ALEE % ]

G it

(Reinforcement Learning)

1092A109
MBA, IM, NTPU (M5010) (Spring 2021)
Wed 2, 3, 4 (9:10-12:00) (B8F40)

Min-Yuh Day
REH

B 2% Associate Professor
| B #%
Institute of Information Management, National Taipei University

RSt RE FREERALA [&] 3% [=]

https://web.ntpu.edu.tw/~myday
2021-05-19 EI L



https://web.ntpu.edu.tw/~myday/
https://web.ntpu.edu.tw/~myday/cindex.htm
http://www.mis.ntpu.edu.tw/en/
https://www.ntpu.edu.tw/
https://www.ntpu.edu.tw/
http://www.mis.ntpu.edu.tw/
https://web.ntpu.edu.tw/~myday

#4#2 A4 (Syllabus) G

Wk (Week) B #j (Date) M % (Subject/Topics)
1 2021/02/24 AT %5 E45%h
(Introduction to Artificial Intelligence)

2 2021/03/03 AT Efody K32 A
(Artificial Intelligence and Intelligent Agents)

3 2021/03/10 FiRE A%+~
(Problem Solving)

4 2021/03/17 o332 fo ko3l & 32

(Knowledge, Reasoning and Knowledge Representation)

5 2021/03/24 R #E E boikFo I8

(Uncertain Knowledge and Reasoning)
6 2021/03/31 AT EE 3 |

(Case Study on Artificial Intelligence )



#4#2 A4 (Syllabus) G

B4 B I X B
National Taipei University

B R (Week) B 2j (Date) ™M % (Subject/Topics)

8 2021/04/14 M EZ L EHEHFXEE
(Machine Learning and Supervised Learning)
9 2021/04/21 Ef ¥ 3R &
(Midterm Project Report)
10 2021/04/28 £ B3 s7 o5
(The Theory of Learning and Ensemble Learning)
11 2021/05/05 F &2 H
(Deep Learning)
12 2021/05/12 AT % &£ B EH %
(Case Study on Artificial Intelligence II)



#4#2 A4 (Syllabus) G

& (Week) B #j (Date) P % (Subject/Topics)
13 2021/05/19 %It E
(Reinforcement Learning)

14 2021/05/26 REZH B R3E3F kiF
(Deep Learning for Natural Language Processing)

15 2021/06/02 # % A$%ii
(Robotics)
16 2021/06/09 AT %y ZE Lo/ » AT E 8 REK
(Philosophy and Ethics of Al, The Future of Al)
17 2021/06/16 B KRR % |
(Final Project Report I)

18 2021/06/23 #g R3K%E |
(Final Project Report Il)



Reinforcement
Learning




Outline

e Reinforcement Learning (RL)
— Markov Decision Processes (MDP)
* Deep Reinforcement Learning (DRL) Algorithms
—SARSA
—Q-Learning
—DQN
—A3C

—Rainbow



Stuart Russell and Peter Norvig (2020),
Artificial Intelligence: A Modern Approach,

4th Edition, Pearson

Jelse:

"

russell SAtificial Intelligence
Norvig A NModern Approach

P Fourth Edition

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson
https://www.amazon.com/Atrtificial-Intelligence-A-Modern-Approach/dp/0134610997/



https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

N O O B W N

Artificial Intelligence:
A Modern Approach

. Artificial Intelligence

. Problem Solving

. Knowledge and Reasoning

. Uncertain Knowledge and Reasoning

. Machine Learning

. Communicating, Perceiving, and Acting
. Philosophy and Ethics of Al



Artificial Intelligence:
Machine Learning

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



Artificial Intelligence:

5. Machine Learning

Learning from Examples
Learning Probabilistic Models
Deep Learning

Reinforcement Learning

10



Artificial Intelligence:
Reinforcement Learning

Learning from Rewards

Passive Reinforcement Learning

Active Reinforcement Learning
Generalization in Reinforcement Learning
Policy Search

Apprenticeship and Inverse Reinforcement
Learning

Applications of Reinforcement Learning

11



Reinforcement Learning (DL)

Agent

{ EnvironmentJ




Reinforcement Learning (DL)

1 observation 2 action
Agent

3 reward T

Environment

13



Reinforcement Learning (DL)

1 observation 2 action
Agent
0, A,

3 reward TRt

Environment

14



Agents interact with environments
through sensors and actuators

/Px gent Sensors s

' Percepts

?

' Actions

\ Actuators -

JUSWIUOITAUH




Al, ML, DL

4 Artificial Intelligence (Al) )
4 Machine Learning (ML) A
Supervised Unsupervised
Learning Learning
Deep Learning (DL)
RNN LSTM GRU
. GAN )

Semi-supervised l Reinforcement

L Learning Learning )




3 Machine Learning Algorithms

TEMPORAL

DIFFERENCE

RENFORCEMENT LEARNING

Q-LEARNING

K-MEANS

DEEP BELIEF
NETWORKS

CLUSTERING

UNSUPERVISED
LEARNING

PRINCIPAL
COMPONENT
ANALYSIS DIMENSIONALITY

REDUCTION

LINEAR
DISCRIMINANT

ANALYSIS
GENERALIZED

DISCRIMINANT
ANALYSIS

LEARNING

CONVOLUTIONAL
NEURAL NETWORK

REGRESSION

SUPERVISED
LEARNING

RANDOM
FOREST

LINEAR
REGRESSION

CLASSIFICATION NAIVE BAYES

CONDITIONAL
DECISION TREE

K-NEAREST NEIGHBORS

RECURSIVE NEURAL
NETWORK

MACHINE LEARNING
+
DEEP LEARNING

-1
B w

SOCIAL
MEDIA WEB LOGS  SALES

ISCOVERY

17



Machine Learning (ML)

