



# (Artificial Intelligence) 人工智慧和智慧代理人 (Artificial Intelligence and Intelligent Agents)

1092AI02 MBA, IM, NTPU (M5010) (Spring 2021) Wed 2, 3, 4 (9:10-12:00) (B8F40)



<u>Min-Yuh Day</u> <u>戴敏育</u>

**Associate Professor** 

副教授

Institute of Information Management, National Taipei University

國立臺北大學 資訊管理研究所



https://web.ntpu.edu.tw/~myday 2021-03-03





- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 1 2021/02/24 人工智慧概論 (Introduction to Artificial Intelligence)
- 2 2021/03/03 人工智慧和智慧代理人 (Artificial Intelligence and Intelligent Agents)
- 3 2021/03/10 問題解決 (Problem Solving)
- 4 2021/03/17 知識推理和知識表達 (Knowledge, Reasoning and Knowledge Representation)
- 5 2021/03/24 不確定知識和推理 (Uncertain Knowledge and Reasoning)

6 2021/03/31 人工智慧個案研究 I (Case Study on Artificial Intelligence I)





- 週次(Week) 日期(Date) 內容(Subject/Topics)
- 7 2021/04/07 放假一天 (Day off)
- 8 2021/04/14 機器學習與監督式學習 (Machine Learning and Supervised Learning)
- 9 2021/04/21 期中報告 (Midterm Project Report)
- 10 2021/04/28 學習理論與綜合學習
  - (The Theory of Learning and Ensemble Learning)
- 11 2021/05/05 深度學習
  - (Deep Learning)
- 12 2021/05/12 人工智慧個案研究 II (Case Study on Artificial Intelligence II)





週次(Week) 日期(Date) 內容(Subject/Topics) 13 2021/05/19 強化學習 (Reinforcement Learning) 14 2021/05/26 深度學習自然語言處理 (Deep Learning for Natural Language Processing) 15 2021/06/02 機器人技術 (Robotics) 16 2021/06/09 人工智慧哲學與倫理,人工智慧的未來 (Philosophy and Ethics of AI, The Future of AI) 17 2021/06/16 期末報告 | (Final Project Report I) 18 2021/06/23 期末報告 || (Final Project Report II)

# Artificial Intelligence and Intelligent Agents

# Outline

- Artificial Intelligence
- Intelligent Agents

### Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach,

4th Edition, Pearson



Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson

https://www.amazon.com/Artificial-Intelligence-A-Modern-Approach/dp/0134610997/

Artificial Intelligence: A Modern Approach

- 1. Artificial Intelligence
- 2. Problem Solving
- 3. Knowledge and Reasoning
- 4. Uncertain Knowledge and Reasoning
- 5. Machine Learning
- 6. Communicating, Perceiving, and Acting
- 7. Philosophy and Ethics of AI

# Artificial Intelligence: Intelligent Agents

# Artificial Intelligence: 2. Problem Solving

- Solving Problems by Searching
- Search in Complex Environments
- Adversarial Search and Games
- Constraint Satisfaction Problems

# Artificial Intelligence: 3. Knowledge and Reasoning

- Logical Agents
- First-Order Logic
- Inference in First-Order Logic
- Knowledge Representation
- Automated Planning

# Artificial Intelligence: 4. Uncertain Knowledge and Reasoning

- Quantifying Uncertainty
- Probabilistic Reasoning
- Probabilistic Reasoning over Time
- Probabilistic Programming
- Making Simple Decisions
- Making Complex Decisions
- Multiagent Decision Making

# Artificial Intelligence: 5. Machine Learning

- Learning from Examples
- Learning Probabilistic Models
- Deep Learning
- Reinforcement Learning

### **Artificial Intelligence:** 6. Communicating, Perceiving, and Acting

- Natural Language Processing
- Deep Learning for Natural Language Processing
- Computer Vision
- Robotics

# Artificial Intelligence: Philosophy and Ethics of AI The Future of AI

Source: Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson



### **Artificial Intelligence (A.I.) Timeline**

### A.I. TIMELINE



#### **A.I.**

#### WINTER

Many false starts and dead-ends leave A.I. out Kasparov

#### 1998

#### KISMET

Cynthia Breazeal at MIT introduces KISmet, an IBM defeats world chess emotionally intelligent robot insofar as it detects and responds to people's feelings

#### 1950

#### **TURING TEST** Computer scientist test for machine

intelligence. If a machine can trick humans into thinking it is human, then it has intelligence

