
人工智慧文本分析

(AI for Text Analytics)

情感分析 (Sentiment Analysis)

1091AITA10 MBA, IMTKU (M2455) (8418) (Fall 2020) Thu 3, 4 (10:10-12:00) (B206)

Min-Yuh Day

Associate Professor

副教授

Institute of Information Management, National Taipei University

國立臺北大學 資訊管理研究所

https://web.ntpu.edu.tw/~myday 2020-12-10

課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics)

12020/09/17人工智慧文本分析課程介紹

(Course Orientation on Artificial Intelligence for Text Analytics)

2 2020/09/24 文本分析的基礎:自然語言處理

(Foundations of Text Analytics: Natural Language Processing; NLP)

3 2020/10/01 中秋節 (Mid-Autumn Festival) 放假一天 (Day off)

4 2020/10/08 Python自然語言處理

(Python for Natural Language Processing)

5 2020/10/15 處理和理解文本

(Processing and Understanding Text)

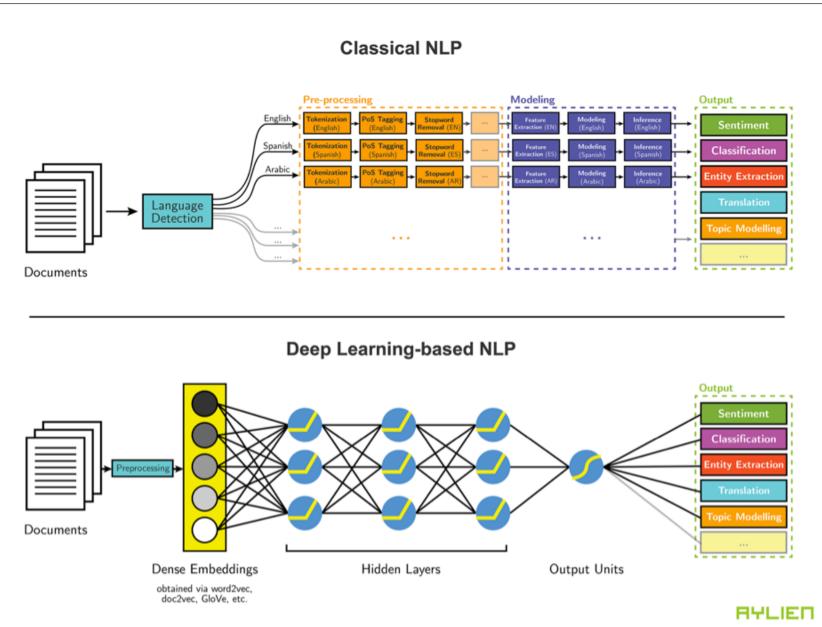
6 2020/10/22 文本表達特徵工程

(Feature Engineering for Text Representation)

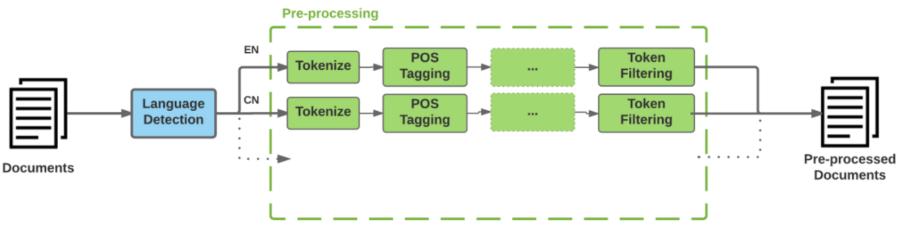
課程大綱 (Syllabus)

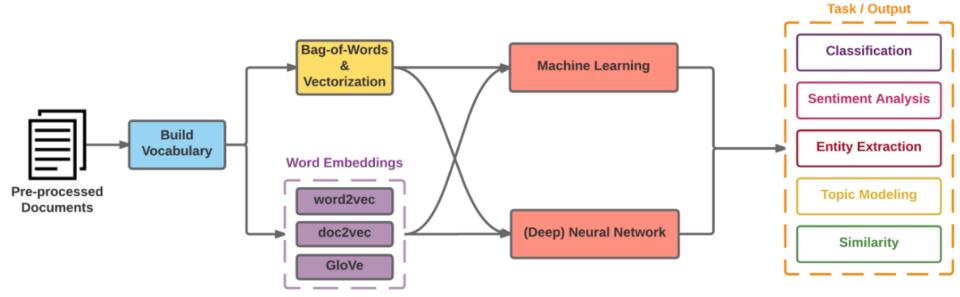
週次(Week) 日期(Date) 內容(Subject/Topics) 72020/10/29人工智慧文本分析個案研究| (Case Study on Artificial Intelligence for Text Analytics I) 8 2020/11/05 文本分類 (Text Classification) 9 2020/11/12 文本摘要和主題模型 (Text Summarization and Topic Models) 10 2020/11/19 期中報告 (Midterm Project Report) 11 2020/11/26 文本相似度和分群 (Text Similarity and Clustering) 12 2020/12/03 語意分析和命名實體識別 (Semantic Analysis and Named Entity Recognition; NER)

課程大綱 (Syllabus)

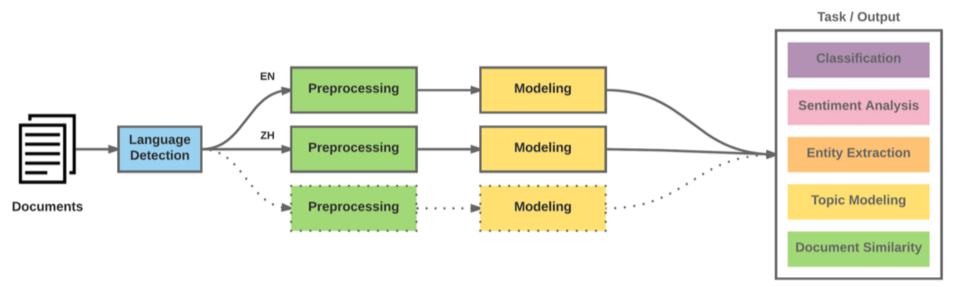

週次(Week) 日期(Date) 內容(Subject/Topics) 13 2020/12/10 情感分析 (Sentiment Analysis) 14 2020/12/17 人工智慧文本分析個案研究 || (Case Study on Artificial Intelligence for Text Analytics II) 15 2020/12/24 深度學習和通用句子嵌入模型 (Deep Learning and Universal Sentence-Embedding Models) 16 2020/12/31 問答系統與對話系統 (Question Answering and Dialogue Systems) 17 2021/01/07 期末報告 I (Final Project Presentation I) 18 2021/01/14 期末報告 II (Final Project Presentation II)

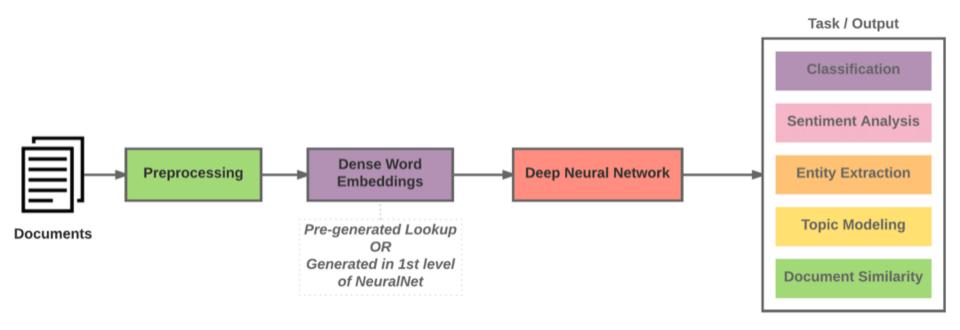
Sentiment Analysis


Outline


- Unsupervised lexicon-based models
- Traditional supervised machine learning models
- Supervised deep learning models
- Advanced supervised deep learning models

NLP


Modern NLP Pipeline



Source: https://github.com/fortiema/talks/blob/master/opendata2016sh/pragmatic-nlp-opendata2016sh.pdf

Modern NLP Pipeline

Deep Learning NLP

Natural Language Processing (NLP) and Text Mining

Raw text

Sentence Segmentation

Tokenization

Part-of-Speech (POS)

Stop word removal

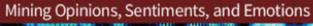
Stemming / Lemmatization

Dependency Parser

String Metrics & Matching

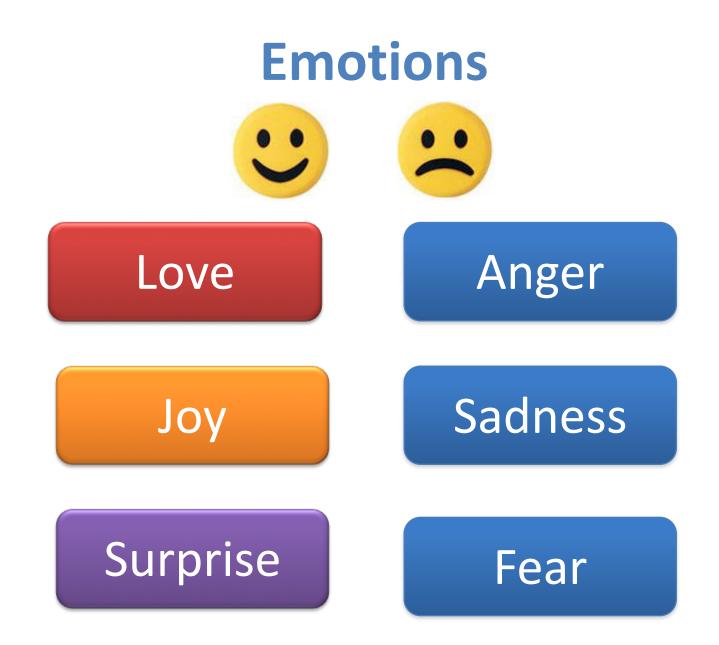
word's stemword's lemma $am \rightarrow am$ $am \rightarrow be$ having \rightarrow havhaving \rightarrow have

Large Movie Review Dataset


- Large Movie Review Dataset v1.0
 - Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. (2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011).
 - <u>http://ai.stanford.edu/~amaas/data/sentiment/</u>
 - <u>http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz</u>

Sentiment Analysis: Unsupervised Lexicon-Based Models

- Bing Liu's lexicon
- TextBlob lexicon
- SentiWordNet lexicon
- VADER lexicon
- MPQA subjectivity lexicon
- Pattern lexicon
- AFINN lexicon


Bing Liu (2015), Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, Cambridge University Press

http://www.amazon.com/Sentiment-Analysis-Opinions-Sentiments-Emotions/dp/1107017890

Example of Opinion: review segment on iPhone

- "I bought an iPhone a few days ago.
- It was such a nice phone.
- The touch screen was really cool.
- The voice quality was clear too.
- However, my mother was mad with me as I did not tell her before I bought it.
- She also thought the phone was too expensive, and wanted me to return it to the shop. ... "

Example of Opinion: review segment on iPhone

- "(1) I bought an <u>iPhone</u> a few days ago.
- (2) It was such a **nice** phone.
- (3) The touch screen was really cool.
- (4) The voice quality was clear too.

Opinion

- (5) However, my mother was mad with me as I did not tell her before I bought it.
- (6) She also thought the phone was too <u>expensive</u>, and wanted me to return it to the shop. ... " -Negative

Sentiment Analysis and Opinion Mining

Computational study of ulletopinions, sentiments, subjectivity, evaluations, attitudes, appraisal, affects, views, emotions,

ets., expressed in text.

Reviews, blogs, discussions, news, comments, feedback, or any other documents

Research Area of Opinion Mining

- Many names and tasks with difference objective and models
 - Sentiment analysis
 - Opinion mining
 - Sentiment mining
 - Subjectivity analysis
 - Affect analysis
 - Emotion detection
 - Opinion spam detection

Sentiment Analysis

- Sentiment
 - A thought, view, or attitude, especially one based mainly on emotion instead of reason
- Sentiment Analysis
 - opinion mining
 - use of natural language processing (NLP) and computational techniques to automate the extraction or classification of sentiment from typically unstructured text

Applications of Sentiment Analysis

- Consumer information
 - Product reviews
- Marketing
 - Consumer attitudes
 - Trends
- Politics
 - Politicians want to know voters' views
 - Voters want to know policitians' stances and who else supports them
- Social
 - Find like-minded individuals or communities

Sentiment detection

- How to interpret features for sentiment detection?
 - Bag of words (IR)
 - Annotated lexicons (WordNet, SentiWordNet)
 - Syntactic patterns
- Which features to use?
 - Words (unigrams)
 - Phrases/n-grams
 - Sentences

Problem statement of Opinion Mining

- Two aspects of abstraction
 - Opinion definition
 - What is an opinion?
 - What is the structured definition of opinion?
 - Opinion summarization
 - Opinion are subjective
 - An opinion from a single person (unless a VIP) is often not sufficient for action
 - We need opinions from many people, and thus opinion summarization.

What is an opinion?

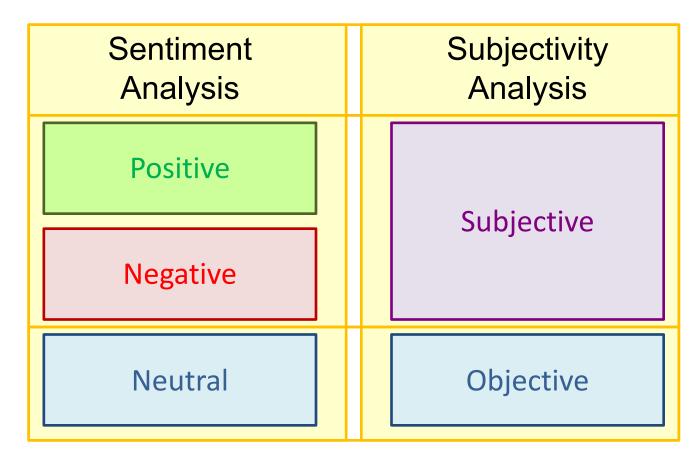
- Id: Abc123 on 5-1-2008 "I bought an iPhone a few days ago. It is such a nice phone. The touch screen is really cool. The voice quality is clear too. It is much better than my old Blackberry, which was a terrible phone and so difficult to type with its tiny keys. However, my mother was mad with me as I did not tell her before I bought the phone. She also thought the phone was too expensive, ..."
- One can look at this review/blog at the
 - Document level
 - Is this review + or -?
 - Sentence level
 - Is each sentence + or -?
 - Entity and feature/aspect level

Entity and aspect/feature level

- Id: Abc123 on 5-1-2008 "I bought an iPhone a few days ago. It is such a nice phone. The touch screen is really cool. The voice quality is clear too. It is much better than my old Blackberry, which was a terrible phone and so difficult to type with its tiny keys. However, my mother was mad with me as I did not tell her before I bought the phone. She also thought the phone was too expensive, ..."
- What do we see?
 - Opinion targets: entities and their features/aspects
 - Sentiments: positive and negative
 - Opinion holders: persons who hold the opinions
 - Time: when opinion are expressed

Two main types of opinions

- Regular opinions: Sentiment/Opinion expressions on some target entities
 - Direct opinions: sentiment expressions on one object:
 - "The touch screen is really cool."
 - "The picture quality of this camera is great"
 - Indirect opinions: comparisons, relations expressing similarities or differences (objective or subjective) of more than one object
 - "phone X is cheaper than phone Y." (objective)
 - "phone X is better than phone Y." (subjective)
- Comparative opinions: comparisons of more than one entity.
 - "iPhone is better than Blackberry."