Meaningful
Compression

Structure Image

i o Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

isualistai : Classification Diagnostics
Visualistaion Reduction Elicitation Detection 8

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
]
M ac h I n e Population

Growth
Prediction

B==ctimench Unsupervised Supervised

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Bl Skill Acquisition

Learning Tasks

18



Reinforcement Learning (RL)

Computer Science

Engineering ‘ :
op ima - -
ontrol .
Rein :"-,./: m
«_‘A‘I“»
X Resea ORG 2
Ba 0

Neuroscience

Psychology

19



Branches of Machine Learning (ML)
Reinforcement Learning (RL)

No Labels
No feedback
Find hidden structure

Labeled data
Direct feedback
Predict

Supervised
Learning

Unsupervised
Learning

Machine
Learning

Reinforcement
Learning

Decision process
Reward system
Learn series of actions

20



David Silver (2015),
Introduction to reinforcement learning

* Elementary Reinforcement Learning
— 1: Introduction to Reinforcement Learning
— 2: Markov Decision Processes
— 3:Planning by Dynamic Programming
— 4: Model-Free Prediction
— 5: Model-Free Control
* Reinforcement Learning in Practice
— 6: Value Function Approximation
— 7: Policy Gradient Methods
— 8:Integrating Learning and Planning
— 9: Exploration and Exploitation
— 10: Case Study: RL in Classic Games



Reinforcement Learning
AlphaZero (AZ) and AlphaGo Zero (AZ0)

e AlphaZero (Silver et al., 2018)

— A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play.
(Science)

* AlphaGo Zero (Silver et al., 2017)

— Mastering the game of Go without human
knowledge (Nature)

22



AlphaZero:
Shedding new light on the grand
games of chess, shogi and Go

A"t Baml Ammé Emks O

https://www.youtube.com/watch?v=7L2sUGcO


https://www.youtube.com/watch?v=7L2sUGcOgh0

AlphaZero
A general reinforcement learning algorithm
that maste{s chess, shogi, and Go through self-play

Chess Shogi Go
AlphaZero vs. EImo AlphaZero vs. AGO
EH BT E T EBEHE
M &
T | F | | T | | T | | F
|5 | H | S| F| S F| S |F
A ik
EEEEAEEI G
W:29.0% D:70.6% L:0.4% W:84.2% D:22% L:13.6% W: 68.9% L:31.1%
o] | | | I
ol I | [
W: 20% D:97.2% L:0.8% W:98.2% D:0.0% L: 1.8% W: 53.7% L: 46.3%
B Chess Shogi
ime OM I N
17100 time g R
ime O NN I I
1/30 time ol 1
L e —
Y | | I
13tme o I
C Latest Stockfish Aperyphapaq
O | S
ol A 1
Opening Book CSA time control
o |
o |
el |
D Human openings o | I
TCEC openings 2 -_ _'

. AlphaZero wins AlphaZero draws . AlphaZero loses O AlphaZero white . AlphaZero black

Source: David Silver et al. (2018), "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play." Science 362, no. 6419 (2018): 1140-1144. 24



AlphaZero’s search procedure

102 Simulations

o,

- _
b

_

102 Simulations 104 Simulations  10°% Simulations ~ 10° Simulations

6 Ads d5

a

0220,

exds exds exds
d5_/Nxe4\ b6\ ,Rb8 exd5
‘ Bxd5 Qxed | Bd3

2}

c6

o1
@

3

S
@

69

%@
OO ORO)

®D-®
®

2
3
o
3
3

O OO0

e
D .
-1

®+®

-5
=3
2]
=5
=)
o)
[
i

O 020

®
®

Rcet

25



Self-play reinforcement learning in
AlphaGo Zero

a Self-play s

26



Richard S. Sutton & Andrew G. Barto (2018),
Reinforcement Learning: An Introduction,
2nd Edition, A Bradford Book

7

Reinforcement
Learning /

’l
An Introduction /
second edition 1

Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262039249 27



Reinforcement learning

* Reinforcement learning is
learning what to do
—how to map situations to actions
—s0 as to maximize a numerical
reward signal.

28



Two most important distinguishing
features of reinforcement learning

* trial-and-error search
* delayed reward

29



Reinforcement Learning (DL)

Agent

{ EnvironmentJ




Reinforcement Learning (DL)

1 observation 2 action
Agent

3 reward T

Environment

31



Reinforcement Learning (DL)

1 observation 2 action
Agent
0, A,

3 reward TRt

Environment

32



Agent and Environment

* At each step t the agent:
— Executes action A;
— Receives observation O,
— Receives scalar reward R,

e The environment:

— Receives action A,
— Emits observation O,,;
— Emits scalar reward R, ;

* tincrements at env. step

observation

O,

Agent

action

4,
reward TRt

Environment

33



History and State

The history is the sequence of observations, actions, rewards
Ht — 01, A], R]""’At—]’Ot’Rt

i.e. all observable variables up to time t
i.e. the sensorimotor stream of a robot or embodied agent

What happens next depends on the history:
— The agent selects actions
— The environment selects observations/rewards

State is the information used to determine what happens
next

Formally, state is a function of the history:

S; =f(H)

34



Information State

An information state (a.k.a. Markov state) contains all

useful information from the history.

