{portfolio return}$ $r_F = \text{risk free rate}$ $\sigma_P = \text{portfolio risk}$ (variability, standard deviation of return)

Sortino Ratio

Sortino Ratio
$$= \frac{r_P - r_T}{\sigma_D}$$

Where

 r_P = portfolio return

 r_T = Minimum Target Return

 σ_D = Downside Risk

Downside Risk
$$\sigma_D = \sqrt{\sum_{i=1}^{n} \frac{\min[(r_i - rT), 0]^2}{n}}$$

Source: Bacon, Carl. "How sharp is the Sharpe-ratio?-Risk-adjusted Performance Measures." *Statpro White Paper* (2000).

Max Drawdown

Portfolio Optimization Efficient Frontier

Source: Tucker Balch (2012), Investment Science: Portfolio Optimization, <u>https://www.youtube.com/watch?v=5qbMhXXq0vI</u>

Time series data for EUR/USD and SMAs

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Time series data for EUR/USD, SMAs, and resulting positions

Gross performance of passive benchmark investment and SMA strategy

Gross performance of the SMA strategy before and after transaction costs

Gross performance of the passive benchmark investment and the daily DNN strategy (in-sample)

Gross performance of the passive benchmark investment and the daily DNN strategy (out-of-sample)

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Gross performance of the daily DNN strategy before and after transaction costs (out-of-sample)

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Gross performance of the passive benchmark investment and the DNN intraday strategy (out-of-sample)

Gross performance of the DNN intraday strategy before and after higher/ lower transaction costs (out-of-sample)

Gross performance on training and validation data set

Gross performance of the passive benchmark investment and the trading bot (out-of-sample)

Gross performance of the trading bot before and after transaction costs (in-sample)

Gross performance of the passive benchmark investment and the trading bot (vectorized and event-based backtesting)

Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media.

Average true range (ATR) in absolute (price) and relative (%) terms

BTC-USD

BTC-USD Returns

btcusd returns

BTC-USD Returns Box

btcusd returns box

The Quant Finance PyData Stack

Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#/5

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide,

Upisch / aiif Public	https://github.co	om/yhilpisch/aiif	Notifications 🛱 Star 93	8 % Fork 77		
<> Code Issues I 	Pull requests (Actions (Projects	🖽 Wiki 🔃 Security 🗠 Insights				
<mark>਼ਿੰ main →</mark> ਿੈ 1 branch	⊙ 0 tags	Go to file Code -	About			
yves Code updates for TF	2.3.	e334251 on Dec 8, 2020 🕚 4 commits	Jupyter Notebooks and code for the book Artificial Intelligence in Finance (O'Reilly) by			
code	Code updates for TF 2.3.	11 months ago	2 home the in/hooks/aii	4		
🗅 .gitignore	Code updates for TF 2.3.	11 months ago				
LICENSE.txt	Code updates.	11 months ago		O'REILLY'		
🖺 README.md	Code updates.	11 months ago		Artificial		
i≘ README.md			Releases	Intelligen	ce	
Artificial Inte	lligence in Finance		No releases published	A Python-Based Guide	;	
			Packages		1	
About this Repos	sitory		No packages published		201	
This repository provides Finance book published	Python code and Jupyter Notebooks accomp by O'Reilly.	panying the Artificial Intelligence in	Languages	HAR COM	Yves Hilpisc	
O'REILLY °			 Jupyter Notebook 97.4% 	• Python 2.6%		

Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly

Source: https://github.com/yhilpisch/aiif/tree/main/code

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

co python101.ipynb - Colaboratory × +	
← → C https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT?authuser=2#scrollTo=wsh36fLxDKC3	☆ ◙ 0 :
CO A python101.ipynb 📩 File Edit View Insert Runtime Tools Help	r 🚓 share 🗛
CODE TEXT A CELL CELL	editing
<pre></pre>	:
[→ 194.87	
<pre>[11] 1 amount = 100 2 interest = 10 #10% = 0.01 * 10 3 years = 7 4 5 future_value = amount * ((1 + (0.01 * interest)) ** years) 6 print(round(future_value, 2))</pre>	
[→ 194.87	
<pre>[12] 1 # Python Function def 2 def getfv(pv, r, n): 3 fv = pv * ((1 + (r)) ** n) 4 return fv 5 fv = getfv(100, 0.1, 7) 6 print(round(fv, 2))</pre>	
[→ 194.87	
<pre>[13] 1 # Python if else 2 score = 80 3 if score >=60 : 4 print("Pass") 6 else: 6 print("Fail").</pre>	
[→ Pass	