Subjective and Objective

• Objective

- An objective sentence expresses some factual information about the world.
- "I returned the phone yesterday."
- Objective sentences can implicitly indicate opinions
 - "The earphone broke in two days."
- Subjective
 - A subjective sentence expresses some personal feelings or beliefs.
 - "The voice on my phone was not so clear"
 - Not every subjective sentence contains an opinion
 - "I wanted a phone with good voice quality"
- Subjective analysis

Source: Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," Springer, 2nd Edition, 27

Sentiment Analysis vs. Subjectivity Analysis

A (regular) opinion

- Opinion (a restricted definition)
 - An opinion (regular opinion) is simply a positive or negative sentiment, view, attitude, emotion, or appraisal about an entity or an aspect of the entity from an opinion holder.
- Sentiment orientation of an opinion
 - Positive, negative, or neutral (no opinion)
 - Also called:
 - Opinion orientation
 - Semantic orientation
 - Sentiment polarity

Entity and aspect

- Definition of Entity:
 - An *entity e* is a product, person, event, organization, or topic.
 - e is represented as
 - A hierarchy of components, sub-components.
 - Each node represents a components and is associated with a set of attributes of the components
- An opinion can be expressed on any node or attribute of the node
- Aspects(features)
 - represent both components and attribute

Opinion Definition

- An opinion is a quintuple
 (*e_j*, *a_{jk}*, *so_{ijkl}*, *h_i*, *t_l*)
 where
 - $-e_j$ is a target entity.
 - $-a_{jk}$ is an aspect/feature of the entity e_j .
 - *so_{ijkl}* is the sentiment value of the opinion from the opinion holder on feature of entity at time.
 so_{ijkl} is +ve, -ve, or neu, or more granular ratings
 - $-h_i$ is an opinion holder.
 - $-t_1$ is the time when the opinion is expressed.
- (*e_j*, *a_{jk}*) is also called opinion target

Source: Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," Springer, 2nd Edition, 31

Terminologies

- Entity: object
- Aspect: feature, attribute, facet
- Opinion holder: opinion source

• Topic: entity, aspect

• Product features, political issues

Subjectivity and Emotion

• Sentence subjectivity

 An objective sentence presents some factual information, while a subjective sentence expresses some personal feelings, views, emotions, or beliefs.

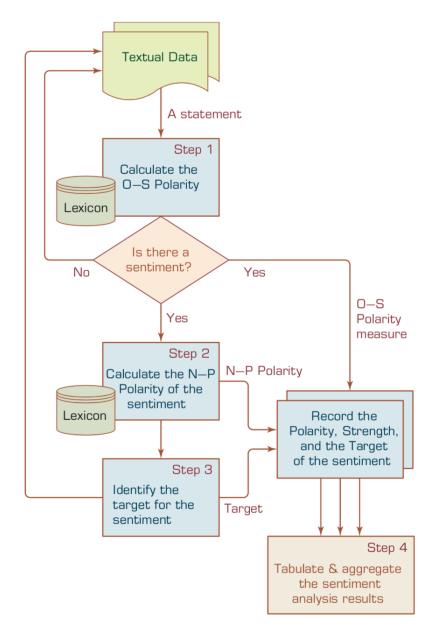
- Emotion
 - Emotions are people's subjective feelings and thoughts.

Classification Based on Supervised Learning

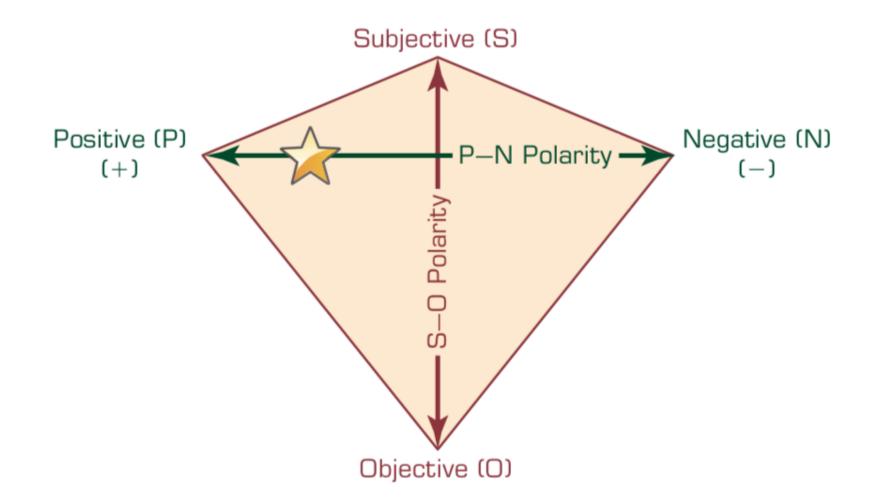
- Sentiment classification
 - Supervised learning Problem
 - Three classes
 - Positive
 - Negative
 - Neutral

Opinion words in Sentiment classification

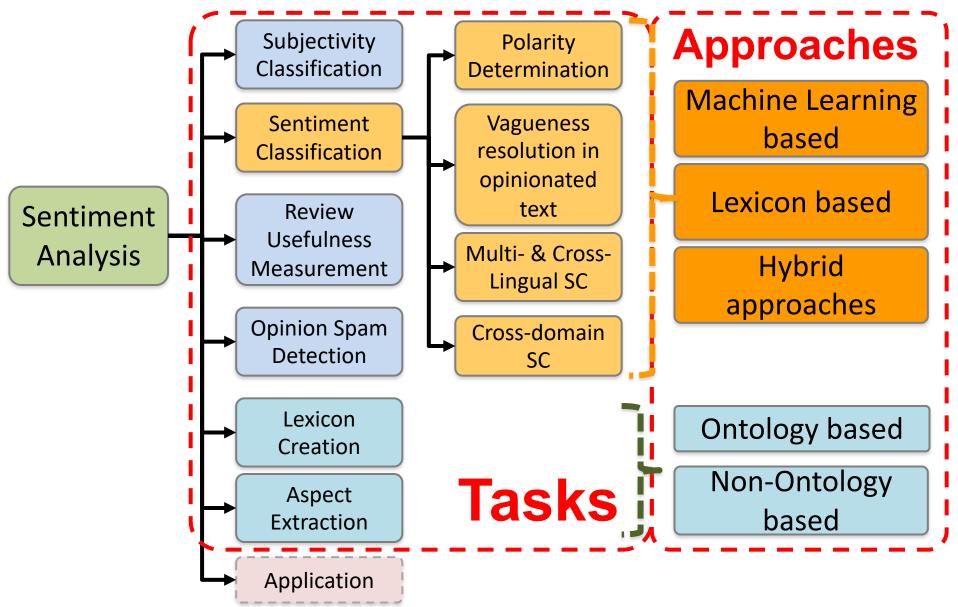
- topic-based classification
 - topic-related words are important
 - e.g., politics, sciences, sports
- Sentiment classification
 - topic-related words are unimportant
 - opinion words (also called sentiment words)
 - that indicate positive or negative opinions are important,


e.g., great, excellent, amazing, horrible, bad, worst

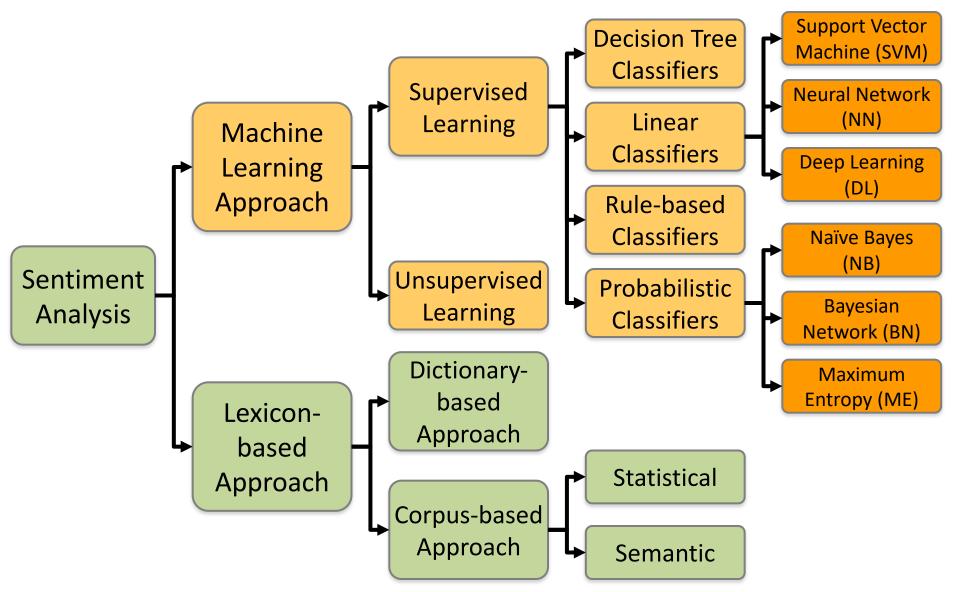
Features in Opinion Mining


- Terms and their frequency
 - TF-IDF
- Part of speech (POS)
 - Adjectives
- Opinion words and phrases
 - beautiful, wonderful, good, and amazing are positive opinion words
 - bad, poor, and terrible are negative opinion words.
 - opinion phrases and idioms,
 e.g., cost someone an arm and a leg
- Rules of opinions
- Negations
- Syntactic dependency

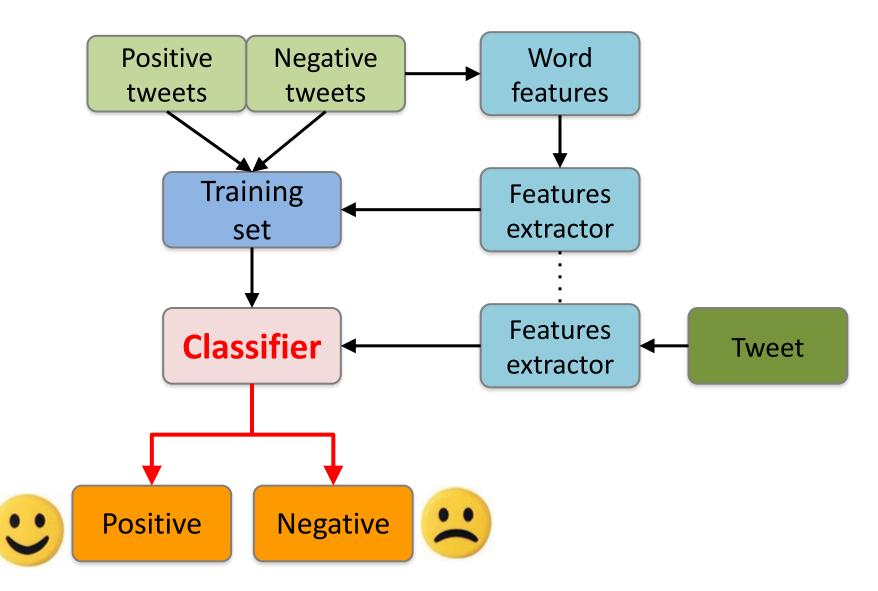
Source: Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," Springer, 2nd Edition, 36


A Multistep Process to Sentiment Analysis

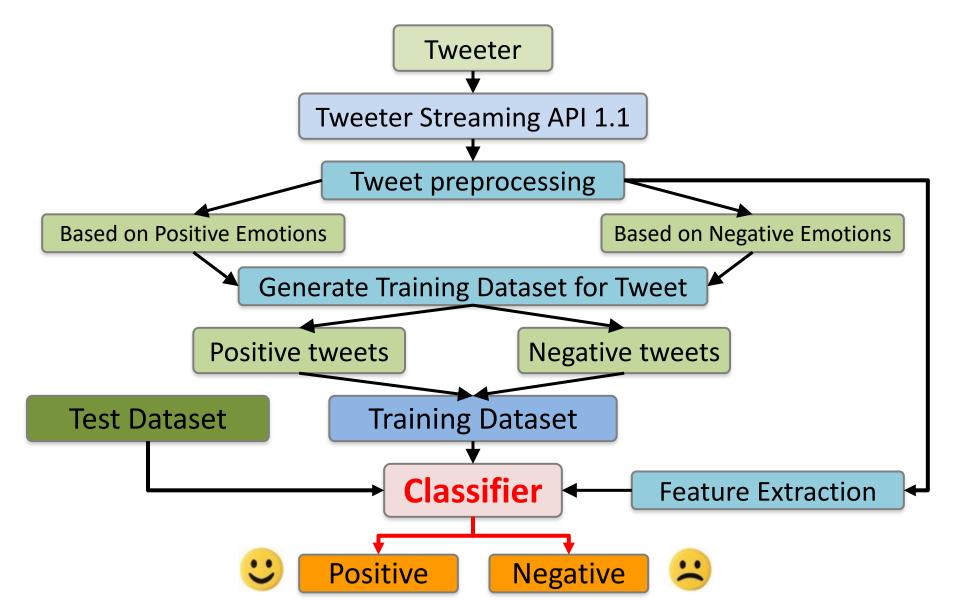
P–N Polarity and S–O Polarity Relationship