#### 1955

A.I. BORN Term 'artificial Alan Turing proposes a intelligence' is coined by computer scientist, John McCarthy to describe "the science and engineering of

making intelligent

ODD

and clean homes

machines"

#### 1961 UNIMATE

First industrial robot, Unimate, goes to work at GM replacing assembly line

#### 1964

Pioneering chatbot developed by Joseph Weizenbaum at MIT with humans

#### 1966 The 'first electronic

person' from Stanford. Shakey is a generalpurpose mobile robot that reasons about its own actions

#### 1997 **DEEP BLUE**

Deep Blue, a chessplaying computer from

champion Garry

🔅 AlphaGo

#### 1999

Sony launches first consumer robot pet dog autonomous robotic AiBO (Al robot) with skills and personality that develop over time

#### 2002

Apple integrates Siri, vacuum cleaner from assistant with a voice iRobot learns to navigate interface, into the iPhone 4S

2011



#### WATSON

IBM's question answering computer Watson wins first place on popular \$1M prize television guiz show

#### 2014

Eugene Goostman, a chatbot passes the Turing Test with a third of judges believing Eugene is human

#### 2014

Amazon launches Alexa, Microsoft's chatbot Tay an intelligent virtual assistant with a voice interface that completes inflammatory and shopping tasks

#### 2016

goes roque on social media making offensive racist

#### 2017

#### **ALPHAGO**

Google's A.I. AlphaGo beats world champion Ke Jie in the complex board game of Go, notable for its vast number (2<sup>170</sup>) of possible positions

### The Rise of Al



Source: DHL (2018), Artificial Intelligence in Logistics, http://www.globalhha.com/doclib/data/upload/doc con/5e50c53c5bf67.pdf/

### **Artificial Intelligence in Medicine**



Source: Vivek Kaul, Sarah Enslin, and Seth A. Gross (2020), "The history of artificial intelligence in medicine." Gastrointestinal endoscopy..



# Definition of tificial Intelligence

# Artificial Intelligence (A.I.)

# "... the SCIENCE and engineering of making intelligent machines" (John McCarthy, 1955)

# "... technology that thinks and acts like humans"

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

# "... intelligence exhibited by machines or software"

Source: https://digitalintelligencetoday.com/artificial-intelligence-defined-useful-list-of-popular-definitions-from-business-and-science/

### **4 Approaches of Al**



### **4 Approaches of Al**

| 2.                | 3.                    |
|-------------------|-----------------------|
| Thinking Humanly: | Thinking Rationally:  |
| The Cognitive     | The "Laws of Thought" |
| Modeling Approach | Approach              |
| 1.                | 4.                    |
| Acting Humanly:   | Acting Rationally:    |
| The Turing Test   | The Rational Agent    |
| Approach (1950)   | Approach              |

Al Acting Humanly: The Turing Test Approach (Alan Turing, 1950)

- Knowledge Representation
- Automated Reasoning
- Machine Learning (ML)

- Deep Learning (DL)

- Computer Vision (Image, Video)
- Natural Language Processing (NLP)
- Robotics

# Acting Rationally: The Rational Agent Approach

- Al has focused on the study and construction of agents that do the right thing.
- Standard model

# Nucleus Synapses

Axon

Synapse

Neuroscience

The parts of a nerve cell or neuron

Axonal arborization

Axon from another cell

Cell body or soma

Dendrite

# Comparison of Computer and Human Brain

|                       | Supercomputer                | Personal Computer            | Human Brain               |
|-----------------------|------------------------------|------------------------------|---------------------------|
| Computational units   | 10 <sup>6</sup> GPUs + CPUs  | 8 CPU cores                  | 10 <sup>6</sup> columns   |
|                       | 10 <sup>15</sup> transistors | 10 <sup>10</sup> transistors | 10 <sup>11</sup> neurons  |
| Storage units         | 10 <sup>16</sup> bytes RAM   | 10 <sup>10</sup> bytes RAM   | 10 <sup>11</sup> neurons  |
|                       | 10 <sup>17</sup> bytes disk  | 10 <sup>12</sup> bytes disk  | 10 <sup>14</sup> synapses |
| Cycle time            | 10 <sup>-9</sup> sec         | 10 <sup>-9</sup> sec         | 10 <sup>-3</sup> sec      |
| <b>Operations/sec</b> | 10 <sup>18</sup>             | 10 <sup>10</sup>             | 10 <sup>17</sup>          |

### A scene from the blocks world

Find a block which is taller than the one you are holding and put it in the box.