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

C	O A python101.ipynb \overleftrightarrow File Edit View Insert Runtime To	ols	Help	All changes saved		omment		Share	\$	A
≣	Table of contents X		+ Coo	de + Text	V RA	M sk	•	🎤 Ed	liting	^
Q	Data Driven Finance		- Da	ta Driven Finance						
<>	Financial Econometrics and Regression									
	Data Availability		▼ Fir	ancial Econometrics and Regression						
$\{x\}$	Normative Theories Revisited									
	Mean-Variance Portfolio Theory Capital Asset Pricing Model Arbitrage-Pricing Theory Debunking Central Assumptions Normality Sample Data Sets		✔ [18]	<pre>1 import numpy as np 2 3 def f(x): 4 return 2 + 1 / 2 * x 5 6 x = np.arange(-4, 5) 7 x</pre>						
	Real Financial Returns			array([-4, -3, -2, -1, 0, 1, 2, 3, 4])						
	Linear Relationships		S O	1 y = f(x)						
	Deep Learning for Financial Time Series			2 y						
	Portfolio Optimization and Algorithmic Trading	;	C→	array([0.00, 0.50, 1.00, 1.50, 2.00, 2.50, 3.00, 3.50, 4.00])	↑ ↓	G	4	<u>。</u>	ī:
	Investment Portfolio Optimisation with Python		os D	1 print('x', x) 2 3 print('y', y)						
	Efficient Frontier Portfolio Optimisation in Python			4 5 beta = np.cov(x, y, ddof=0)[0, 1] / x.var()						
=	Investment Portfolio Optimization			6 print('beta', beta)						

CO Copython File Edit	1 101.ipynb 🛧 /iew Insert Runtime Tools	s Help <u>All changes saved</u>	🗏 Comment 👫 Share 🏟 🗛
⊟ Table of conte	nts ×	+ Code + Text	✓ RAM Disk ✓ Editing ∧
Financial RQRegressionData Avail	conometrics and n ability	Machine Learning	
<> Normative {x} Mean- Capita	Theories Revisited Variance Portfolio Theory I Asset Pricing Model	- Data	
C Arbitra Debunking Normality Samp Real F Linear Rel Financial Ecor Learning	Arbitrage-Pricing Theory Debunking Central Assumptions Normality Sample Data Sets Real Financial Returns Linear Relationships Financial Econometrics and Machine Learning	<pre> 1 import numpy as np 2 import pandas as pd 3 from pylab import plt, mpl 4 np.random.seed(100) 5 plt.style.use('seaborn') 6 mpl.rcParams['savefig.dpi'] = 300 7 mpl.rcParams['font.family'] = 'serif' 8 9 url = 'http://hilpisch.com/aiif_eikon_eod_data.csv' 10 11 raw = pd.read_csv(url, index_col=0, parse_dates=True)['EUR='] 12 raw.head() </pre>	
Image: Machine L Data Success Capacity Evaluation Bias & Var E: Cross-Vali	earning ance dation	<pre> C→ Date 2010-01-01 1.4323 2010-01-04 1.4411 2010-01-05 1.4368 2010-01-06 1.4412 2010-01-07 1.4318 Name: EUR=, dtype: float64 </pre> [2] 1 raw.tail()	