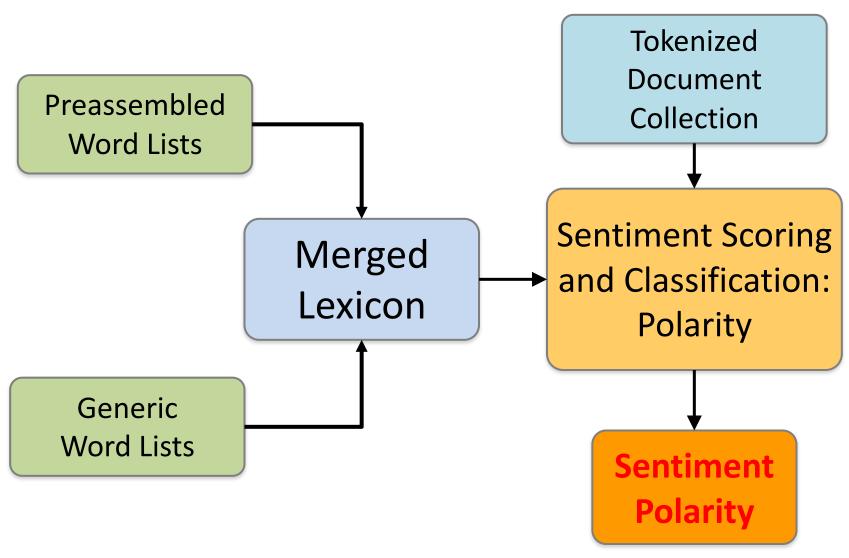
Sentiment Analysis

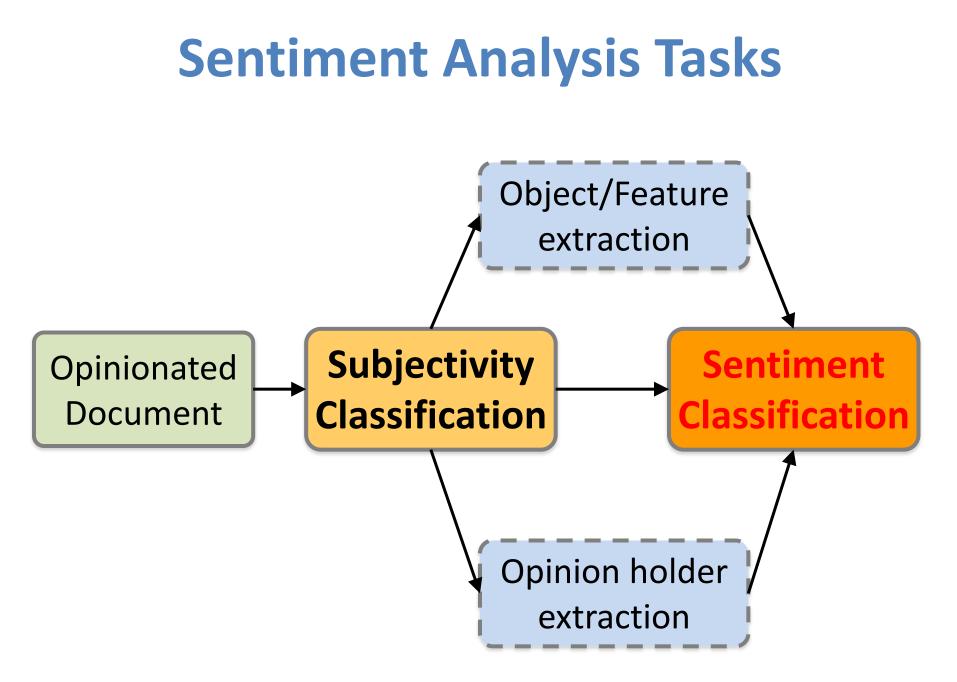

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

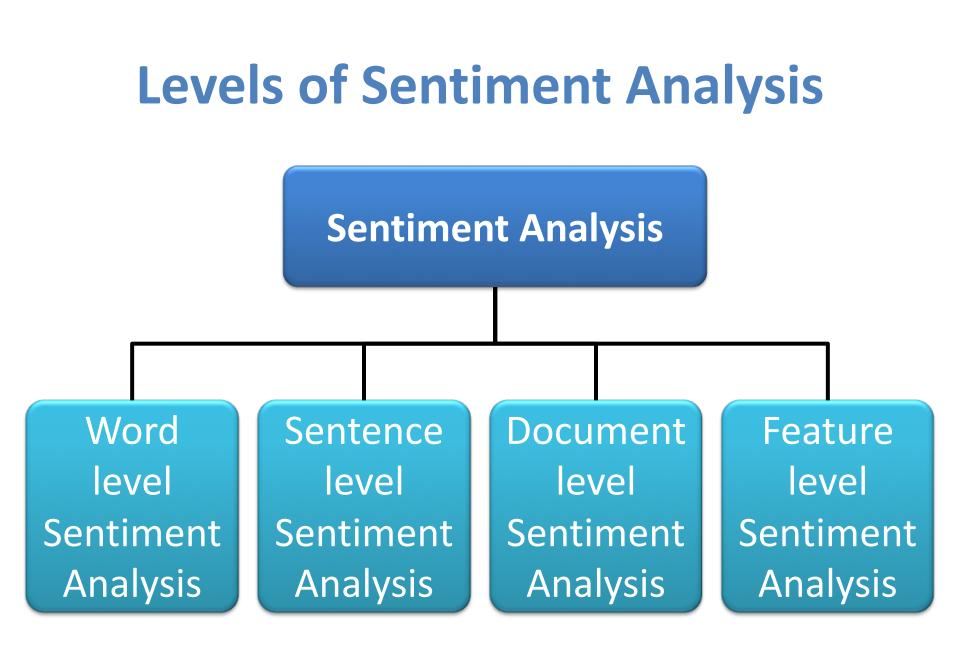
Sentiment Classification Techniques

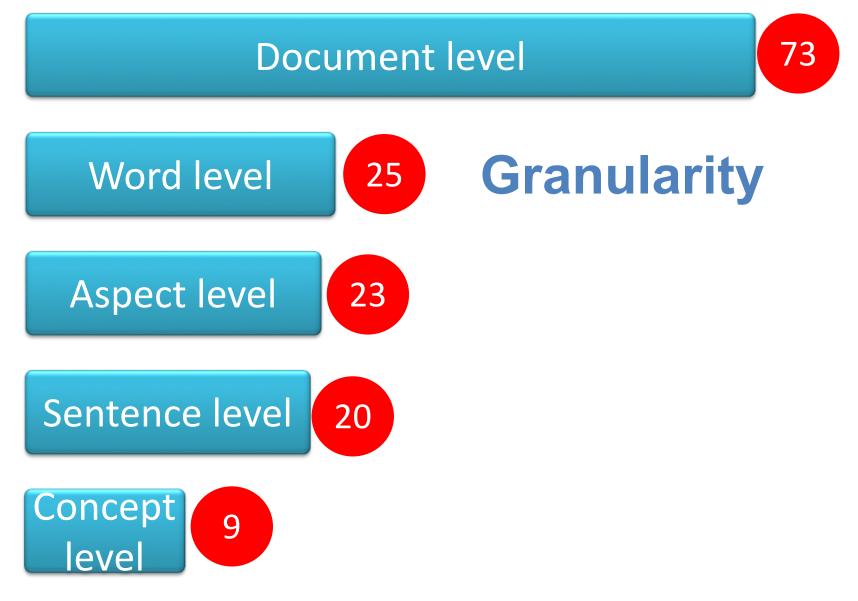


Source: Jesus Serrano-Guerrero, Jose A. Olivas, Francisco P. Romero, and Enrique Herrera-Viedma (2015), "Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.


Sentiment Analysis Architecture




Sentiment Classification Based on Emoticons


Lexicon-Based Model

Levels of Sentiment Analysis

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

A Brief Summary of Sentiment Analysis Methods

Study	Analysis	Sentiment Identification		Sentiment Aggregation		Nature of
-	Task	Method	Level	Method	Level	Measure
Hu and Li, 2011	Polarity	ML (Probabilistic model)	Snippet			Valence
Li and Wu, 2010	Polarity	Lexicon/Rule	Phrase	Sum	Snippet	Valence
Thelwall et al., 2010	Polarity	Lexicon/Rule	Sentence	Max & Min	Snippet	Range
Boiy and Moens, 2009	Both	ML (Cascade ensemble)	Sentence			Valence
Chung 2009	Polarity	Lexicon	Phrase	Average	Sentence	Valence
Wilson, Wiebe, and Hoffmann, 2009	Both	ML (SVM, AdaBoost, Rule, etc.)	Phrase			Valence
Zhang et al., 2009	Polarity	Lexicon/Rule	Sentence	Weighted average	Snippet	Valence
Abbasi, Chen, and Salem, 2008	Polarity	ML (GA + feature selection)	Snippet			Valence
Subrahmanian and Reforgiato, 2008	Polarity	Lexicon/Rule	Phrase	Rule	Snippet	Valence
Tan and Zhang 2008	Polarity	ML (SVM, Winnow, NB, etc.)	Snippet			Valence
Airoldi, Bai, and Padman, 2007	Polarity	ML (Markov Blanket)	Snippet			Valence
Das and Chen, 2007	Polarity	ML (Bayesian, Discriminate, etc.)	Snippet	Average	Daily	Valence
Liu et al., 2007	Polarity	ML (PLSA)	Snippet			Valence
Kennedy and Inkpen, 2006	Polarity	Lexicon/Rule, ML (SVM)	Phrase	Count	Snippet	Valence
Mishne 2006	Polarity	Lexicon	Phrase	Average	Snippet	Valence
Liu et al., 2005	Polarity	Lexicon/Rule	Phrase	Distribution	Object	Range
Mishne 2005	Polarity	ML (SVM)	Snippet			Valence
Popescu and Etzioni 2005	Polarity	Lexicon/Rule	Phrase			Valence
Efron 2004	Polarity	ML (SVN, NB)	Snippet			Valence
Wilson, Wiebe, and Hwa, 2004	Both	ML (SVM, AdaBoost, Rule, etc.)	Sentence			Valence
Nigam and Hurst 2004	Polarity	Lexicon/Rule	Chunk	Rule	Sentence	Valence
Dave, Lawrence, and Pennock, 2003	Polarity	ML (SVM, Rainbow, etc.)	Snippet			Valence
Nasukawa and Yi 2003	Polarity	Lexicon/Rule	Phrase	Rule	Sentence	Valence
Yi et al., 2003	Polarity	Lexicon/Rule	Phrase	Rule	Sentence	Valence
Yu and Hatzivassiloglou 2003	Both	ML (NB) + Lexicon/Rule	Phrase	Average	Sentence	Valence
Pang, Lee, and Vaithyanathan 2002	Polarity	ML (SVM, MaxEnt, NB)	Snippet			Valence
Subasic and Huettner 2001	Polarity	Lexicon/Fuzzy logic	Phrase	Average	Snippet	Valence
Turney 2001	Polarity	Lexicon/Rule	Phrase	Average	Snippet	Valence

(Both = Subjectivity and Polarity; ML= Machine Learning; Lexicon/Rule= Lexicon enhanced by linguistic rules)

Source: Zhang, Z., Li, X., and Chen, Y. (2012), "Deciphering word-of-mouth in social media: Text-based metrics of consumer reviews," ACM Trans. Manage. Inf. Syst. (3:1) 2012, pp 1-23.,

Word-of-Mouth (WOM)

 "This book is the best written documentary thus far, yet sadly, there is no soft cover edition."

 "This book is the best written documentary thus far, yet sadly, there is no soft cover edition."

	Word	POS
This	This	DT
book	book	NN
is	is	VBZ
the	the	DT
best	best	JJS
written	written	VBN
documentary	documentary	NN
thus	thus	RB
far	far	RB
,	,	,
yet	yet	RB
sadly	sadly	RB
,	,	,
there	there	EX
is	is	VBZ
no	no	DT
soft	soft	JJ
cover	cover	NN
edition	edition	NN
	•	•

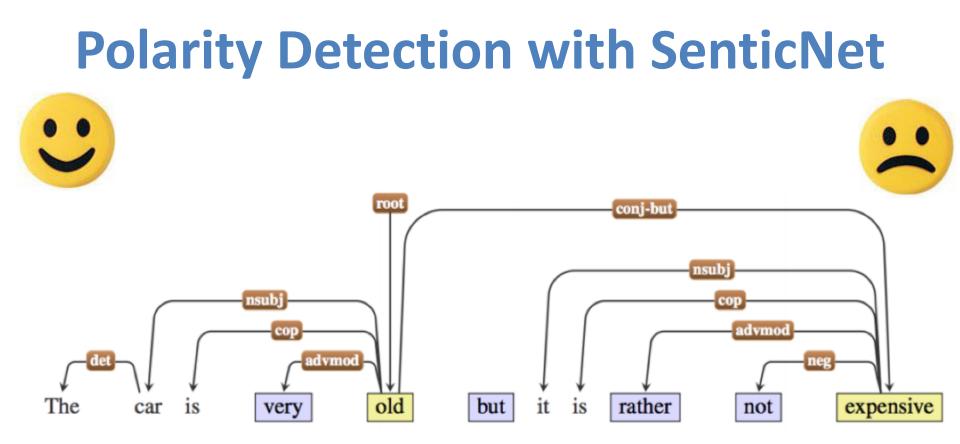
Conversion of text representation

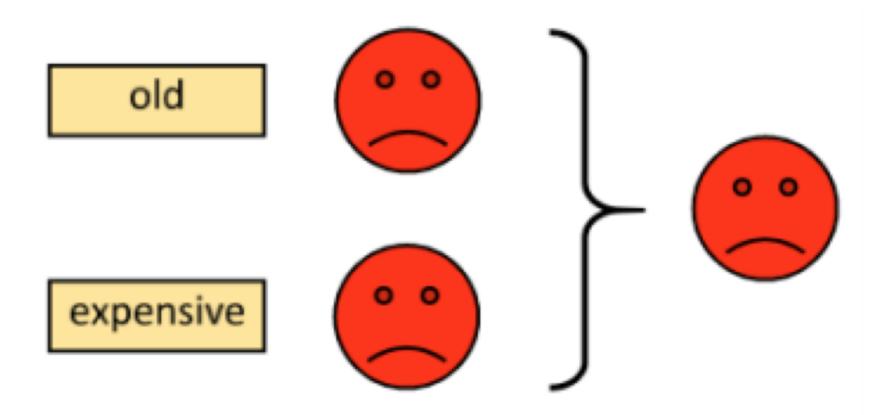
Word Vector (WV)		pscor	Po e nscore	olarity Score Vector (PSV)	I	Microstate Sequence (MS)	2	
This		0	0	Neutral (0)		0		
book		0	0	Neutral (0)		0		
is		0	0	Neutral (0)		0		Probability
the		0	0	Neutral (0)		0		Distribution
best		0.75	0	Positive (0.75)		1		(P)
written		0	0	Neutral (0)		0	. [
documentary		0	0	Neutral (0)		0		
thus		0.375	0	Positive (0.375)		1		P("1")=3/17
far	SentiWordNet	0.375	0	Positive (0.375)	Microstate	1	Probability	D/# 4#>-2/17
,	Lookup /				Mapping /		Mapping	P("-1")=3/17
yet		0	0.125	Negative (0.125)		-1		P("0")=11/17
sadly		0.25	0.5	Negative (0.25)		-1		
,								
there		0	0	Neutral (0)		0		
is		0	0	Neutral (0)		0		
no		0	0.75	Negative (0.75)		-1		
soft		0	0	Neutral (0)		0		
cover		0	0	Neutral (0)		0		
edition		0	0	Neutral (0)		0		

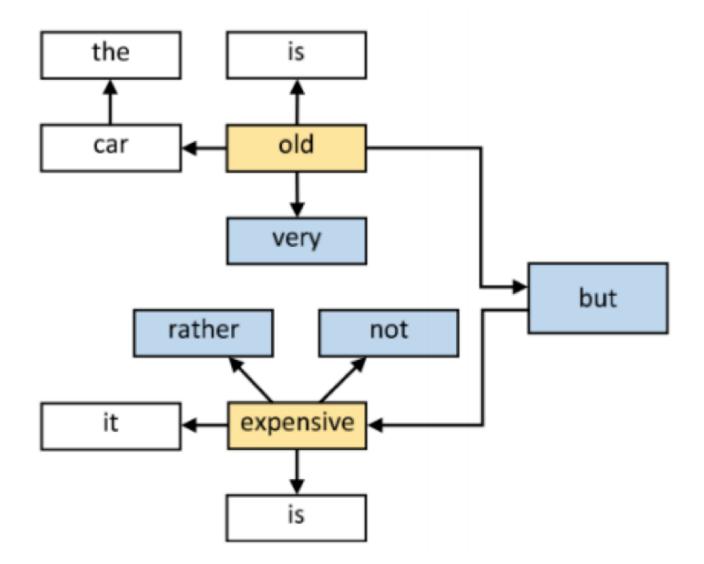
Source: Zhang, Z., Li, X., and Chen, Y. (2012), "Deciphering word-of-mouth in social media: Text-based metrics of consumer reviews," ACM Trans. Manage. Inf. Syst. (3:1) 2012, pp 1-23.,