Definition

A state S, is Markov if and only if

P[Si1 | S =P[Si; | Sp--n S

“The future is independent of the past given the present
H;,— S8 — H. o

Once the state is known, the history may be thrown away

i.e. The state is a sufficient statistic of the future

The environment state S,° is Markov
The history H, is Markov

”

35



Fully Observable Environments

* Full observability:

— agent directly observes

environment state state action
Agent
— Agent state = S 4,
environment state =
. . reward | R,
information state

— Formally, this is a Environment
Markov decision process
(MDP)

36



Partially Observable Environments

Partial observability: agent indirectly observes
environment

— A robot with camera vision isn’t told its absolute location
— A trading agent only observes current prices
— A poker playing agent only observes public cards

Now agent state # environment state

Formally this is a partially observable Markov decision
process (POMDP)

Agent must construct its own state representation $¢, e.g.
— Complete history: 8¢, = H,

— Beliefs of environment state: 8¢, = (P/S¢, = s,/,...,P[S¢, = s,])
— Recurrent neural network: 8¢, = o(S¢_, W, + O, W, )

37



Reinforcement Learning (DL)

The Agent-Environment Interaction
in a Markov Decision Process (MDP)

Agent

reward action

R, A
PR _
' ¢S+ | Environment

38



Characteristics of
Reinforcement Learning

* No supervisor, only a reward signal

* Feedback is delayed, not
Instantaneous

* Time really matters
(sequential, non i.i.d data)

* Agent’s actions affect the
subsequent data it receives

39



Examples of Reinforcement Learning

e Make a humanoid robot walk

* Play may different Atari games better than
humans

* Manage an investment portfolio

40



Examples of Rewards

e Make a humanoid robot walk
— +ve reward for forward motion

— -ve reward for falling over

* Play may different Atari games better than
humans

— +/-ve reward for increasing/decreasing score
 Manage an investment portfolio

— +ve reward for each S in bank

41



Sequential Decision Making

Goal: select actions to maximize total future reward
Actions may have long term consequence
Reward may be delayed

It may be better to sacrifice immediate reward to gain
more long-term reward

Examples:

— A financial investment (may take months to mature)

— Blocking opponent moves (might help winning chances
many moves from now)

42



Elements of Reinforcement Learning

Agent
Environment
Policy

Reward signal
Value function
Model

43



Elements of Reinforcement Learning

* Policy
— Agent’s behavior
— |t is a map from state to action

* Reward signal
— The goal of a reinforcement learning problem

e Value function
— How good is each state and/or action
— A prediction of future reward

* Model
— Agent’s representation of the environment

44



Major Components of an RL Agent

1. Policy: agent’s behaviour function

2. Value function: how good is each state
and/or action

3. Model: agent’s representation of the
environment

45



Policy

e A policyis the agent’s behaviour

* |tis a map from state to action, e.g.
—Deterministic policy: a = n(s)
—Stochastic policy: (a|s) = P[A, = a|S, = s]

46



Value Function

e Value function is a prediction of future reward

* Used to evaluate the goodness/badness of
states

* And therefore to select between actions, e.g.
Vo(S)=E, [R, +VRt+2+V2Rt+3+- .S =s/

47



Model

A model predicts what the environment will
do next

* P predicts the next state

* R predicts the next (immediate) reward, e.g.
P =P[5 =5"|5,=s, A=af
R =E[R;; |S; =s, 4, =a]

48



Reinforcement Learning

* Value Based

— Value Function

* Policy Based
— Policy

 Actor Critic
— Policy
— Value Function

49



Reinforcement Learning

e Model Free

— Policy and/or Value Function

* Model Based

— Policy and/or Value Function
— Model

50



Reinforcement Learning (RL)
Taxonomy

Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ

51



Reinforcement Learning (RL)
A Taxonomy of RL Algorithms

‘ RL Algorithms }

!
i 3

[ Model-Free RL }

Model-Based RL }
] ¢

{Policy Optimizatio% { Q-Learning } { Learn the Model } [ Given the Model }

Policy Gradient < r N > DQN » World Models 4,{ AlphaZero ]
- J DDPG 4 A \ J/
A2C / A3C < N > 5 > I2A
\ TD3 <
PPO < \ > QR-DQN > MBMF
> SAC <
TRPO < > HER > MBVE

52



Learning and Planning

 Two fundamental problems in
sequential decision making

— Reinforcement Learning
* The environment is initially unknown
* The agent interacts with environment
* The agent improves its policy

— Planning
* A model of the environment is known

* The agent performs computations with its model
(without any external interaction)

* The agent improves its policy

* a.k.a deliberation, reasoning, introspection, pondering,
thought, search

53



Atari Example:
Reinforcement Learning

* Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on joystick,
see pixels and scores

54



Atari Example:
Planning

Rules of the game are known
Can query emulator

— perfect model inside agent’s
brain

If | take action a from state s:

— what would the next state be?
— what would the score be?