C	O Contraction Cont	Tools Help	All changes saved	E Comment	Share	\$
	Table of contents	× + c	ode + Text	✓ RAM Disk	🗸 🖌 🎤 Ed	iting ^
Q <> {x}	Mean-Variance Portfolio Theory Capital Asset Pricing Model Arbitrage-Pricing Theory Debunking Central Assumptions Normality Sample Data Sets Real Financial Returns Linear Relationships	· E	<pre>ficient Markets 1 import numpy as np 2 import pandas as pd 3 from pylab import plt, mpl 4 plt.style.use('seaborn') 5 mpl.rcParams['savefig.dpi'] = 300 6 mpl.rcParams['font.family'] = 'serif' 7 pd.set_option('precision', 4) 8 np.set_printoptions(suppress=True, precision=4) 9</pre>	↑ ↓	c) 🗐 🇘	
	Financial Econometrics and Machine Learning Machine Learning		<pre>10 url = 'http://hilpisch.com/aiif_eikon_eod_data.csv' 11 data = pd.read_csv(url, index_col=0, parse_dates=True).dropna() 12 (data / data.iloc[0]).plot(figsize=(10, 6), cmap='coolwarm')</pre>			
	Data Data Success Capacity Evaluation Bias & Variance Cross-Validation AI-First Finance Efficient Markets Market Prediction Based on Returns Data Market Prediction With More Features	3	<pre><matplotlib.axessubplots.axessubplot 0x7f29f972f210="" at=""></matplotlib.axessubplots.axessubplot></pre>			
≕	Market Prediction Intraday		2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2027)		

C	O Apython101.ipynb 🕁 File Edit View Insert Runtim	ne -	Fools Help <u>All changes saved</u>	Ę	Comment		Share	\$	A
≣	Table of contents $\qquad imes$		+ Code + Text		Connect	•		Editing	^
Q <>> {x}	Deep Learning (DL) in Finance Dense Neural Networks (DNN) Baseline Prediction Normalization Dropout Regularization Bagging Optimizers Recurrent Neural Networks (RNN) First Example Second Example Financial Price Series Financial Return Series	•	Deep Learning (DL) in Finance Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, Of Github: https://github.com/yhilpisch/aiif/ Dense Neural Networks (DNN) I import os import numpy as np import pandas as pd from pylab import plt, mpl plt.style.use('seaborn') mpl.rcParams['font.family'] = 'serif' pd.set_option('precision', 4) np.set_printoptions(suppress=True, precision=4) os.environ['PYTHONHASHSEED'] = '0' 	'Reilly	^ ↓ Media.				
	Financial Features Deep RNNs Convolutional Neural Networks (CNN)		<pre>[] 1 url = '<u>http://hilpisch.com/aiif_eikon_id_eur_usd.csv</u>' 2 symbol = 'EUR_USD' 3 raw = pd.read_csv(url, index_col=0, parse_dates=True) 4 raw.head()</pre>						
	Reinforcement Learning (RL) in Finance		HIGH LOW OPEN CLOSE						

C	🔾 🝐 python101.ipynb 🕁 File Edit View Insert Runtime	Tools Help All changes saved	Comment	👪 Sh	are 🕻	
≣	Table of contents \times	+ Code + Text	Connect	•	Editi	ng 🔨 🔨
Q	Deep RNNs	- Reinforcement Learning (RL) in Finance	$\wedge \downarrow$	⇔ 🗖	/	i :
<>	Convolutional Neural Networks (CNN)	 Source: Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O' Github: https://github.com/yhilpisch/aiif/ 	Reilly Media.			
$\{x\}$	Reinforcement Learning (RL) in Finance	Sittab. <u>Intps.//gittab.com/yinipisci/ain/</u>				
	Reinforcement Learning (RL) CartPole Environment	 Reinforcement Learning (RL) 				
	Dimensionality Reduction Action Rule Total Reward per Episode Simple Learning Testing the Results DNN Learning Q Learning Finance Environment	<pre> 1 import os 2 import math 3 import random 4 import numpy as np 5 import pandas as pd 6 from pylab import plt, mpl 7 plt.style.use('seaborn') 8 mpl.rcParams['savefig.dpi'] = 300 9 mpl.rcParams['font.family'] = 'serif' 10 np.set_printoptions(precision=4, suppress=True) 11 os.environ['PYTHONHASHSEED'] = '0' </pre>				
	Improved Finance Environment					
	Agent					