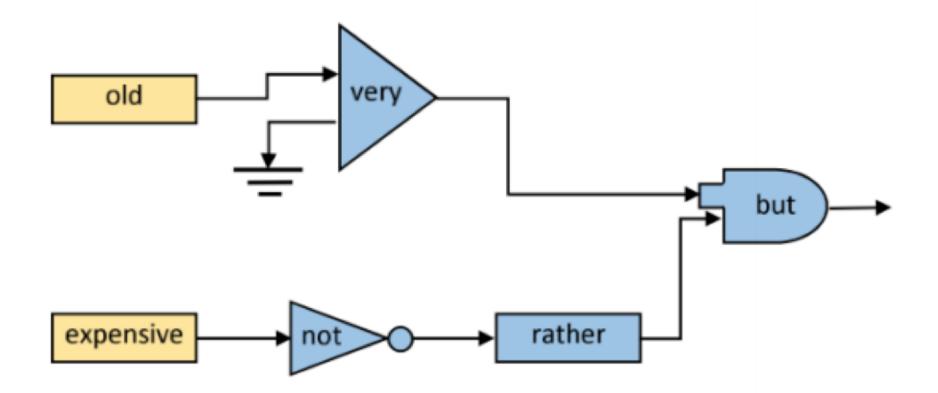
Example of SentiWordNet

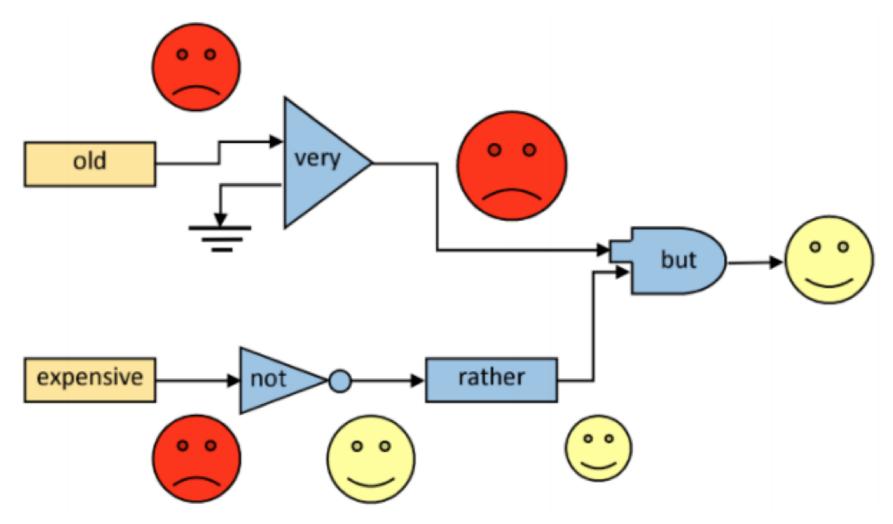
- POSIDPosScoreNegScoreSynsetTermsGlossa002177280.750beautiful#1delighting the senses orexciting intellectual or emotional admiration; "a beautiful child";
"beautiful country"; "a beautiful painting"; "a beautiful theory"; "a
beautiful party"
- a 00227507 0.75 0 best#1 (superlative of `good') having the most positive qualities; "the best film of the year"; "the best solution"; "the best time for planting"; "wore his best suit"
- r 00042614 0 0.625 unhappily#2 sadly#1 in an unfortunate way; "sadly he died before he could see his grandchild"
- r 00093270 0 0.875 woefully#1 sadly#3 lamentably#1 deplorably#1 in an unfortunate or deplorable manner; "he was sadly neglected"; "it was woefully inadequate"
- r 00404501 0 0.25 sadly#2 with sadness; in a sad manner; "`She died last night,' he said sadly"




The car is very old but it is rather not expensive.


The car is very old but it is rather not expensive.


The car is very old but it is rather not expensive.



The car is very old but it is rather not expensive. The car is very old but it is rather not expensive.

Evaluation of Text Mining and Sentiment Analysis

- Evaluation of Information Retrieval
- Evaluation of Classification Model (Prediction)
 - -Accuracy
 - -Precision
 - Recall
 - -F-score

Deep Learning for

Sentiment Analytics

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng and Christopher Potts

Stanford University, Stanford, CA 94305, USA richard@socher.org, {aperelyg, jcchuang, ang}@cs.stanford.edu {jeaneis,manning,cgpotts}@stanford.edu

Abstract

Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation resources and more powerful models of composition. To remedy this, we introduce a Sentiment Treebank. It includes fine grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences and presents new challenges for sentiment compositionality. To address them, we introduce the Recursive Neural Tensor Network. When trained on the new treebank, this model out-

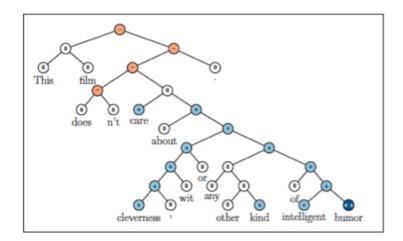
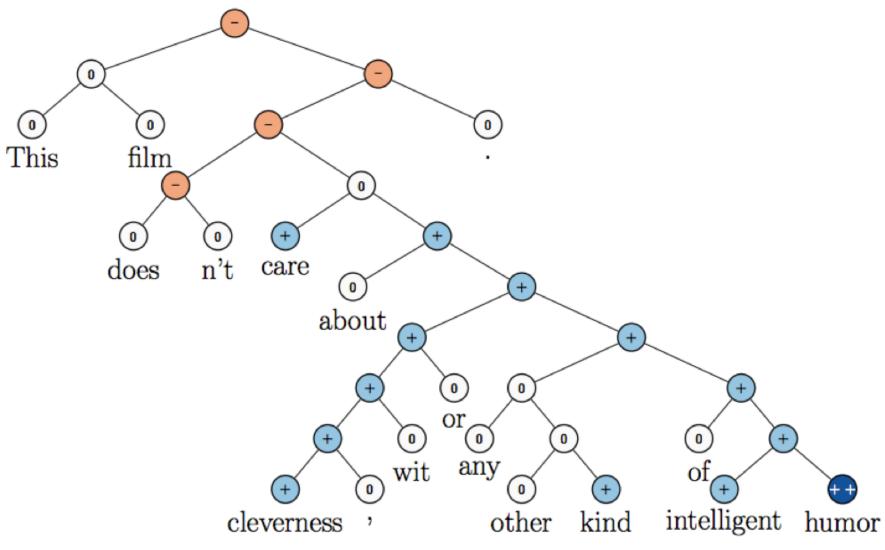
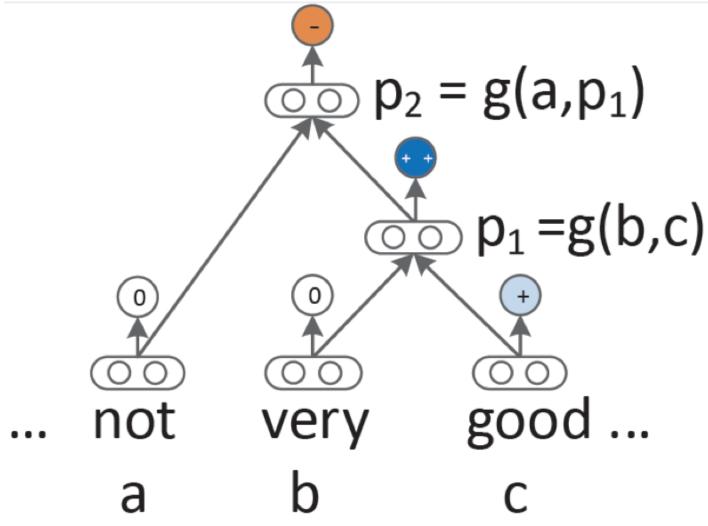
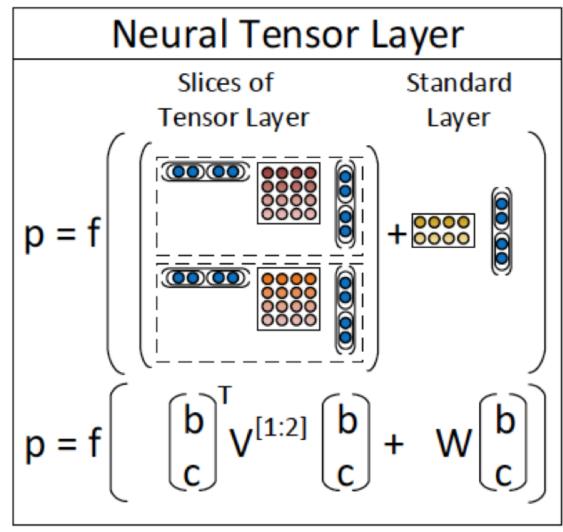
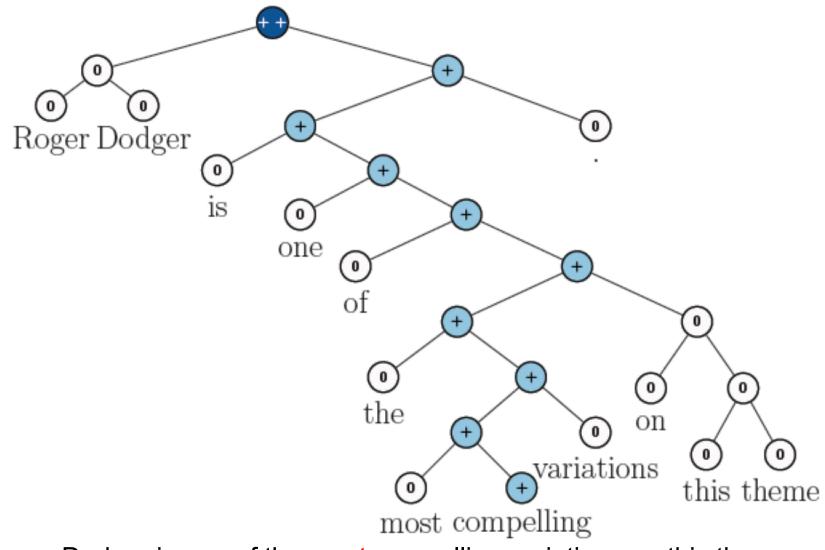




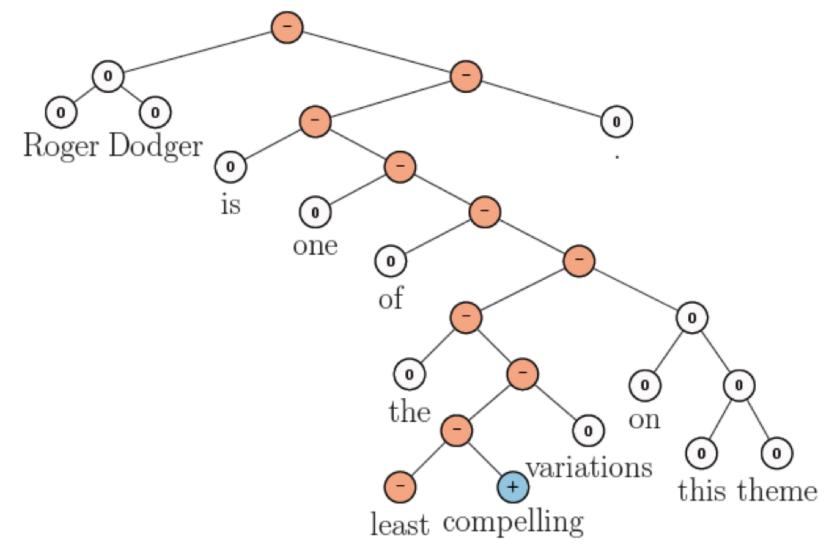
Figure 1: Example of the Recursive Neural Tensor Network accurately predicting 5 sentiment classes, very negative to very positive (--, -, 0, +, ++), at every node of a parse tree and capturing the negation and its scope in this sentence.


Recursive Neural Tensor Network (RNTN)

Recursive Neural Network (RNN) models for sentiment


Recursive Neural Tensor Network (RNTN)

Roger Dodger is one of the most compelling variations on this theme.

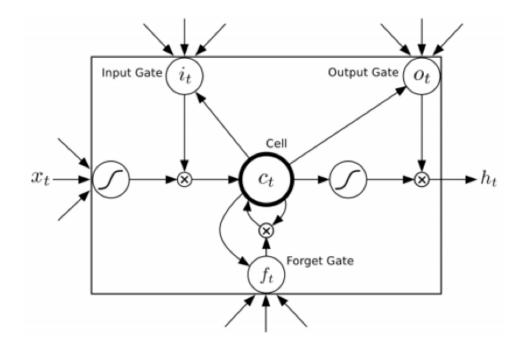

Roger Dodger is one of the least compelling variations on this theme.

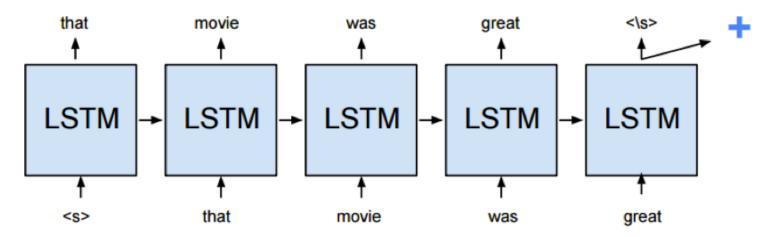
RNTN for Sentiment Analysis

Roger Dodger is one of the most compelling variations on this theme.

RNTN for Sentiment Analysis

Roger Dodger is one of the least compelling variations on this theme.


Accuracy for fine grained (5-class) and binary predictions at the sentence level (root) and for all nodes


Mode1	Fine-g	grained	Positive/Negative		
moder	All Root		All	Root	
NB	67.2	41.0	82.6	81.8	
SVM	64.3	40.7	84.6	79.4	
BiNB	71.0	41.9	82.7	83.1	
VecAvg	73.3	32.7	85.1	80.1	
RNN	79.0	43.2	86.1	82.4	
MV-RNN	78.7	44.4	86.8	82.9	
RNTN	80.7	45.7	87.6	85.4	

Accuracy of negation detection

Model	Accuracy			
	Negated Positive	Negated Negative		
biNB	19.0	27.3		
RNN	33.3	45.5		
MV-RNN	52.4	54.6		
RNTN	71.4	81.8		

Long Short-Term Memory (LSTM)

Source: https://cs224d.stanford.edu/reports/HongJames.pdf

Deep Learning for Sentiment Analysis CNN RNTN LSTM

Model	Fine (5-class)	Binary
DCNN (Blunsom, et al. 2014)	0.485	0.868
RNTN (Socher, et al. 2013)	0.457	0.854
CNN-non-static (Kim, 2014)	0.480	0.872
CNN-multi-channel (Kim, 2014)	0.474	0.881
DRNN w. pretrained word-embeddings (Irsoy and Cardie, 2014)	0.498	0.866
Paragraph Vector (Le and Mikolov. 2014)	0.487	0.878
Dependency Tree-LSTM (Tai, et al, 2015)	0.484	0.857
Constituency Tree-LSTM (Tai, et al, 2015)	0.439	0.820
Constituency Tree-LSTM (Glove vectors) (Tai, et al, 2015)	0.510	0.880
Paragraph Vector	0.391	0.798
LSTM	0.456	0.843
Deep Recursive-NN	0.469	0.847

Performance Comparison of Sentiment Analysis Methods

	Method	Data Set	Acc.	Author
Machine Learning	SVM	Movie reviews	86.40%	Pang, Lee[23]
	CoTraining SVM	Twitter	82.52%	Liu[14]
	Deep learning	Stanford Sentimen t Treebank	80.70%	Richard[18]
Lexical based	Corpus	Product reviews	74.00%	Turkey
	Dictionary	Amazon' s Mechani cal Turk		Taboada[20]
Cross-	Ensemble	Amazon	81.00%	Wan,X[16]
lingual	Co-Train	Amazon, ITI68	81.30%	Wan,X.[16]
	EWGA	IMDb movie review	>90%	Abbasi,A.
	CLMM	MPQA,N TCIR,ISI	83.02%	Mengi
Cross-	Active Learning	Book, DVD,	80% (avg)	Li, S
domain	Thesaurus SFA	Electroni cs, Kitchen		Bollegala[22] Pan S J[15]

Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, ^{89, pp.14-46}

Knowledge-Based Systems 89 (2015) 14-46

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

A survey on opinion mining and sentiment analysis: Tasks, approaches and applications

Kumar Ravi^{a,b}, Vadlamani Ravi^{a,*}

^a Center of Excellence in CRM and Analytics, Institute for Development and Research in Banking Technology, Castle Hills Road No. 1, Masab Tank, Hyderabad 500057, AP, India ^b School of Computer & Information Sciences, University of Hyderabad, Hyderabad 500046, AP, India

S#	Dataset	Articles	Obtained result
1	Pang and Lee [167]	[156]	92.70% accuracy
2		[112]	90.45% F ₁
3		[169]	90.2% accuracy
4		[35]	89.6% accuracy
5		[54]	87.70% accuracy
6		[46]	87.4% accuracy
7		[50]	86.5% accuracy
8		[26]	85.35% accuracy
9		[162]	81% F ₁
10		[124]	79% accuracy & 86% F ₁
11		[61]	76.6% accuracy
12		[69]	76.37% accuracy
13		[48]	75% precision
14		[98]	79% precision
15	Pang et al. [33]	[109]	Approx. 90% accuracy
16		[165]	88.5% accuracy
17		[172]	87% accuracy
18		[33]	82.9% accuracy
19		[156]	78.08% accuracy
20		[180]	75% accuracy
21		[48]	60% precision
22		[195]	86.04%
23	Blitzer et al. [149]	[45]	84.15% accuracy
24		[99]	80.9% (Avg.) accuracy
25		[54]	85.15% (Avg.) Max. 88.65% accuracy on Kitchen reviews
28		[165]	88.7% accuracy
29		[61]	71.92% accuracy

Table 5 Sentiment classification accuracy reported on common datasets.