# Intelligent Agents

### **4 Approaches of Al**

| 2.                | 3.                    |
|-------------------|-----------------------|
| Thinking Humanly: | Thinking Rationally:  |
| The Cognitive     | The "Laws of Thought" |
| Modeling Approach | Approach              |
| 1.                | 4.                    |
| Acting Humanly:   | Acting Rationally:    |
| The Turing Test   | The Rational Agent    |
| Approach (1950)   | Approach              |

### **Reinforcement Learning (DL)**



Environment

### **Reinforcement Learning (DL)**


## **Reinforcement Learning (DL)**



# Agents interact with environments through sensors and actuators



## A vacuum-cleaner world with just two locations



## Partial tabulation of a simple agent function for the vacuum-cleaner world

| Percept sequence                   | Action |
|------------------------------------|--------|
| [A, Clean]                         | Right  |
| [A, Dirty]                         | Suck   |
| [B, Clean]                         | Left   |
| [B, Dirty]                         | Suck   |
| [A, Clean], [A, Clean]             | Right  |
| [A, Clean], [A, Dirty]             | Suck   |
|                                    |        |
| [A, Clean], [A, Clean], [A, Clean] | Right  |
| [A, Clean], [A, Clean], [A, Dirty] | Suck   |
|                                    | :      |

## PEAS description of the task environment for an automated taxi driver

| Agent Type  | Performance<br>Measure                                                                                             | Environment                                                               | Actuators                                                               | Sensors                                                                                            |
|-------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| Taxi driver | Safe, fast,<br>legal,<br>comfortable<br>trip, maximize<br>profits,<br>minimize<br>impact on<br>other road<br>users | Roads, other<br>traffic, police,<br>pedestrians,<br>customers,<br>weather | Steering,<br>accelerator,<br>brake, signal,<br>horn, display,<br>speech | Cameras, radar,<br>speedometer, GPS, engine<br>sensors, accelerometer,<br>microphones, touchscreen |

# Examples of Agent Types and their PEAS descriptions

| Agent Type                         | Performance<br>Measure                           | Environment                                 | Actuators                                                   | Sensors                                                   |
|------------------------------------|--------------------------------------------------|---------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------|
| Medical<br>diagnosis system        | Healthy patient, reduced costs                   | Patient, hospital,<br>staff                 | Display of<br>questions, tests,<br>diagnoses,<br>treatments | Touchscreen/voice<br>entry of<br>symptoms and<br>findings |
| Satellite image<br>analysis system | Correct<br>categorization of<br>objects, terrain | Orbiting satellite,<br>downlink,<br>weather | Display of scene categorization                             | High-resolution digital camera                            |
| Part-picking<br>robot              | Percentage of<br>parts in correct<br>bins        | Conveyor belt<br>with parts; bins           | Jointed arm and hand                                        | Camera, tactile<br>and joint angle<br>sensors             |
| Refinery<br>controller             | Purity, yield,<br>safety                         | Refinery, raw<br>materials,<br>operators    | Valves, pumps,<br>heaters, stirrers,<br>displays            | Temperature,<br>pressure, flow,<br>chemical sensors       |
| Interactive<br>English tutor       | Student's score<br>on test                       | Set of students, testing agency             | Display of<br>exercises,<br>feedback, speech                | Keyboard entry,<br>voice                                  |

# Examples of Task Environments and their Characteristics

| Task Environment    | Observable | Agents | Deterministic | Episodic   | Static  | Discrete   |
|---------------------|------------|--------|---------------|------------|---------|------------|
| Crossword puzzle    | Fully      | Single | Deterministic | Sequential | Static  | Discrete   |
| Chess with a clock  | Fully      | Multi  | Deterministic | Sequential | Semi    | Discrete   |
| Poker               | Partially  | Multi  | Stochastic    | Sequential | Static  | Discrete   |
| Backgammon          | Fully      | Multi  | Stochastic    | Sequential | Static  | Discrete   |
| Taxi driving        | Partially  | Multi  | Stochastic    | Sequential | Dynamic | Continuous |
| Medical diagnosis   | Partially  | Single | Stochastic    | Sequential | Dynamic | Continuous |
| Image analysis      | Fully      | Single | Deterministic | Episodic   | Semi    | Continuous |
| Part-picking robot  | Partially  | Single | Stochastic    | Episodic   | Dynamic | Continuous |
| Refinery controller | Partially  | Single | Stochastic    | Sequential | Dynamic | Continuous |
| English tutor       | Partially  | Multi  | Stochastic    | Sequential | Dynamic | Discrete   |