42

C	D 🍐 python101.ipynb 🕁 File Edit View Insert Runtime	Tools Help All changes saved	Comment	🖺 Share	۵	A
⊫	Table of contents X	+ Code + Text	V RAM Disk	- /	Editing	^
Q	Algorithmic Trading Vectorized Backtesting	 Vectorized Backtesting 	$\uparrow \downarrow$	c 🔲 🖊	آ <u>ل</u>	
<>	Backtesting an SMA- Based Strategy					
{ <i>x</i> }	Backtesting a Daily DNN- Based Strategy	1 import os 2 import math				
	Backtesting an Intraday DNN-Based Strategy	3 import numpy as np 4 import pandas as pd 5 from pylab import plt, mpl				
	Risk Management	6 plt.style.use('seaborn') 7 mpl.rcParams['savefig.dpi'] = 300				
	Vectorized Backtesting	<pre>9 pd.set_option('mode.chained_assignment', None) 10 pd.set_option('display.float_format', '{:.4f}'.format)</pre>				
	Assessing Risk	<pre>11 np.set_printoptions(suppress=True, precision=4) 12 os.environ['PYTHONHASHSEED'] = '0'</pre>				
	Backtesting Risk Measures Stop Loss	 Backtesting an SMA-Based Strategy 				
	Trailing Stop Loss Take Profit Combinations	<pre>[] 1 url = '<u>http://hilpisch.com/aiif_eikon_eod_data.csv</u>' 2 symbol = 'EUR=' 3 data = pd.DataFrame(pd.read_csv(url, index_col=0, 4</pre>				
≕	Backtesting Cryptocurrency Bitcoin	5 data.info()				

C	O A python101.ipynb 🕁 File Edit View Insert Runtime	Tools Help All changes saved	📮 Comment 🛛 👫 Share 🌼 🧖
≣	Table of contents $\qquad imes$	+ Code + Text	✓ RAM ► Editing
Q <>> {x}	Algorithmic Trading Vectorized Backtesting Backtesting an SMA- Based Strategy Backtesting a Daily DNN- Based Strategy Backtesting an Intraday DNN-Based Strategy Risk Management Trading Bot Vectorized Backtesting Event-Based Backtesting	<pre> • Risk Management [] 1 import os 2 import numpy as np 3 import pandas as pd 4 from pylab import plt, mpl 5 plt.style.use('seaborn') 6 mpl.rcParams['savefig.dpi'] = 300 7 mpl.rcParams['font.family'] = 'serif' 8 pd.set_option('mode.chained_assignment', None) 9 pd.set_option('display.float_format', '{:.4f}'.format) 10 np.set_printoptions(suppress=True, precision=4) 11 os.environ['PYTHONHASHSEED'] = '0'</pre>	
	Assessing Risk Backtesting Risk Measures		
II	Stop Loss Trailing Stop Loss Take Profit Combinations Backtesting Cryptocurrency Bitcoin	<pre>[] 1 # import finance 2 # finance.py 3 # Finance Environment 4 # 5 # (c) Dr. Yves J. Hilpisch 6 # Artificial Intelligence in Finance 7 #</pre>	

https://tinyurl.com/aintpupython101

C	O A python101.ipynb 🕁 File Edit View Insert Runtime	Tools Help All changes saved	Ę	Comment	*	Share	۵	A
≣	Table of contents $\qquad imes$	+ Code + Text	~	Disk	•		Editing	^
Q	Algorithmic Trading Vectorized Backtesting	- Event-Based Backtesting		$\uparrow \downarrow$	Θ	□ /	i ري	
<>	Backtesting an SMA- Based Strategy	1 #import backtesting as bt 2						
{ <i>x</i> }	Backtesting a Daily DNN- Based Strategy	3 # backtesting.py 4 # Event-Based Backtesting						
	Backtesting an Intraday DNN-Based Strategy	5 #Base Class (1) 6 # 7 # (c) Dr. Yves J. Hilpisch						
	Risk Management	8 # Artificial Intelligence in Finance						
	Trading Bot	9 # 10						
	Vectorized Backtesting	11 class BacktestingBase:						I
	Event-Based Backtesting	<pre>12 definit(self, env, model, amount, ptc, ftc, verbose=False): 13 self.env = env</pre>						
	Assessing Risk	14 self.model = model						
	Backtesting Risk Measures	<pre>15 self.initial_amount = amount 16 self.current_balance = amount 17 self.ptc = ptc</pre>						
	Stop Loss	18 self.ftc = ftc						
	Trailing Stop Loss	19self.verbose = verbose20self.units = 0						
	Take Profit	21 self.trades = 0						
	Combinations	<pre>22 23 def get_date_price(self, bar):</pre>						
≡	Backtesting Cryptocurrency Bitcoin	24 ''' Returns date and price for a given bar.						