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

Sentiment Classification Accuracy

S#	Dataset	Articles	Obtained result
1 2 3	Pang and Lee [167]	[156] [112] [169]	92.70% accuracy 90.45% F ₁ 90.2% accuracy
4 5 6 7	B. Pang, L. Lee, A sentiment education: sentiment analysis using subjectivity summarization based on	[35] [54] [46] [50]	89.6% accuracy 87.70% accuracy 87.4% accuracy 86.5% accuracy
8 9 10 11 12	minimum cuts, in: Proceedings of the 42nd Annual Meeting on Association for Computational Linguistics, July 2004, p.	[26] [162] [124] [61] [69]	85.35% accuracy 81% F ₁ 79% accuracy & 86% F ₁ 76.6% accuracy 76.37% accuracy
13 14	271	[48] [98]	75% precision 79% precision

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

Sentiment Classification Accuracy

S#	Dataset	Articles	Obtained result
15 16 17	Pang et al. [33] B. Pang, L. Lee, S. Vaithyanathan, Thumbs up?	[109] [165] [172]	Approx. 90% accuracy 88.5% accuracy 87% accuracy
18 19 20 21	Sentiment classification using machine learning techniques, Proceedings of the ACL-02 Conference on Empirical Methods in	[33] [156] [180] [48]	82.9% accuracy 78.08% accuracy 75% accuracy 60% precision
22	Natural Language Processing, vol. 10, Association for Computational Linguistics, 2002, pp. 79–86.	[195]	86.04%

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

Sentiment Classification Accuracy

S#	Dataset	Articles	Obtained result
23 24	Blitzer et al. [149]	[45] [99]	84.15% accuracy 80.9% (Avg.) accuracy
24 25 28 29	J. Blitzer, M. Dredze, F. Pereira, Biographies, bollywood, boom-boxes and blenders: domain adaptation for sentiment classification, in: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics, ACL'07, vol. 7, 2007, pp. 187–205 (13, 29).	[54] [165] [61]	85.15% (Avg.) Max. 88.65% accuracy on Kitchen reviews 88.7% accuracy 71.92% accuracy

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

Techniques for Sentiment Analysis

Applied techniques	#Articles
SVM	55
Dictionary based approaches (DBA)	41
NB	28
NN	11
DT	9
Maximum entropy	8
Logistic regression	9
Linear regression	8
Ontology	8
LDA	8
Random forest	4
SVR	5
CRF and rCRP	5
Boosting	4
SVM-SMO	4
Fuzzy logic	3
Rule miner	4
EM	3
K-medoids	1
RBF NN	1

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

Sentiment Analysis Articles in Journals (2002-2014)

S#	Name of journals	#Articles
1	Expert Systems with Applications	33
2	Decision Support Systems	28
3	Knowledge-based Systems	17
4	IEEE Intelligent Systems	12
5	IEEE Transactions on Knowledge and Data Engineering	6
6	IEEE Transactions on Affective Computing	3
7	Information Sciences	3
8	Information Processing and Management	3
9	Computer Speech and Language	2
10	Communications of the ACM	2
11	Journal of Computer Science and Technology	2
12	Journal of Informetrics	2
13	Information Retrieval	2
14	Computer Speech and Language	2
15	Inf. Retrieval	1

Publicly Available Datasets for Sentiment Analysis

S#	Data set	Туре	Lang.	Web resource	Details
1	Stanford large movie data	Movie Reviews	English	http://ai.stanford.edu/~a maas/data/sentiment/	Movie Reviews
	set				
2	COAE2008	Product Reviews	Chinese	http://ir-china.org.cn/coae2008.html	2739 documents for movie, education, finance, economics, house, computer,
2	Beauty	Care Device of	Chinasa	http://www.ciebo.com.co/boscon/	mobile phones, etc. 1525 +ve, 1214 -ve
د	Boacar	Car Reviews	Chinese	http://www.riche.com.cn/boacar/	11 type of car TradeMarks and total review 1000 words, having 578 POS, 428 -ve
4	[187]	Reviews, forums	English	http://sifaka.cs.uiuc.edu/~wang296/Data/	reviews Accessed: 27 August, 2014
5	[187]		English	http://uilab.kaist.ac.kr/research/WSDM11	Aspect oriented dataset. Accessed: 18 December, 2014
		Reviews Movie Reviews		http://www.cs.cornell.edu/people/pabo/movie-review-data/	
6	Movie-v2.0		English		Data size: 2000 Positive: 1000 Negative: 1000
7	Multi-domain	Multi-domain	English	http://www.cs.jhu.edu/~mdreze/datasets/sentiment	
8	SkyDrive de Hermit Dave	Spanish Word Lists	Spanish	https://skydrive.live.com/?cid=3732e80b128d016f&id= 3732E80B128D016F%213584	
9	TripAdvisor	Reviews	Spanish	http://clic.ub.edu/corpus/es/node/106	18,000 customer reviews on hotels and restaurants from Hopinion
10	[38]	Multi-Domain	English	www2.cs,uic.edu/~liub/FBS/sentiment-analysis.html	6800 opinion words on 10 different products
11	TBOD [144]	Reviews	English		Product Review on Cars, Headphones, Hotels
12	[68]	Product Reviews	English	http://www.lsi.us.es/_fermin/index.php/Datasets	Product Reviews from Epinion.com on headphones 587 reviews, hotels 988 reviews
					and cars 972 reviews
13	[148]	Movie Reviews	Turkish	http://www.win.tue.nl/~mpechen/projects/smm/#Datasets	5331 positive and 5331 negative reviews on movie
14	[148]	Product Reviews	Turkish	http://www.win.tue.nl/~mpechen/projects/smm/#Datasets	700 +ve &700 -ve reviews on books, DVD, electronics, kitchen appliances
15	ISEAR	English sentences	English	www.affective-sciences.org/system/files/page/2636/ISEAR.zip	The dataset contains 7666 such statements, which include 18,146 sentences,
					449,060 running words.
16	[149]	Product Reviews	English	http://www.cs.jhu.edu/~mdredze/datasets/sentiment/	Amazon reviews on 4 domain (books, DVDs, electronics, kitchen appliances)
17	DUC data, NIST	Texts	English	http://www-nlpir.nist.gov/projects/duc/data.html, http://www.	Text summarization data
				nist.gov/tac/data/index.html	
18	[70]	Restaurant and Hotel	English	http://uilab.kaist.ac.kr/research/WSDM11	Restaurant and Hotel Reviews from Amazon and Yelp
		Reviews			
19	[114]	Restaurant Reviews	Cantonese	http://www.openrice.com	Reviews on restaurant
20	[125]	Biographical Articles	Dutch	http://www.iisg.nl/bwsa	574 Biographical articles
21	Spinn3r dataset	Multi-Domain	English	http://www.icwsm.org/2011/data.php	
22	[86]	Ironic Dataset	English	http://users.dsic.upv.es/grupos/nle/	3163 ironic reviews on five products
	HASH [179]	Tweets	English	http://demeter.inf.ed.ac.uk	31,861 Pos tweets, 64,850 Neg tweets, 125,859 Neu tweets
24	EMOT [179]	Tweets and Emoticons	English	http://twittersentiment.appspot.com	230,811 Pos & 150,570 Neg tweets
25	ISIEVE [179]	Tweets	English	www.i-sieve.com	1520 Pos tweets, 200 Neg tweets, 2295 Neu tweets
26	[177]	Tweets	English	e-mail: apoorv@cs.columbia.edu	11,875 tweets
27	[52]	Opinions	English	http://patientopinion.org.uk	2000 patient opinions
28	[96]	Tweets	English	http://goo.gl/UQvdx	667 tweets
29	[39]	Movie Reviews	English	http://ai.stanford.edu/~amaas/data/sentiment/	50,000 movie reviews
30	[164]	Tweets	English	http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip	
31	[210]	Spam Reviews	English	http://myleott.com/op_spam	400 deceptive and 400 truthful reviews in positive and negative category. Last
		-	-		Accessed by: 12 April, 2015
32	[230]	Sarcasm and nasty	English	https://nlds.soe,ucsc.edu/iac	1000 discussions, ~390,000 posts, and some ~73,000,000 words
		reviews	_		

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

Sentiment Analysis Datasets

- Product Reviews (PR)
- Movie Reviews (MR)
- Restaurant Reviews (RR)
- Micro-blog (MB)
- Global domain (G)

Sentiment Analysis Dictionary

- SenticNet (SN)
- WordNet (WN)
- ConceptNet (CN)
- WordNet-Affect (WNA)
- Bing Liu Opinion Lexicon (OL)

Ref.	Concepts and techniques utilized	Р	L	Type of data	Dictionary
[8]	Page rank, Gradient descent, Linear regression	2	E	PR	
[11]	Link mining, Collective classification	NA	E	MB	
[12]	AdaBoost.HM	2	E	G	GI
[13]	DBA	5	E	News Comments	New Lexicon
[18]	DBA, SOFNN, Linear regression	2, 7	E	MB, DJIA data	OF, GPOMS
[21]	Regression, Random walk, SVM	4, 2	E		ANEW, CN
[22]	Cohen's K coefficient	6, 2	1	MB	SN
[23]	Fuzzy clustering, PMI, DBA	6, 2	E	G	WNA, SN, WN.
[24]	DBA	NA	D	G	Dutch WN
[25]	Association Miner CBA, DBA	2	E	PR	WN
[26]	SVM	2	E	PR	
[27]	Markov-Chain Monte Carlo (MCMC)	NA	E	Online discussion	
[29]	SVM with Gaussian Kernel	3, 2			MPQA
[30]	Ontology, K-means	2	E		ReiAction [122], ^a Family Relation ^b
[32]	PMI-IR	2	E	Multi-domain	
[33]	NB, SVM, ME	2	E	MR	
[35]	Ontology, DBA	2	E	MR	SWN
[36]	New Algorithm, DBA	2	E	MR, Book, Mobile	11 dictionaries
[37]	CRF	NA		PR	
[40]	Multinomial inverse regression	3	E	MB	
[41]	FFCA, Lattice	2	E	PR	
[43]	Analytic hierarchy process	NA	С	MB	
[44]	Fisher's discriminant ratio, SVM	2	С	PR	
[45]	Semantic orientation, SVM	3, 2	E	PR	SWN
[46]	MNB, ME, SVM	3, 2	E, D, F	Forum, Blog, PR	
[47]	DBA	2	D, E	News	
[48]	Semantic orientation and BackProp	2	E	Blogs, PR	
[49]	Probabilistic Matrix Factorization	NA	C	MB	
[50]	NB, SVM, NN	2	E	PR	
[51]	SVM, NN	NA	С	MB	
[52]	DNN, CNN, K-medoids, KNN	NA	E	G	CN, WNA, AffectiveSpace
[53]	SVM, NN, MLP, DT, GA, Stepwise LR, RBC	2	E	News	•
[54]	NB, ME, SVM	2	E	PR	
[55]	DBA	5, 2	E	MB	
[56]	NB, EM	NA	E	PR	WN
[57]	SVM, NN	5, 2	E	MB	

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications."

Knowledge-Based Systems, 89, pp.14-46.

Ref.	Concepts and techniques utilized	Р	L	Type of data	Dictionary
[58]	SVM	NA	Е	Suicide Notes	WN, SWN.
[59]	EM	NA	E, S	PR	fullStrengthLexicon ^c
[60]	ME	NA	E	MB	
[61]	Bayesian Model, LDA	2	E	PRMPQA, Appraisal Lexicons ^d	
[62]	Fuzzy Set, Ontology	2	С	PR	
[63]	ME, Bootstrapping, IG	3, 2	C	PR	Hownet, NEUCSP ^e
[64]	DBA	NA	E	e-mail, book	Roget Thesaurus ^f
[66]	NB, ME, DT, KNN, SVM	NA	C, E	PR, Forums	
[67]	SVM, DBA	2	E	PR	GI
[68]	DBA, Random walk algorithm	2	E	PR	
[69]	DBA	2	E	PR	
[70]	Linear Regression	NA	С	PR, social network	
73	BayesNet, J48, Jrip, SVM, NB, ZeroR, Random	5, 2	E	News, Magazine	
[74]	Semantic relationships	2	E		SWN, GI
[75]	Multilingual bootstrapping and cross-lingual bootstrapping, linear regression,	NA	E, R		WN
	IG				
[76]	Bootstrapping, DT, MLP, PCA, SLR, SMO-SVM	2	E	Phone Reviews	WN
77	LR, SVM, RF	2	B	e-mails	
[78]	Discretionary accrual model	NA	E	Book Reviews	
[80]	Bayes-Nash equilibria	NA	E	MB	
[81]	RF	NA	E	PR	
[85]	DBA	3, 2	E	MB	SWN
[86]	Semantic, NB, SVM, DT	NA		PR	WN, MSOL, WNA
[88]	SVM, LR, CRF	NA	E	PR	
[90]	SVM, NB	NA	E	MB	
[91]	K-means, SVM	NA	C	Forums	
[92]	HMM-LDA	NA	E	PR	
[93]	Two level CRF	NA	E	PR	
[94]	Corpus based approach, SVM, NB, C4.5, BBR	5, 2	E, S	PR	SWN, Tree Tagger
[95]	SVM	NA	E		WNA, LIWC, VerbOcean
					CN
[96]	DBA, Ontology	2	E	MB	
[97]	SMO-SVM, DBA	2	E	MR	SWN, WN
[98]	NB and Ontology	2	E	PR, MR	WN
[99]	Cosine similarity, L1 regularized logistic regression	2	E	PR	WN and SWN
[100]	Association miner CBA	NA	С	PR	
[101]	NN, C4.5, CART, SVM, NB Source: Kumar Ravi and Vadlamani Ravi (2015) "A survey on opinion min	2	E	MB	

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications."