The TABLE-DRIVEN-AGENT program is invoked for each new percept and returns an action each time. It retains the complete percept sequence in memory.

function TABLE-DRIVEN-AGENT( percept) returns an action
persistent: percepts, a sequence, initially empty
table, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts action  $\leftarrow$  LOOKUP(percepts, table) return action





## Schematic Diagram of a Simple Reflex Agent



# Schematic diagram of a simple reflex agent



# Schematic diagram of a simple reflex agent



#### A Simple Reflex Agent It acts according to a rule whose condition matches the current state, as defined by the percept.

function SIMPLE-REFLEX-AGENT( percept) returns an action
 persistent: rules, a set of condition-action rules

 $state \leftarrow INTERPRET-INPUT(percept)$   $rule \leftarrow RULE-MATCH(state, rules)$   $action \leftarrow rule.ACTION$ **return** action



### A Model-based Reflex Agent





It keeps track of the current state of the world, using an internal model.

It then chooses an action in the same way as the reflex agent.

function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent's current conception of the world state
 transition\_model, a description of how the next state depends on
 the current state and action
 sensor\_model, a description of how the current world state is reflected
 in the agent's percepts
 rules, a set of condition-action rules
 action, the most recent action, initially none

 $state \leftarrow \mathsf{UPDATE-STATE}(state, action, percept, transition\_model, sensor\_model)$  $rule \leftarrow \mathsf{RULE-MATCH}(state, rules)$  $action \leftarrow rule.\mathsf{ACTION}$ return action

## A model-based, goal-based agent



## A model-based, utility-based agent



## A general learning agent



# Three ways to represent states and the transitions between them



## Artificial Intelligence Machine Learning & Deep Learning

#### ARTIFICIAL INTELLIGENCE



Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

# AI, ML, DL

#### **Artificial Intelligence (AI)**



Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep\_learning.html

### **3 Machine Learning Algorithms**



Source: Enrico Galimberti, http://blogs.teradata.com/data-points/tree-machine-learning-algorithms/

## **Machine Learning (ML)**



#### Machine Learning (ML) / Deep Learning (DL)



Source: Jesus Serrano-Guerrero, Jose A. Olivas, Francisco P. Romero, and Enrique Herrera-Viedma (2015), "Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.

## **Computer Vision: Image Classification,** Object Detection, Object Instance Segmentation



Source: DHL (2018), Artificial Intelligence in Logistics, http://www.globalhha.com/doclib/data/upload/doc con/5e50c53c5bf67.pdf/

### **Computer Vision: Object Detection**



#### (a) Object Classification



(b) Generic Object Detection (Bounding Box)





#### (d) Object Instance Segmetation

Source: Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and Matti Pietikäinen. "Deep learning for generic object detection: A survey." International journal of computer vision 128, no. 2 (2020): 261-318.

### YOLOv4:

#### **Optimal Speed and Accuracy of Object Detection**

#### **MS COCO Object Detection**



Source: Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. "YOLOv4: Optimal Speed and Accuracy of Object Detection." arXiv preprint arXiv:2004.10934 (2020).

### **Text Analytics and Text Mining**



Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

#### Aurélien Géron (2019),

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition O'Reilly Media, 2019



#### https://github.com/ageron/handson-ml2

#### Hands-On Machine Learning with

#### Scikit-Learn, Keras, and TensorFlow

#### Notebooks

- 1. The Machine Learning landscape
- 2. End-to-end Machine Learning project
- 3. Classification
- 4. Training Models
- 5. Support Vector Machines
- 6. Decision Trees
- 7. Ensemble Learning and Random Forests
- 8. Dimensionality Reduction
- 9. Unsupervised Learning Techniques
- 10. Artificial Neural Nets with Keras
- 11. Training Deep Neural Networks
- 12. Custom Models and Training with TensorFlow
- 13. Loading and Preprocessing Data
- 14. Deep Computer Vision Using Convolutional Neural Networks
- 15. Processing Sequences Using RNNs and CNNs
- 16. Natural Language Processing with RNNs and Attention
- 17. Representation Learning Using Autoencoders
- 18. Reinforcement Learning
- 19. Training and Deploying TensorFlow Models at Scale





### Python in Google Colab (Python101)

#### https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT



https://tinyurl.com/aintpupython101

# Summary

- Artificial Intelligence
- Intelligent Agents

### References

- Stuart Russell and Peter Norvig (2020), Artificial Intelligence: A Modern Approach, 4th Edition, Pearson.
- Aurélien Géron (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, 2nd Edition, O'Reilly Media.