Plan ahead to find optimal
policy

— e.g. tree search

55



Exploration and Exploitation

Reinforcement learning is like trial-and-error learning
The agent should discover a good policy

From its experiences of the environment

Without losing too much reward along the way

Exploration finds more information about the
environment

Exploitation exploits known information to maximise
reward

It is usually important to explore as well as exploit

56



Exploration and Exploitation
Examples

e Restaurant Selection
— Exploitation: Go to your favorite restaurant
— Exploration: Try a new restaurant
* Online Banner Advertisements
— Exploitation: Show the most successful advert
— Exploration: Show a different advert

57



Exploration and Exploitation
Examples
* Qil Drilling
— Exploitation: Drill at the best known location
— Exploration: Drill at a new location
* Game Playing

— Exploitation: Play the move you believe is
best

— Exploration: Play an experimental move

58



Prediction and Control

* Prediction: evaluate the future
—Given a policy

* Control: optimize the future
—Find the best policy



Markov Decision Processes (MDP)
Example: Student MDP

60



Generalized Policy Iteration (GPI)

evaluation

/ — v,,\
VA V
‘kgreeW

Improvement

72.*4 ’V*

61



Generalized Policy Iteration (GPI)

Any iteration of policy evaluation and policy improvement,
independent of their granularity.

evaluation

ﬂ - q\
T @,
kgreeW

improvement

62



Temporal-Difference (TD) Learning

* Sarsa: On-policy TD Control
* Q-learning: Off-policy TD Control



SARSA
(state-action-reward-state-action)
On-policy TD Control

Q(S;, Ay) < Q(Si, Ay + a[Ryyy Ty Q(Sei1, Arp) - Q(S, Ay) ]

S, A
R

S)

A)
SARSA

64



Q-learning  (watkins, 1989)
Off-policy TD Control

Q(S, Ay < Q(Si, Ay + a[Ryyy Ty max Q(Sy, a) - Q(Sy, Ay) |

® oA

Q-learning

65



Q-learning and Expected SARSA

@ oA

Q-learning Expected SARSA

66



Q-learning and Double Q-learning

100% N(<0.1,1)
0 0

75%} /\ f B left A right O
% left \
actions  50%; Q-learning
from A

Double
259} Q-learning
5"6, ——————————————————————————————————— — optimal
1 100 200 300
Episodes

Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown
inset). Q-learning initially learns to take the left action much more often than the right action,
and always takes it significantly more often than the 5% minimum probability enforced by
e-greedy action selection with € = 0.1. In contrast, Double QQ-learning is essentially unaffected by
maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates
were zero. Any ties in e-greedy action selection were broken randomly.

67



n-step methods for
sate-action value

1-step Sarsa co-step Sarsa n-step
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa aka Monte Carlo Expected Sarsa

SR S U U
! ) D S
! AN O
I Io1 1
SRS O
[

$—(s—0——9+—()

Figure 7.3: The backup diagrams for the spectrum of n-step methods for state—action values.

They range from the one-step update of Sarsa(0) to the up-until-termination update of the
Monte Carlo method. In between are the n-step updates, based on n steps of real rewards and
the estimated value of the nth next state-action pair, all appropriately discounted. On the far
right is the backup diagram for n-step Expected Sarsa.

68



Reinforcement Learning
Actor-Critic (AC) Architecture

R
\ -
= Policy
h 8
Actor
B TD
Critic / error
Value
state —» ; i
Function action
/ A
reward

_[ Environment j«




Reinforcement Learning
Actor-Critic (AC) Learning Methods

r

Policy
State (Actor) Action

TCrlthue

é )

Value Table
(Critic)

State T Reward

Environment




Reinforcement Learning Methods

width
of update .
Temporal- Dynamic '
difference programming
learning O d 03

depth
(length)
of update

Exhaustive
Ncl?a::tlﬁ - /' search
! N
: oed b
:

Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the
two of the most important dimensions explored in Part I of this book: the depth and width of
the updates.

Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

71



Monte Carlo Tree Search (MCTS)

1 Repeat while time remains |
Selection = Expansion —— Simulation ——» Backup —J

AN N\ N

VARVAN

Tree Rollout
Policy Policy
|

X

Figure 8.10: Monte Carlo Tree Search. When the environment changes to a new state, MCTS
executes as many iterations as possible before an action needs to be selected, incrementally
building a tree whose root node represents the current state. Each iteration consists of the four
operations Selection, Expansion (though possibly skipped on some iterations), Simulation,
and Backup, as explained in the text and illustrated by the bold arrows in the trees. Adapted
from Chaslot, Bakkes, Szita, and Spronck (2008).

72



Monte Carlo Tree Search (MCTS)
MCTS in AlphaGo Zero

a SeL t b Expand and evaluat € Backup d Play
v acs
E.  ® A #
¥ B B v H( B 2P
_ Q+Upfhax 0V (ﬁ%\gﬁ _____________________________________ Q/N\e. | i o« SN FANPSN
(P.v) =1, v v
--------------------------------------- ;p P \p\m-ﬁj

73



MCTS in AlphaGo Zero

a Select

a: Each simulation traverses the tree by selecting the edge with
maximum action value Q, plus an upper confidence bound U
that depends on a stored prior probability P and visit count N for
that edge (which is incremented once traversed).

74



MCTS in AlphaGo Zero

b Expand and evaluate

b: The leaf node is expanded and the associated position s is
evaluated by the neural network (P(s, -),V(s)) = fy(s); the
vector of P values are stored in the outgoing edges from s.

75



MCTS in AlphaGo Zero

€ Backup

————————— ————— - -

c: Action value Q is updated to track the mean of all
evaluations V in the subtree below that action

76



MCTS in AlphaGo Zero

d Play
L
Ay

/\1/\

T

d: Once the search is complete, search probabilities 1 are
returned, proportional to N'", where N is the visit count of
each move from the root state and T is a parameter
controlling temperature.