Ref.	Concepts and techniques utilized	Р	L	Type of data	Dictionary
[102]	SVM	2	С	HR, PR	TU lexicon ^g
[107]	LDA, DBA	2	E	RR, HR	MPQA, SWN
[108]	SVM	2	Α	Dialects, MB, Wiki Talks,	
				Forums	
[109]	Rule-based multivariate features, SVM	2	E	MR, PR, Automobile	
[110]	DBA	2	S	MR	BLEL, WN
[111]	NB, SVM	2	E	RR	SWN
[112]	DBA, RBC, SVM	2	E	MR, Product, MySpace texts	WN, GI
[114]	IG, DBA	2	CT	RR	
[115]	SVM, Statistical approach	2	E, C	HR, Mobile	
[116]	DBA, SVM, NB, LR, J48, Jrip, AdaBoost, Decision Table, MLP, NB.	2	E	MySpace	SentiStrength
[117]	DBA	2	E	MB	SWN
[118]	SMO-SVM, LR, AdaBoost, SVR, DT, NB, J48, Jrip	2	E	Social Media	SentiStrength
[121]	Adaptive-NB	NA	C	PR	-
[123]	SVR	6, 2	C	Sina-Wiebo	
[124]	NB	2	E	Social & Mass media	
[125]	Lexical features, NB, Linear SVM, Jrip, KNN	2	D	Biographies	Brouwers thesaurus
[126]	DBA	2	E	MB	OL
[127]	DBA	5, 2	E	G	SentiStrength
[130]	SVR, RBF	NA			-
[131]	SVM, NB	3	E	MB, PR	
[132]	New Algorithm	NA		PR	
[148]	SVM, NB, ME	2	E, T		
[154]	New algorithm, Lexical features	3	E	PR	
[155]	SP-LSA, AR, EM, &-SVR	2	E	MR	2030 appraisal words
[156]	Tabu search, MB, NB, SVM, ME	2	E	MR and News	
[157]	PSO and SVM	2	E	MB	
[158]	DBA	3, 2	E	Mobile Reviews	Moreo et al. [13]
[160]	EWGA, SVM, Bootstrapping	2	E, A	Forums	
[162]	Class sequential rules	3	E	MR	SWN
[163]	DBA, SVM, NB, Logistic, NN	2	E	MB	10 dictionaries
[165]	Semantic, GI, Chi-square, SVM	2	E	MR and PR	
[166]	Semantic	2	С	HR	
[167]	NB, SVM, Mincut in the graph	2	E	MR	
[168]	Linear classifiers, Clique, MIRA classifier	2	E	PR	
[169]	DBA, SVM, and SMO-SVM	2	E	MR	WN
[170]	DBA	3	J	MR and PR	Yi et al. [7] lexicon

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

Ref.	Concepts and techniques utilized	Р	L	Type of data	Dictionary
[171]	DBA	2	Е	Web pages, News	
[172]	SVM, Osgoodian values, PMI	2	E	MR	WN
[173]	Transfer-based machine translation	2	J	Camera Review	
[174]	ME	2	E	MR	
[175]	DBA, Sigmoid scoring	2	С	Blogs	Hownet
[176]	SVM, PMI	2	E	MB	GI
[177]	Convolution kernels [152], SVM, DBA	2, 3	E	MB	WN, DAL [151]
[178]	Statistical method of OASYS [8]	C	E	News articles	OASYS
[179]	Boosting, SVM	3	E	MB	MPQA, NetLingo
[180]	Bipartite graph, Regularization operator	2	E	Blogs	
[182]	LDA, Ontology, MCMC	2	E	Multi-domain	OF
[183]	SVM, TF-IDF	2	E	News headlines, Forex Rate	SWN
[184]	Vector space model	3	E	News articles	Harvard IV
[185]	Modified LDA	5	E	PR	
[186]	Recursive Chinese Restaurant Process	2	E	PR	
[189]	LDA incorporated with domain knowledge	NA	E	Camera and HR	
[190]	CRF, syntactic and semantic features	2	E	PR, Facebook text	
[191]	LDA, Appraisal expression pattern	NA	E	HR, RR, PR	
[192]	PMI, TF-IDF	2	E	PR	GI
[193]	TF-IDF, Domain relevance	2	С	HR, Cellphone	
[194]	Ontology	2	E	Automobile, PR, SW	SWN, GI, OL
[195]	Ontology	2	E	MR	WN
[196]	Ontology, Maximum-Likelihood	2	E	MR	GI
[197]	PCA, SVM, LR, Bayesian Boosting, Bagged SVM	2	E	PR	
[200]	SVM	2	E	PR	
[202]	DBA, Graphical Techniques	2	E	G	CN, DBPedia, WN
[203]	DBA	2	E	MB	CN, WN, JMDict, Verbosity
[205]	Graphical techniques	2	GE	MB	SWN, SN 3
[206]	DBA	8	E	Google n-grams	SN 3, WNANRC, SAT
[207]	Ontology, DBA	4	E	PR, MR	CN
[209]	SVM, NB, J48	3	S	Facebook text	Spanish LIWC
[210]	SVM, RF	3	S	Apontador	
[211]	DBA	2	S	MB	SN 3, WeFeelFine
[212]	NB, SVM, DBA	2	E	PR	LIWC
[213]	Ontology, DBA, ELM	2	E	G	AffectiveSpace
[214]	Ontology, DBA, SVM, FCM	2	E	G	SN 3, WNA, AffectiveSpace
[216]	DBA, Ontology	2	E	PR, MR	WN, CN
[217]	Rule base classifier, NB	2	E	Dialogue	SN 3

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications."

Knowledge-Based Systems, 89, pp.14-46.

Ref.	Concepts and techniques utilized	Р	L	Type of data	Dictionary
[218]	Bootstrapping, PMI, DBA	NA	Е	PR	
[220]	DBA, Binomial LR	NA	E	PR	LIWC
[221]	Product, Review & Reviewer Information	NA	E	PR	
[222]	Linear Regression	2	E	PR	
[223]	Linear Regression	NA	E	PR	
[224]	Linear Regression	NA	E	PR	
[225]	SVM	NA	E	PR	
[226]	MLP	NA	E	PR	
[227]	RFM, SVR	NA	E	PR	
[228]	RF, NB, SVM	NA	E	PR	
[229]	DBA	2	E	PR	
[231]	Linear Regression	NA	E	PR	
[232]	PU-learning	NA	E	PR	
[240]	LDA, SVM, PMI	NA	С	PR	
[241]	PageRank algorithm, DBA	NA	C	PR	
[243]	PMI-IR, RCut, Apriori Algo.	NA	С	PR	

TextBlob is a Python (2 and 3) library for processing textual data. It provides a consistent API for diving into common natural language processing (NLP) tasks such as part-ofspeech tagging, noun phrase extraction, sentiment analysis, and more.

Useful Links

TextBlob @ PyPI TextBlob @ GitHub Issue Tracker

Stay Informed

🗘 Follow @sloria

Donate

If you find TextBlob useful, please consider supporting its author:

TextBlob

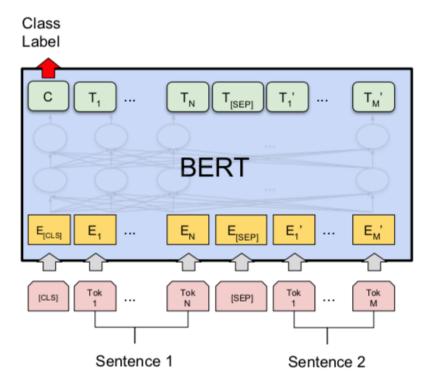
TextBlob: Simplified Text Processing

Release vo.16.0. (Changelog)

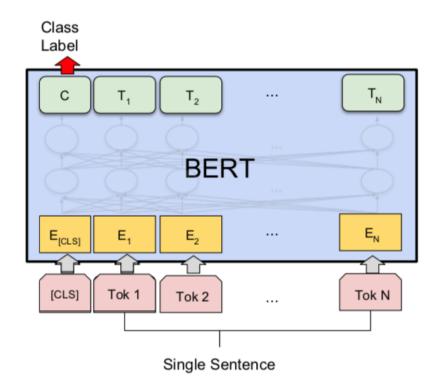
TextBlob is a Python (2 and 3) library for processing textual data. It provides a simple API for diving into common natural language processing (NLP) tasks such as part-of-speech tagging, noun phrase extraction, sentiment analysis, classification, translation, and more.

from textblob import TextBlob

text = '''

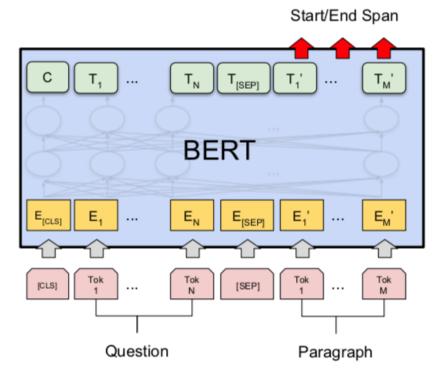

```
The titular threat of The Blob has always struck me as the ultimate movie
monster: an insatiably hungry, amoeba-like mass able to penetrate
virtually any safeguard, capable of—as a doomed doctor chillingly
describes it—"assimilating flesh on contact.
Snide comparisons to gelatin be damned, it's a concept with the most
devastating of potential consequences, not unlike the grey goo scenario
proposed by technological theorists fearful of
artificial intelligence run rampant.
```

for sentence in blob.sentences:
 print(sentence.sentiment.polarity)
0.060

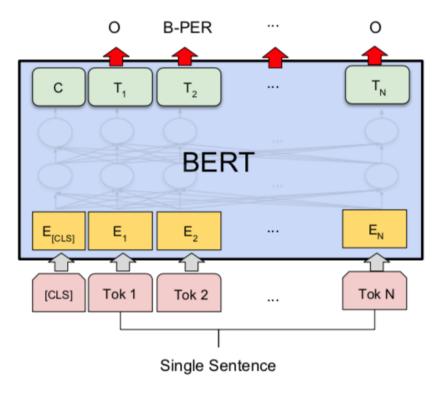

-0.341

https://textblob.readthedocs.io

BERT Sequence-level tasks

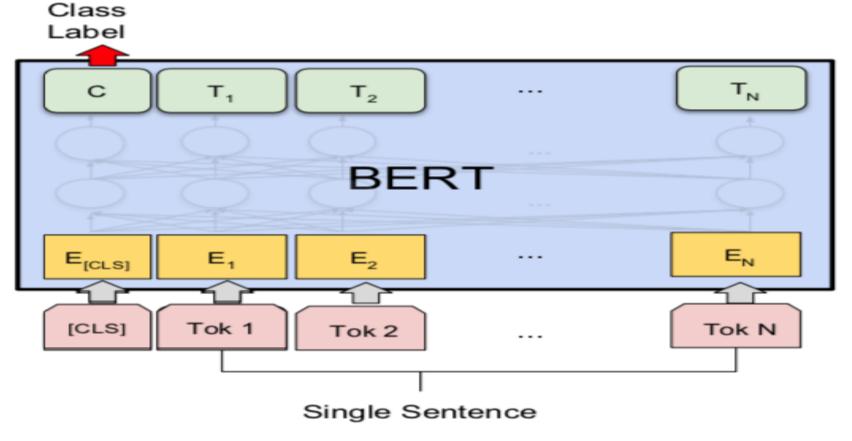


(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG



(b) Single Sentence Classification Tasks: SST-2, CoLA

BERT Token-level tasks



(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

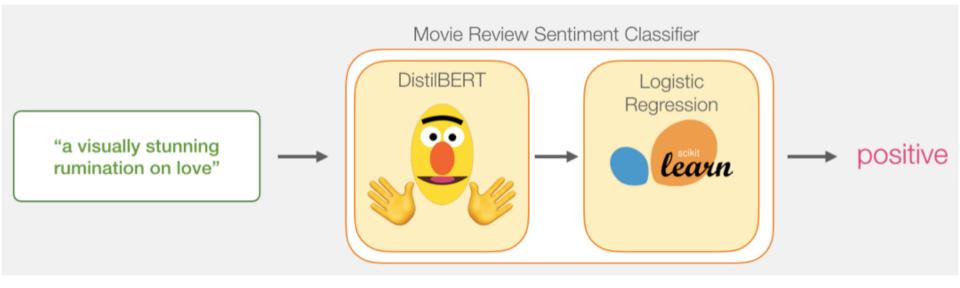
Sentiment Analysis: Single Sentence Classification

(b) Single Sentence Classification Tasks: SST-2, CoLA

Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding." arXiv preprint arXiv:1810.04805

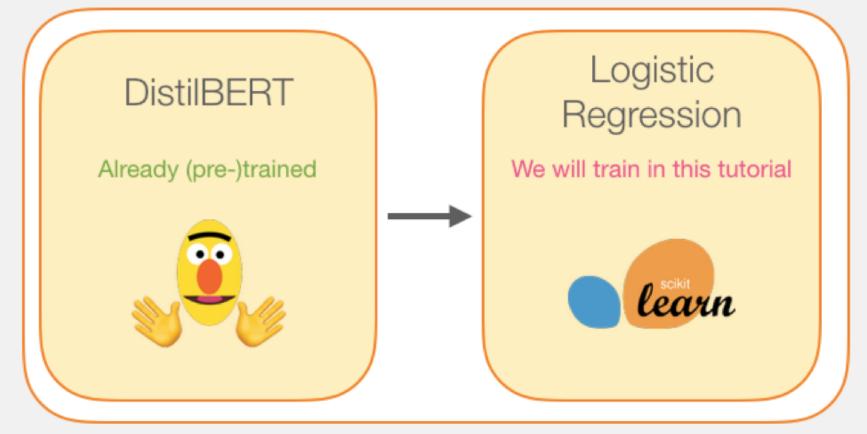
A Visual Guide to Using BERT for the First Time

(Jay Alammar, 2019)

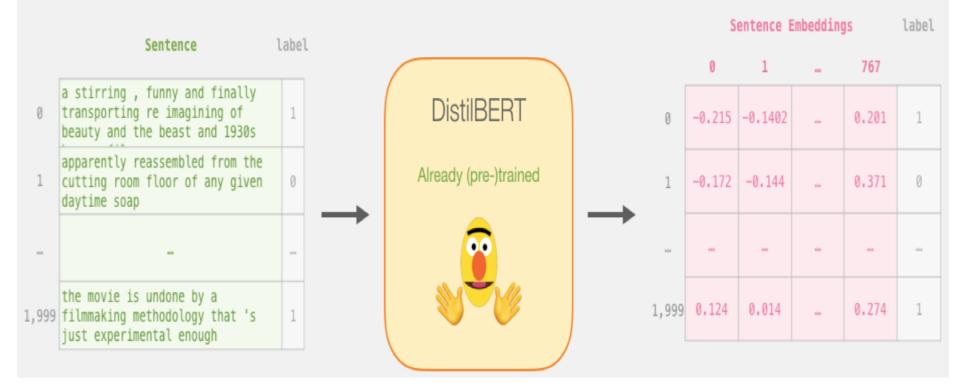

Sentiment Classification: SST2 Sentences from movie reviews

sentence	label
a stirring , funny and finally transporting re imagining of beauty and the beast and 1930s horror films	1
apparently reassembled from the cutting room floor of any given daytime soap	0
they presume their audience won't sit still for a sociology lesson	0
this is a visually stunning rumination on love , memory , history and the war between art and commerce	1
jonathan parker 's bartleby should have been the be all end all of the modern office anomie films	1