https://tinyurl.com/aintpupython101

C	O A python101.ipynb 🕁 File Edit View Insert Runtime	Tools Help <u>All changes saved</u>	🗐 Comment 🛛 👫 Share 🏟 🔥
≔	Table of contents \times	+ Code + Text	✓ RAM → Fediting ∧
Q	Algorithmic Trading	Combinations	
<>	Vectorized Backtesting Backtesting an SMA- Based Strategy	<pre> 1 tb.backtest_strategy(sl=0.015, tsl=None, 2</pre>	
{ <i>x</i> }	Backtesting a Daily DNN- Based Strategy	C→ ====================================	
	Backtesting an Intraday DNN-Based Strategy	2018-01-17 current balance = 10000.00	
	Risk Management	*** STOP LOSS (SHORT -0.0203) ***	
	Trading Bot	*** STOP LOSS (SHORT -0.0152) ***	
	Vectorized Backtesting	*** TAKE PROFIT (SHORT 0.0189) ***	
	Event-Based Backtesting	*** TAKE PROFIT (SHORT 0.0219) ***	
	Assessing Risk	*** TAKE PROFIT (SHORT 0.0192) ***	
	Backtesting Risk Measures	*** STOP LOSS (LONG -0.0154) ***	
	Stop Loss	*** TAKE PROFIT (SHORT 0.0214) ***	
	Trailing Stop Loss Take Profit	*** STOP LOSS (SHORT -0.0158) ***	
	Combinations	*** TAKE PROFIT (SHORT 0.0223) ***	
=	Backtesting Cryptocurrency Bitcoin	*** STOP LOSS (SHORT -0.0162) ***	

C	Python101.ipynb File Edit View Insert Runtime	Tools Help All changes saved	🗐 Comment 🛛 😫 Share 🏟 🛕
≣	Table of contents $\qquad imes$	+ Code + Text	✓ RAM ► ✓ Editing ∧
Q	Algorithmic Trading Vectorized Backtesting	 Backtesting Cryptocurrency Bitcoin 	
<>	Backtesting an SMA- Based Strategy	 Financial Functions (ffn): <u>https://pmorissette.github.io/ffn/</u> backtesting.py: <u>https://kernc.github.io/backtesting.py/</u> 	
{ <i>x</i> }	Based Strategy	1 Inin install fr	
	Backtesting an Intraday DNN-Based Strategy	2 import ffn 3 import plotly.express as px	
	Risk Management	4 %pylab inline	
	Trading Bot	5 #BTC-USD Bitcoin USD 6 df = ffn.get('btc-usd', start='2016-01-01', end='2021-12-31')	
	Vectorized Backtesting	<pre>7 print('df') 8 print(df.head())</pre>	
	Assessing Risk	<pre>9 print(df.tail()) 10 print(df.describe())</pre>	
	Backtesting Risk Measures	<pre>11 df.plot(figsize=(14,10)) 12 13 returns = df.to_returns().dropna()</pre>	
	Stop Loss	14 print('returns') 15 print(returns_bead())	
	Trailing Stop Loss	16 print(returns.tail())	
	Take Profit	<pre>17 print(returns.describe()) 18 #ax = df.plot(figsize=(12,9))</pre>	
	Combinations	19	
=	Backtesting Cryptocurrency Bitcoin	<pre>20 perf = df.calc_stats() 21 perf.plot(figsize=(14, 10))</pre>	

https://tinyurl.com/aintpupython101

https://tinyurl.com/aintpupython101

Summary

- Algorithmic Trading
- Risk Management
- Trading Bot
- Event-Based Backtesting

References

- Yves Hilpisch (2020), Artificial Intelligence in Finance: A Python-Based Guide, O'Reilly Media, <u>https://github.com/yhilpisch/aiif</u>.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.
- Ahmet Murat Ozbayoglu, Mehmet Ugur Gudelek, and Omer Berat Sezer (2020). "Deep learning for financial applications: A survey." Applied Soft Computing (2020): 106384.
- Omer Berat Sezer, Mehmet Ugur Gudelek, and Ahmet Murat Ozbayoglu (2020), "Financial time series forecasting with deep learning: A systematic literature review: 2005–2019." Applied Soft Computing 90 (2020): 106181.
- Min-Yuh Day (2021), Python 101, https://tinyurl.com/aintpupython101