Reinforcement Learning
Actor Critic ANN

Environment \

States/Stimuli

Actions

States/Stimuli

Environment

Cortex (multiple areas)

( Critic

\A

Ventral

striatum

L)
p oy
/
7
T~ §
<] &
e L1 &
E:
¥ £
(&)

Dopamine

Actions

78



Reinforcement Learning
General Dyna Architecture

Vak X
Policy/value

functions

planning update
direct DL S|mulated
Iearnlng control
Model

(Environment)

79



Dyna:
Integrated Planning, Acting, and Learning

value/policy

acting
planning direct
RL
model experience
model

learning

80



Model-Based RL

value/policy
acting

planning

model experience

“ "

model
learning

81



Model-Free RL
(DQN, A3C)

value/policy

acting
planning direct
RL
model experience
model

learning

82



Reinforcement Learning

Algorithms

Deep Reinforcement Learning (DRL)

Dynamic Programming‘

Markov Decision Process
(MDP)

Monte Carlo Method

- 4

Q-Learning

Partially Observable MDP

TD Learning (POMDP) Actor-Critic Methods
Deep Q Network (DQN)
Neural Fitted Q | Deep Recurrent Q :
Double DQN LeEilng Network (DQRN) A3C | Rainbow




Human-level control through
deep reinforcement learning (DQN)

Convglution Convglution Fully cgnnected Fully cgnnected

AlrIclele R ST T 5
+ 8+ +0+0+0+0+0+ ™ < NP Bl | 5
o] (@] (@] (@] (@] (¢] (@] (@ g

122227
a
0
%\ﬂ
Ilvl‘.\n
ﬁ II"‘
g \
a
§ 1

Schematic illustration of the convolutional neural network

84



Deep Q-Network (DQN)

Q-value

T

Network

N

State Action

Q-value 1

T~

Q-value 2

Network

I

State

Q-value 3

85



Reinforcement Learning

with policy represented via DNN

policy
DNN TMe(s, @)

WO .‘\‘(//
X XR&E

parameter 6

Reward r

Take action a

Observe state s

-

Environment

86



Reinforcement Learning
Deep Q-Learning in FIFA 18

reward r Optical Character : Obtain Reward
Recognition (pytesseract)
Al Bot FIFA 18 Game Window
Policy Q(s,a)
ﬂ Take Action
state s Q-Learning Model

Feature Map

Observe Game

MobileNet Feature Extractor

87



Asynchronous Advantage Actor-Critic
(A3C)
/ Global Network \

"

. 4
— 37 I — —

Worker 3 Worker n

Worker 1 Worker 2

! ! ! !

Source: https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2

88



Training workflow of each
worker agent in A3C

5. Worker q
updates global 1. Worker reset

network with to global
gradients network
4. Worker 2. Worker
gets interacts
gradients with
from losses environment
3. Worker
calculates

value and
policy loss

89



Reinforcement Learning
Example: PCMAN




Dueling Network Architectures for

Deep Reinforcement Learning
Single stream Q-

/ network

§ =)

Dueling Q- ) =
/| _network




Rainbow: Combining improvements in
deep reinforcement learning

DQN
— DDQN
- Prioritized DDQN
— Dueling DDQN /
200% A3C
—— Distributional DQN
— Noisy DQN
== Rainbow f

100%}-

Median human-normalized score

\

W

>

=

5

0%

z‘i
%

o/ Wl | |
O 7 44 100 200

Millions of frames

Source: Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad
Azar, and David Silver (2017). "Rainbow: Combining improvements in deep reinforcement learning." arXiv preprint arXiv:1710.02298 (2017). 92



A Typical Strategy Development
Workflow

Policy Parameter
Supervised Strategy Simulation &
Data Analysis —>» —>» Development —» —>» Optimization —» —>» Live Trading
Model Training (By Hand) Backtesting (Simulation) Paper Trading

i | | |

93



Reinforcement Learning (RL) in

Trading Strategies
Data Analysis —» #h.ﬁﬁ;".ﬁ. —> lﬂ:‘g‘:‘ﬁ’;& —> Live Trading

Simulation

T




Portfolio management system in equity market

neutral using reinforcement learning
(Wu et al., 2021)

L=}
S0 stocks x 10 days x OHLC S0 x 10x 4
Normalized
Stock Prices - Input Tensor
Training Testing
Data Data
N Jr _____ et l __________________________
Long RL model \\_ .." Short RL model
- ™~ : : - o
Environment . Environmen
A = — =,
Weights Weights
(Portfolio) lﬁewa d State (Portfolio) Reward State
P N = "
NN Agent NN Agent
Long Portfolio ‘ Short Portfolio
Combine
(Half-and-Hal )
EMN Strategy l
EMN
Portfolio

95



FinRL:

A Deep Reinforcement Learning Library for
Automated Stock Trading in Quantitative Finance

Conventional RL Agents = DRL Agents

I Reward I State l Action
Financial Market Environments

e: Xiao-Yang Liu, Hongyang Yang, Qian Che RJZthqugBWX and Christina Dan Wang (2020). "FinRL: A Deep Reinforcement Learning Library
for Automated Stock Trading in Quantitative Fin arXiv preprint arXiv:2011.09607 (2020). 96




FinRL

Deep Reinforcement Learning Algorithms

Value
DQN States Q-value Y Discrete only Single stock trading Target network, experience replay Simple and easy to use
Double DQN States Q-value Yl Discrete only Single stock trading Ut e et el rishiank Reduce overestimations
based models to learn
: e Value < X Better differentiate actions,
Dueling DQN States Q-value kel Discrete only Single stock trading Add a specialized dueling Q head et eamiing