Movie Review Sentiment Classifier



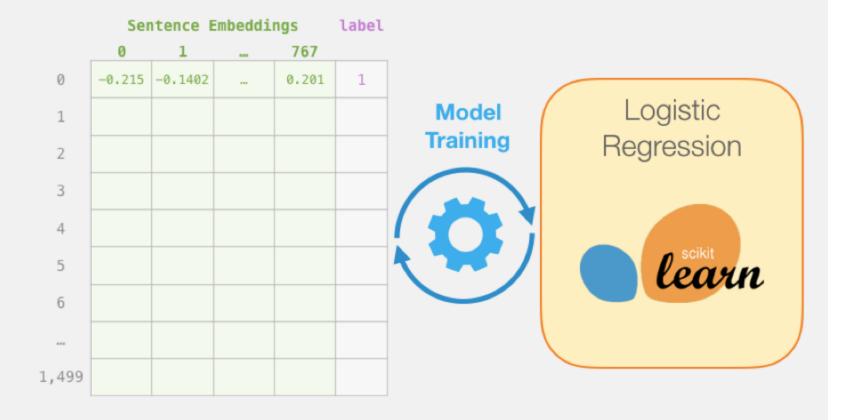
Movie Review Sentiment Classifier


Movie Review Sentiment Classifier Model Training

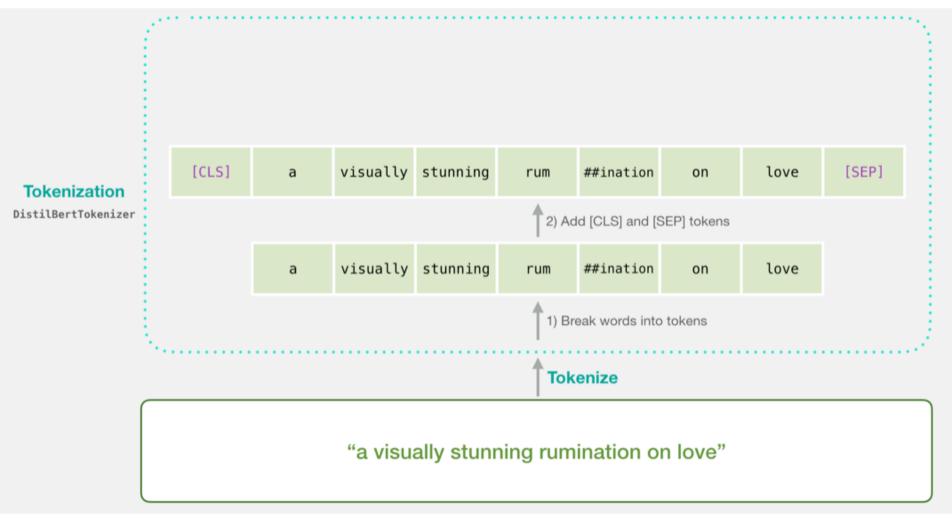
Movie Review Sentiment Classifier

Step # 1 Use distilBERT to Generate Sentence Embeddings

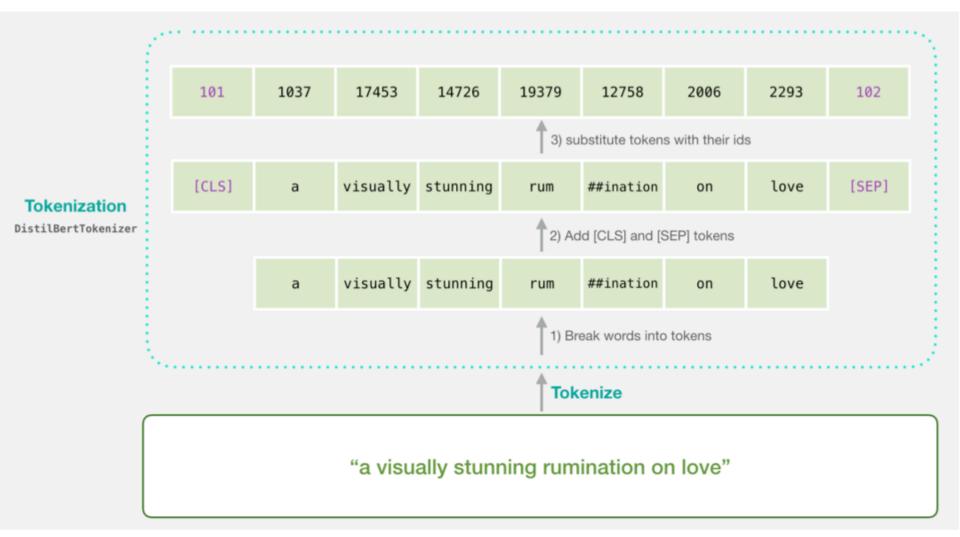
Step #1: Use DistilBERT to embed all the sentences


Step #2:Test/Train Split for Model #2, Logistic Regression

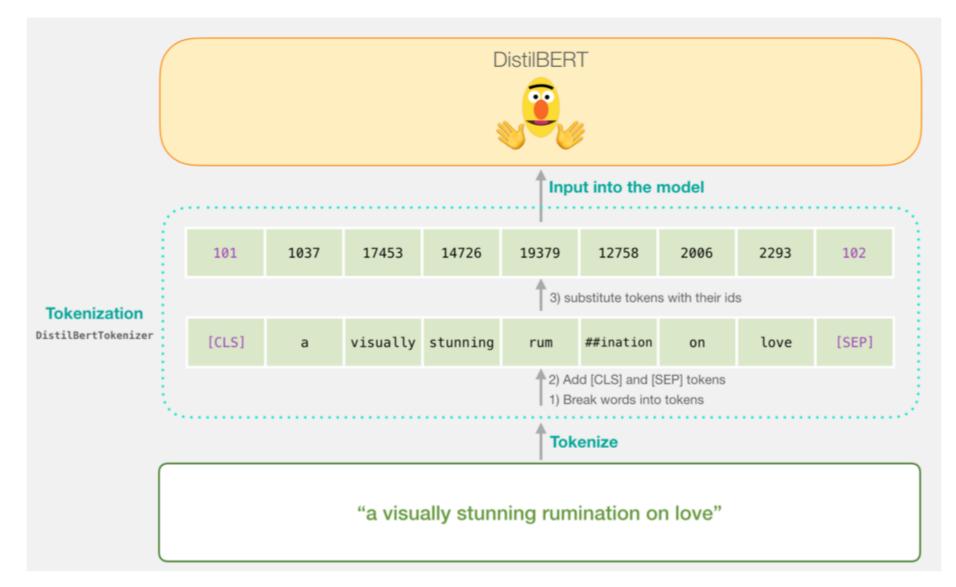
Step #2: Test/Train Split for model #2, logistic regression

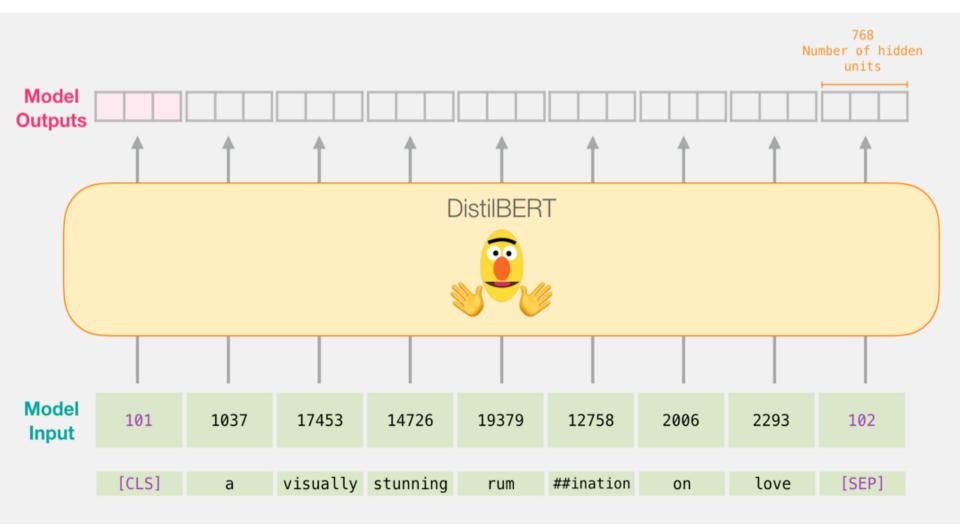

Step #3 Train the logistic regression model using the training set

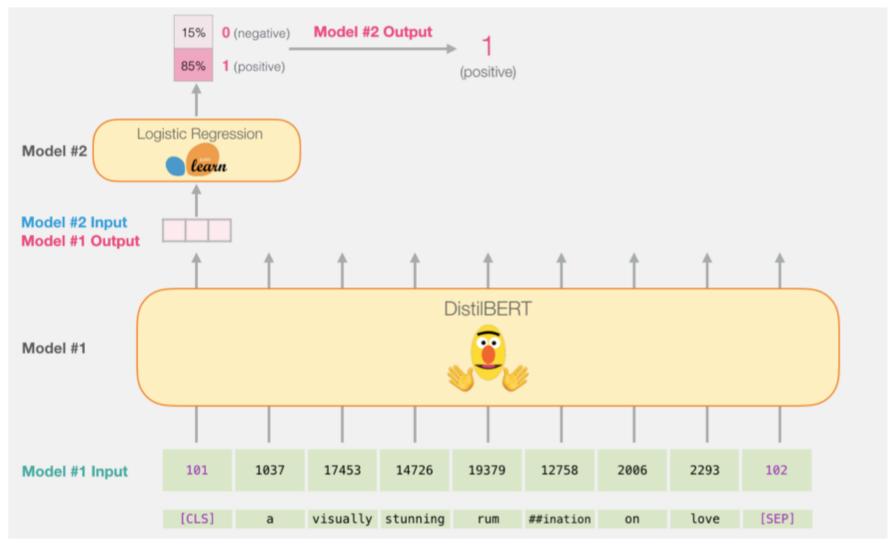
Step #3: Train the logistic regression model using the training set



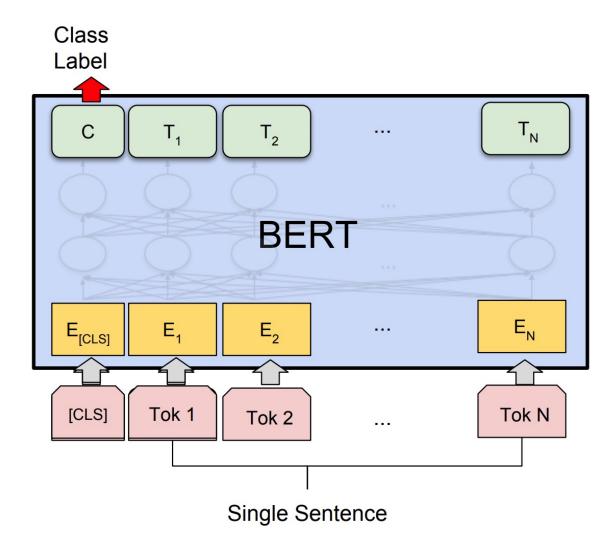
Tokenization


[CLS] a visually stunning rum ##ination on love [SEP] a visually stunning rumination on love

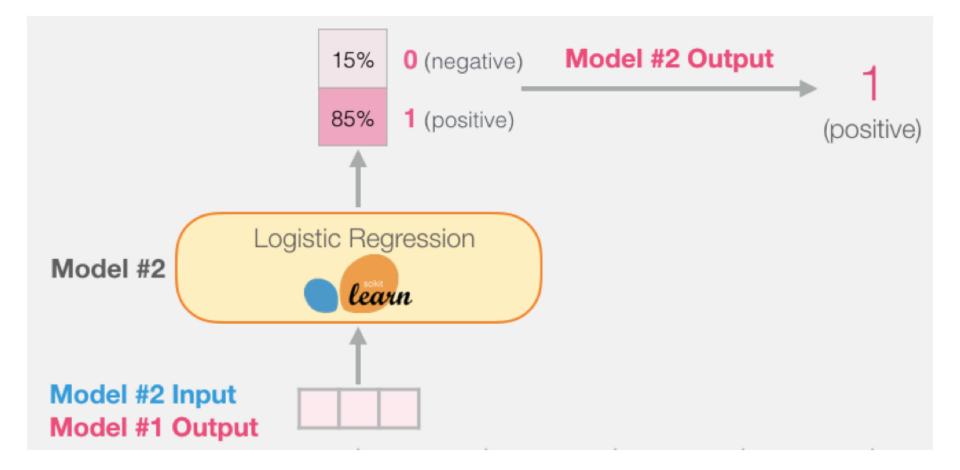

Tokenization


Tokenization for BERT Model

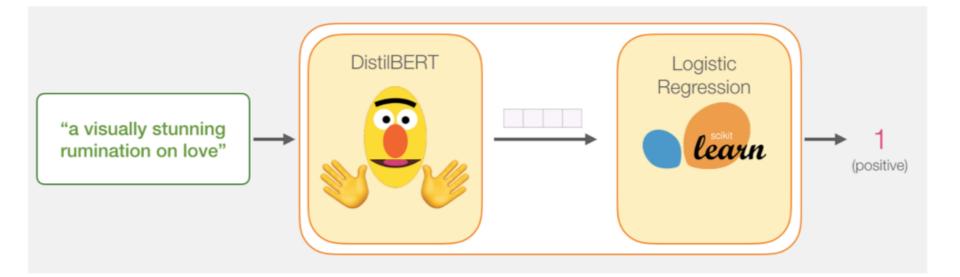
Flowing Through DistilBERT (768 features)


Model #1 Output Class vector as Model #2 Input

Source: Jay Alammar (2019), A Visual Guide to Using BERT for the First Time,


http://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

Fine-tuning BERT on Single Sentence Classification Tasks

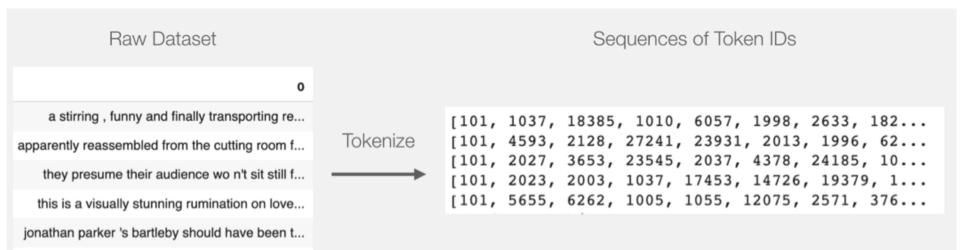


Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Model #1 Output Class vector as Model #2 Input

Logistic Regression Model to classify Class vector

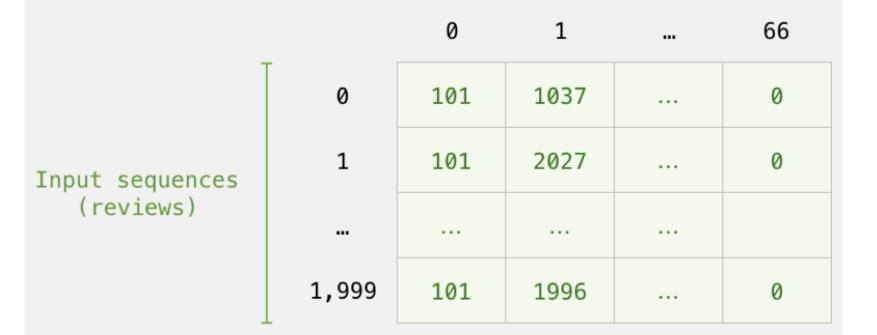
df = pd.read_csv('https://github.com/clairett/pytorchsentiment-classification/raw/master/data/SST2/train.tsv', delimiter='\t', header=None)


df.head()