DDPG ?tate . Biwsiis Actor-critic iy Multlp|e.stock tra.dlng. Being deep Q-I.earning for continuous | Better at handling high-dimensional
action pair based portfolio allocation action spaces continuous action spaces

A2C ?tate Q-value Actor-critic Discrete and il e s Advantage function, parallel gradients Stable, cost-effective. faster a.nd
action pair based continuous updating works better with large batch sizes

State Actor-critic Discrete and Improve stability, less variance,

PPO - ; Q-value ? All use cases Clipped surrogate objective function & ¥ ty
action pair based continuous simply to implement

S i M ) N %

SAC ?tate .| Q-value i [ T - only ultlplelstock tra.ding Entropy regularization, Improve stability

25 action pair based portfolio allocation exploration-exploitation trade-off
t tor-criti i trading, i Z i

TD3 ?ta » ; Q-value FYAr cit Continuous only MUIt'ple.StOCk ra.dmg Clipped double Q-Learning, delayed Improve DDPG performance

action pair based portfolio allocation | policy update, target policy smoothing.
State Actor-critic ; Multiple stock trading, : -
MADD R ; -value Continuous onl X 3 Handle multi-agent RL problem Improve stability and performance
PG action pair 4 based Y portfolio allocation 8 P B ity P

Source: Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuging Yang, Bowen Xiao, and Christina Dan Wang (2020). "FinRL: A Deep Reinforcement Learning Library
for Automated Stock Trading in Quantitative Finance." arXiv preprint arXiv:2011.09607 (2020).

97



FinRL:

A Deep Reinforcement Learning Library for
Automated Stock Trading in Quantitative Finance

Evaluation of Trading Performance
Training-Validation-Testing Flow

training validation  testing/trading

I N e e Y

01/01/2009 10/01/2015 01/01/2016 09/23/2020

98



Cumulative Return

Reinforcement Learning (RL)

FiInRL

Performance of single stock trading
using Proximal policy optimization (PPO) in the FinRL library

1.2| — AMZN
—— GOOGL
1| —QQQ
— SPY
0.8| — AAPL
— MSFT '
0.6| - - S&P 500 | _— - '
04 " Lot
> 4 A/ )
0.2 M : ‘ KA |
ng-‘ LYV
O ,\ 9%
)
Jan2 Mar 13 May 22 Jul 31 Oct9 Dec 18 Feb 26 May 6 Jul15 Sep 23
2019 2020

99



Cumulative Return

Performance of multiple stock trading

Reinforcement Learning (RL)

FinRL

and portfolio allocation
using the FinRL library

0.4| — TD3 (Portfolio Allocation) A
—— DDPG (Portfolio Allocation) w"'".
0.3| — TD3 (Multiple Stock) 4 A AN
—— DDPG (Multiple Stock) Vda,or ra P ﬁ oV WS e~
—— DJIA Lo W\ TR v \
0.2 Min-Variance - A - e oY M B AW
e va LA ol O ¥ v \ 1 " V2
'A [ TMVY A
\ \é o !
; M\
\ | “‘
| W
Y
\|
-0.2
Jan2 Mar 13 May 22 Jul 31 Oct 9 Dec 18 Feb 26 May 6 Jul15 Sep 23
2019 2020

100



Reinforcement Learning (RL)

FinRL

Performance of single stock trading

using Proximal policy optimization
(PPO) in the FinRL library

2019/01/01-2020/09223 | SPY | QQQ | GOOGL | AMZN | AAPL | MSFT | S&P 500
Initial value 100,000 | 100,000 | 100,000 | 100,000 | 100,000 | 100,000 | 100,000
Final value 127,044 | 163,647 | 174,825 | 192,031 | 173,063 | 172,797 | 133,402
Annualized return 14.89% | 32.33% | 37.40% | 44.94% | 36.88% | 36.49% | 17.81%
Annualized Std 9.63% | 27.51% | 3341% | 29.62% | 25.84% | 33.41% | 27.00%
Sharpe ratio 149 | 116 1.12 140 | L35 1.10 0.74

Max drawdown 20.93% | 28.26% | 27.76% | 21.13% | 22.47% | 28.11% | 33.92%

101



Reinforcement Learning (RL)

FiInRL

Performance of multiple stock trading
and portfolio allocation

over the DJIA constituents stocks using the FinRL library

2019/01/01-2020/09/23 TD3 DDPG Min-Var. | DIIA

Initial value 1,000,000 1,000,000 1,000,000 | 1,000,000
Final value 1,403,337; 1,381,120 | 1,396,607; 1,281,120 | 1,171,120 | 1,185,260
Annualized return 21.40%; 17.61% 20.34%; 15.81% 8.38% 10.61%
Annualized Std 14.60%; 17.01% 15.89%; 16.60% 2621% | 28.63%
Sharpe ratio 1.38; 1.03 [.28; 0.98 0.44 0.48

Max drawdown 11.52% 12.78% 13.72%; 13.68% 34.34% | 37.01%

102



Deep Reinforcement Learning
Library

* OpenAl Gym

* Google Dopamine
* RLIib

* Horizon

* FinRL



Open Al Gym

RandomAgent on Ant-v2

Gym is a toolkit for developing

and comparing reinforcement

learning algorithms. It
supports teaching agents l

everything from walking to
playing games like Pong Episode 12

or Pinball, —

RandomAgent on CartPole-v1

View documentation »

View on GitHub » . l

https://gym.openai.com/ 104



https://gym.openai.com/

Google Dopamine

A
SN

Dopamine is a research framework
for fast prototyping of
reinforcement learning algorithms.

https://github.com/google/dopamine

105


https://github.com/google/dopamine

Deep Reinforcement Learning
Dopamine Colab Examples
DQN Rainbow

© agents.ipynb B GD SHARE °

File Edit View Insert Runtime Tools Help

CODE TEXT 4 CELL ¥ CELL 43 COPY TO DRIVE / CONNECTED ~ /‘ EDITING A

Table of contents Code snippets Filess X

Copyright 2018 The Dopamine Authors.

Dopamine: How to create and train a custom Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You
agent may obtain a copy of the License at

https:/www.apache.org/licenses/LICENSE-2.0

Install necessary packages.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,

Necessary imports and globals. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language

governing permissions and limitations under the License.
Load baseline data

Example 1: Train a modified version of DQN

~ Dopamine: How to create and train a custom agent

This colab demonstrates how to create a variant of a provided agent (Example 1) and how to create a new agent from scratch
(Example 2).

Train MyRandomDQNAgent. Run all the cells below in order.

Create an agent based on DQN, but
choosing actions randomly.

Load the training logs.
[ 1 Install necessary packages.

Plot training results.

[ 1 Necessary imports and globals.
Example 2: Train an agent built from scratch.

BASE_PATH: '/tmp/colab_dope_run’

Create a completely new agent from

scratch. ' "
GAME: ‘Asterix

Train StickyAgent.

Load the training logs. [ 1 Load baseline data

https://colab.research.google.com/qgithub/google/dopamine/blob/master/dopamine/colab/agents.ipynb 106



https://colab.research.google.com/github/google/dopamine/blob/master/dopamine/colab/agents.ipynb

RLlib:

Scalable Reinforcement Learning

Examples
Tune API Reference

Contributing to Tune

RLLIB

RLlib: Scalable Reinforcement
Learning

RLIlib Table of Contents
RLIlib Training APIs
RLIlib Environments

RLIlib Models, Preprocessors, and
Action Distributions

RLIib Algorithms

RLlib Sample Collection and
Trajectory Views

RLIlib Offline Datasets

RLIlib Concepts and Custom
Algorithms

RLIlib Examples
RLIlib Package Reference

Contributing to RLIib

RAY SGD

RaySGD: Distributed Training

¢« N )

RLlib: Scalable Reinforcement Learning

RLlib is an open-source library for reinforcement learning that offers both high scalability and a
unified API for a variety of applications. RLIlib natively supports TensorFlow, TensorFlow Eager, and
PyTorch, but most of its internals are framework agnostic.

OpenAl Multi-Agent / Policy Offline
Gym Hierarchical Serving Data

} (1) Application Support

Custom Algorithms RLIib Algorithms

To get started, take a look over the custom env example and the APl documentation. If you're

(2) Abstractions for RL

looking to develop custom algorithms with RLIib, also check out concepts and custom algorithms.

RLIib in 60 seconds

The following is a whirlwind overview of RLIlib. For a more in-depth guide, see also the full table of
contents and RLIib blog posts. You may also want to skim the list of built-in algorithms. Look out for
the 1F and O icons to see which algorithms are available for each framework.

https://docs.ray.io/en/master/rllib.html

Contents

RLIib in 60 seconds

Running RLIib
Policies

Sample Batches
Training
Application Support

Customization

107


https://docs.ray.io/en/master/rllib.html

Papers with Code

State-of-the-Art (SOTA)

[|||||] Search for papers, code and tasks Q

Browse State-of-the-Art

122 1509 leaderboards « 1327 tasks « 1347 datasets « 17810 papers with code

Follow on ¥ Twitter for updates

Computer Vision
Semantic e Image
i e L] Sy o
Segmentation im==mm  Classification
e

I 33 leaderboards I 52 leaderboards

667 papers with code 564 papers with code

» See all 707 tasks

Natural Language Processing

- Machine o Language
:E Translation mpmll  Modelling

Object
= Detection

I 54 leaderboards

467 papers with code

Question
Answering

% Follow 4 Discuss

Image
Generation

I 51 leaderboards

231 papers with code

Sentiment
Analysis

https://paperswithcode.com/sota

Trends About

Pose
Estimation

I 40 leaderboards

231 papers with code

Text
Generation

Log In/Register

108


https://paperswithcode.com/sota

Aurélien Géron (2019),
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition
O’Reilly Media, 2019

OREILLY’ %#Z?Z%
Hands-on "

Machine Learning
with Scikit-Learn,
Keras & TensorFlow

Concepts, Tools, and Techniques
to Build Intelligent Systems

Aurélien Géron

https://github.com/ageron/handson-mi2

https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646/ 109



https://www.amazon.com/Hands-Machine-Learning-Scikit-Learn-TensorFlow/dp/1492032646/
https://github.com/ageron/handson-ml2

Hands-On Machine Learning with
Scikit-Learn, Keras, and TensorFlow

Notebooks

1.The Machine Learning landscape
2.End-to-end Machine Learning project
3.Classification Leaming with

4.Iraining Models Scikit-Learn, Keras
& TensorFloyy 7
CONCEPTS, TOOLS, AND TECHNIQUES i!.&

5.Support Vector Machines
6.Decision Trees Rs S oS 2l
7.Ensemble Learning and Random Forests ‘9
8.Dimensionality Reduction

9.Unsupervised Learning Techniques

10.Artificial Neural Nets with Keras

11.Training Deep Neural Networks

12.Custom Models and Training with TensorFlow
13.Loading and Preprocessing Data

14.Deep Computer Vision Using Convolutional Neural Networks
15.Processing Sequences Using RNNs and CNNs

16.Natural Language Processing with RNNs and Attention
17.Representation Learning Using Autoencoders
18.Reinforcement Learning

19.Training and Deploying TensorFlow Models at Scale

Aurélien Géron

https://qithub.com/ageron/handson-mi2 110


https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/01_the_machine_learning_landscape.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/02_end_to_end_machine_learning_project.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/03_classification.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/04_training_linear_models.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/05_support_vector_machines.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/06_decision_trees.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/07_ensemble_learning_and_random_forests.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/08_dimensionality_reduction.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/09_unsupervised_learning.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/10_neural_nets_with_keras.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/11_training_deep_neural_networks.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/12_custom_models_and_training_with_tensorflow.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/13_loading_and_preprocessing_data.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/14_deep_computer_vision_with_cnns.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/15_processing_sequences_using_rnns_and_cnns.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/16_nlp_with_rnns_and_attention.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/17_autoencoders.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/18_reinforcement_learning.ipynb
https://nbviewer.jupyter.org/github/ageron/handson-ml2/blob/master/19_training_and_deploying_at_scale.ipynb
https://github.com/ageron/handson-ml2

<>

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeod4zJ1zTuniMqf2RkCrT

& python10lipynb ¢

File Edit View Insert Runtime Tools Help All changes saved

Table of contents X

Machine Learning with scikit-learn
Classification and Prediction
Support Vector Machine (SVM)
Random Forest
K-Means Clustering
Deep Learning
Image Classification

Text Classification: IMDB Movie
Review

Deep Learning for Financial Time Series
Forecasting

Portfolio Optimization and Algorithmic
Trading

Investment Portfolio Optimisation
with Python

Efficient Frontier Portfolio
Optimisation in Python

Investment Portfolio Optimization

Text Analytics and Natural Language
Processing (NLP)

Python for Natural Language
Processing

spaCy Chinese Model

~ ~ ~ RPN A~ BRIL

+ Co

de + Text

~ Deep Learning

B Ccomment 2% Share £ 0

RAM X T
v’ Disk mm v 2" Editing

A

~ Image Classification

[

e Source: https://www.tensorflow.org/overview/

00 o U W N

{¥e]

10
aLil
12
13
14
iS5
16
17/
18
19

import tensorflow as tf
mnist = tf.keras.datasets.mnist

(Xx_train, y_train),(x_test, y_test) = mnist.load data()

x_train, x_

model = tf.
tf.keras.
tf.keras.
tf.keras.
tf.keras.

1)

test =

x_train / 255.0, x_test / 255.0

keras.models.Sequential ([

layers
layers
layers
layers

.Flatten(input_shape=(28, 28)),
.Dense (128, activation='relu'),
.Dropout(0.2),

.Dense (10, activation='softmax')

model.compile(optimizer="adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y test)

Epoch 1/5

1875/1875 [

] - 4s 2ms/step - loss: 0.4790 - accuracy: 0.8606

https://tinyurl.com/aintpupython101

111


https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/aintpupython101

Summary

e Reinforcement Learning (RL)
— Markov Decision Processes (MDP)
* Deep Reinforcement Learning (DRL) Algorithms
—SARSA
—Q-Learning
—DQN
—A3C

—Rainbow

112



References

Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.

Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and
Techniques to Build Intelligent Systems, 2nd Edition, O’Reilly Media.

Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLgYmG7hTraZDM-
OYHWgPebj2MfCFzFObQ,

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent Sifre,
Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan, Demis Hassabis (2018), "A general reinforcement
learning algorithm that masters chess, shogi, and Go through self-play." Science 362, no. 6419 (2018): 1140-1144.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker,
Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel,
and Demis Hassabis (2017), "Mastering the game of Go without human knowledge." Nature 550 (2017): 354—359.

Hado Van Hasselt, Arthur Guez, and David Silver (2016). "Deep Reinforcement Learning with Double Q-Learning." In AAAI,
vol. 2, p. 5. 2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot,
Mohammad Azar, and David Silver (2017). "Rainbow: Combining improvements in deep reinforcement learning." arXiv
preprint arXiv:1710.02298 (2017).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves et al. (2015)
"Human-level control through deep reinforcement learning." Nature 518, no. 7540 (2015): 529.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas (2015). "Dueling network
architectures for deep reinforcement learning." arXiv preprint arXiv:1511.06581 (2015).

Xiao-Yang Liu, Hongyang Yang, Qian Chen, Runjia Zhang, Liuging Yang, Bowen Xiao, and Christina Dan Wang (2020). "FinRL: A
Deep Reinforcement Learning Library for Automated Stock Trading in Quantitative Finance." arXiv preprint arXiv:2011.09607
(2020).

Mu-En Wu, Jia-Hao Syu, Jerry Chun-Wei Lin, and Jan-Ming Ho. "Portfolio management system in equity market neutral using
reinforcement learning." Applied Intelligence (2021): 1-13.

Min-Yuh Day (2021), Python 101, https://tinyurl.com/aintpupython101

113


https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
https://tinyurl.com/aintpupython101