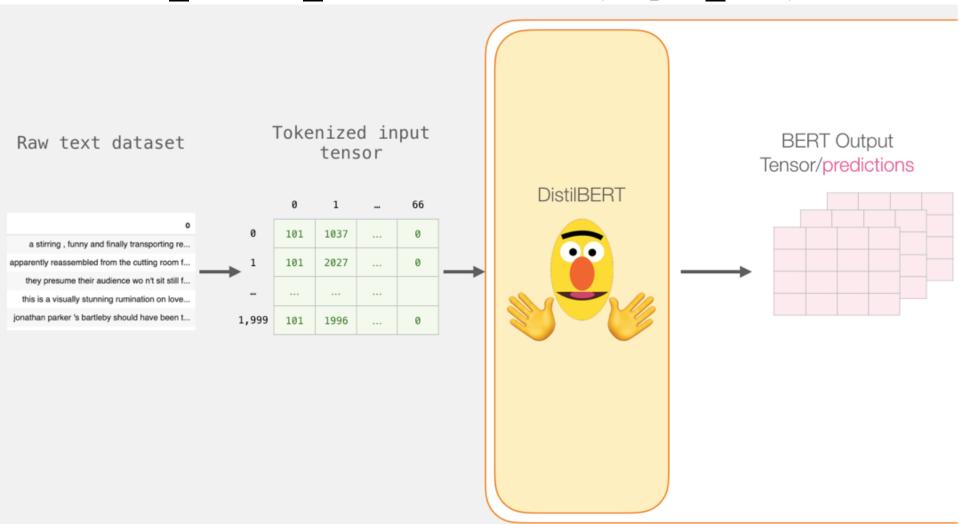
0 1

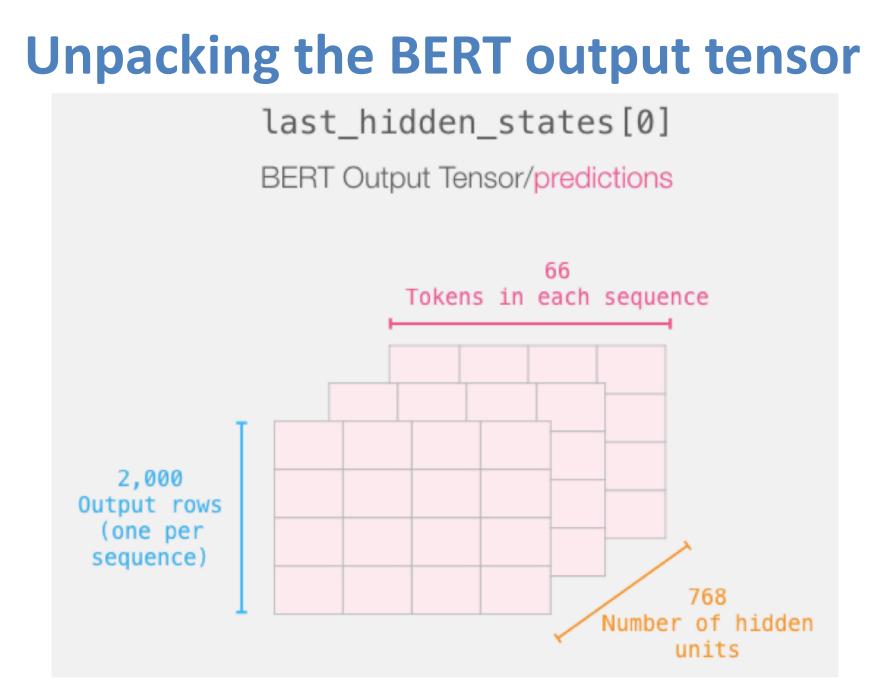
- **0** a stirring , funny and finally transporting re... 1
- 1 apparently reassembled from the cutting room f... 0
- 2 they presume their audience wo n't sit still f... 0
- 3 this is a visually stunning rumination on love... 1
- 4 jonathan parker 's bartleby should have been t... 1

Tokenization


tokenized = df[0].apply((lambda x: tokenizer.encode(x, add_special_tokens=True)))

BERT Input Tensor

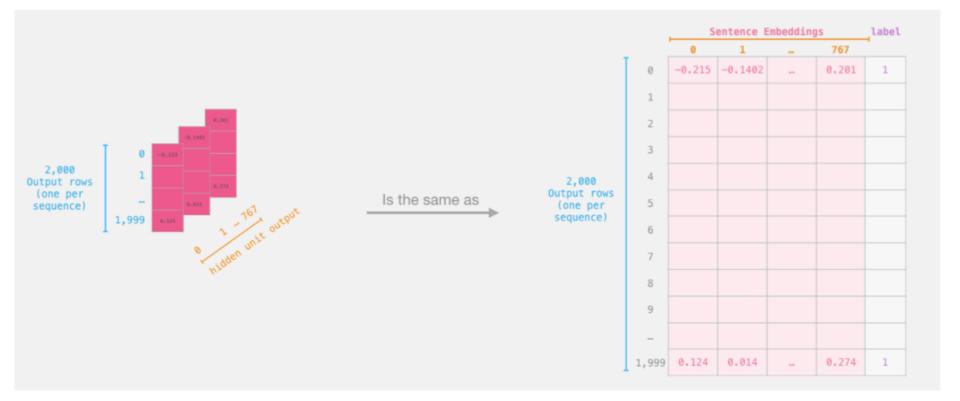

BERT/DistilBERT Input Tensor


Tokens in each sequence

Processing with DistilBERT

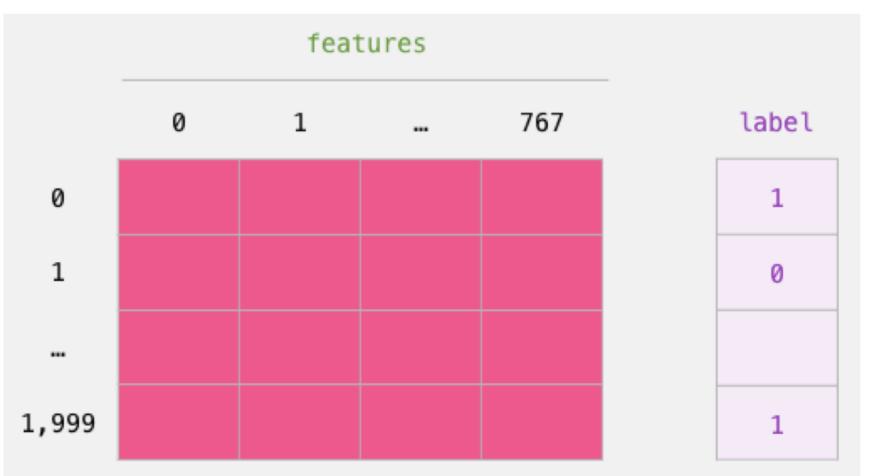
input_ids = torch.tensor(np.array(padded))
last_hidden_states = model(input_ids)

Sentence to last_hidden_state[0]


"a visually stunning rumination on love"

BERT's output for the [CLS] tokens

Slice the output for the first position for all the sequences, take all hidden unit outputs features = last_hidden_states[0][:,0,:].numpy()



The tensor sliced from BERT's output Sentence Embeddings

Dataset for Logistic Regression (768 Features)

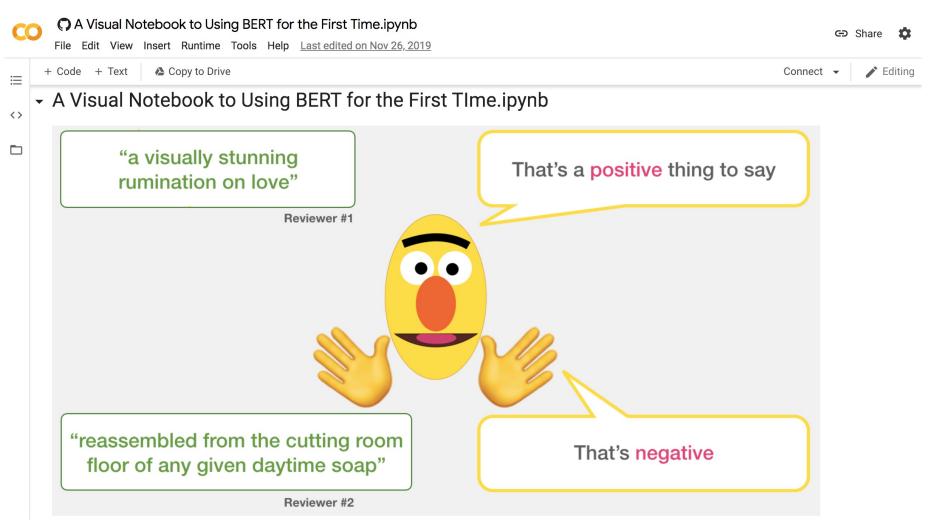
The features are the output vectors of BERT for the [CLS] token (position #0)

labels = df[1] train_features, test_features, train_labels, test_labels = train_test_split(features, labels)

Step #2: Test/Train Split for model #2, logistic regression

Score Benchmarks Logistic Regression Model on SST-2 Dataset

```
# Training
lr_clf = LogisticRegression()
lr clf.fit(train features, train labels)
```


#Testing
lr_clf.score(test_features, test_labels)

```
# Accuracy: 81%
# Highest accuracy: 96.8%
# Fine-tuned DistilBERT: 90.7%
# Full size BERT model: 94.9%
```

Sentiment Classification: SST2 Sentences from movie reviews

sentence	label
a stirring , funny and finally transporting re imagining of beauty and the beast and 1930s horror films	1
apparently reassembled from the cutting room floor of any given daytime soap	0
they presume their audience won't sit still for a sociology lesson	0
this is a visually stunning rumination on love , memory , history and the war between art and commerce	1
jonathan parker 's bartleby should have been the be all end all of the modern office anomie films	1

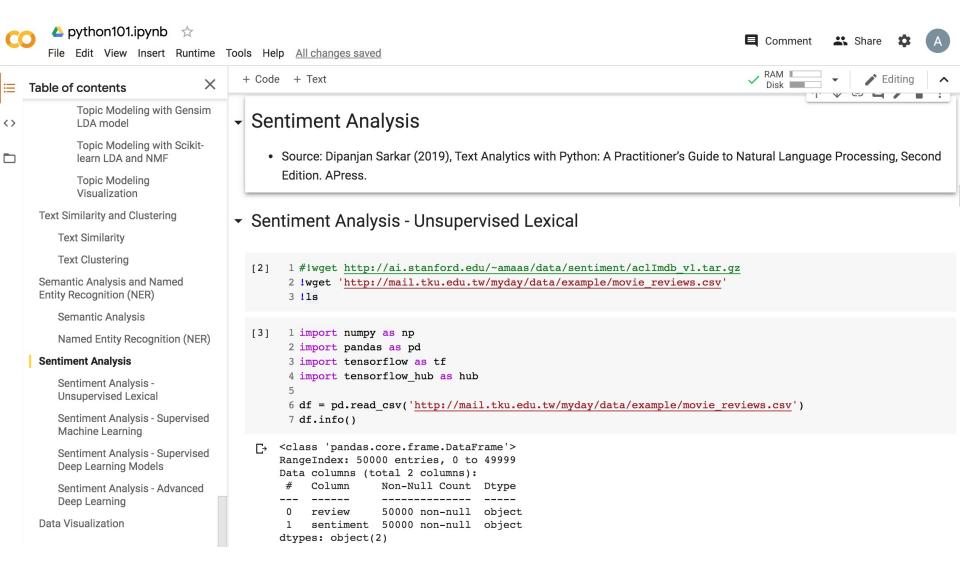
A Visual Notebook to Using BERT for the First Time

https://colab.research.google.com/github/jalammar/jalammar.github.io/blob/master/notebooks/bert/A_Visual_Notebooks/bert/A_Visu

Text classification with preprocessed text: Movie reviews

1 TensorFlow	nstall Learn API Resources More Search	English 👻	GitHub Sign in			
TensorFlow Core						
Overview Tutorials Gu	de TF 1					
TensorFlow tutorials Quickstart for beginners Quickstart for experts BEGINNER	TensorFlow > Learn > TensorFlow Core > Tutorials 会会会会 Text classification with preprocessed text: Movie		Contents Setup Download the IMDB dataset Try the encoder			
ML basics with Keras Basic image classification Text classification with TF Hub	reviews	Explore the data Prepare the data for training Build the model				
Text classification with preprocessed text Regression Overfit and underfit	CO Run in Google Colab		Hidden units Loss function and optimizer Train the model			
Save and load	This notebook classifies movie reviews as positive or negative using the text of the review. This	is	Evaluate the model			
Load and preprocess data	an example of <i>binary</i> —or two-class—classification, an important and widely applicable kind of machine learning problem.	Create a graph of accuracy and loss over time				
Estimator	We'll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Database. These are split into 25,000 reviews for training and 25,000 reviews for testing. The training and testing sets are <i>balanced</i> , meaning they contain an equal number of positive and					
ADVANCED						
Customization	negative reviews. This notebook uses tf.keras, a high-level API to build and train models in TensorFlow. For a more					
Distributed training	advanced text classification tutorial using tf.keras, see the MLCC Text Classification Guide.	C				

https://www.tensorflow.org/tutorials/keras/text_classification


Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

Table of contents	×	+ Code + Text	V RAM Disk	• Ec	diting
Leveraging gensim fo building a FastText model		Text Classification	^	↓ © ■	/ 1 :
Text Classification Text Classification: IMDB Movie Reviews Download the IMDB dataset Explore the data Prepare the data for training Build the model Train the model Evaluate the model Create a graph of		 Jay Alammar (2019), A Visual Guide to Using BERT for the First Time, <u>http://jalammathe-first-time/</u> François Chollet (2017), Text classification with preprocessed text: Movie reviews, <u>https://www.tensorflow.org/tutorials/keras/text_classification</u> Avishek Nag (2019), Text Classification by XGBoost & Others: A Case Study Using BL <u>https://medium.com/towards-artificial-intelligence/text-classification-by-xgboost-ot_5d88e94a9f8</u> Text Classification: IMDB Movie Reviews Source: François Chollet (2017), Text classification with preprocessed text: Movie reviews 	BC News Articles, <u>hers-a-case-study-us</u>		
accuracy and loss ov time Text Classification: BBC	ei	https://www.tensorflow.org/tutorials/keras/text_classification [25] 1 !pip install tf-nightly			
News Articles Python Programming		<pre>2 import tensorflow as tf 3 print(tfversion)</pre>			
OS, IO, files, and Google Drive		[→ Collecting tf-nightly			
Python Numpy		Downloading <u>https://files.pythonhosted.org/packages/2a/a0/7381cd278a8</u>	e1a9235f032ea811a	f07bbe31ed	<u>45ac9781</u>
Python Pandas		Collecting tf-estimator-nightly Downloading <u>https://files.pythonhosted.org/packages/0f/fb/984408ab3aee0bddfc02e1136a4fd76</u>			
Section		Requirement already satisfied: google-pasta>=0.1.8 in /usr/local/lib/py	thon3.6/dist-pack	ages (from	tf-nigh

Python in Google Colab (Python101)

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/aintpupython101

NLP Benchmark Datasets

Task	Dataset	Link	
Machine Translation	WMT 2014 EN-DE	http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/	
Machine Translation	WMT 2014 EN-FR	http://www-num.umv-temans.n/~schwenk/cshn_joht_paper/	
	CNN/DM	https://cs.nyu.edu/~kcho/DMQA/	
Text Summarization	Newsroom	https://summari.es/	
Text Summarization	DUC	https://www-nlpir.nist.gov/projects/duc/data.html	
	Gigaword	https://catalog.ldc.upenn.edu/LDC2012T21	
	ARC	http://data.allenai.org/arc/	
	CliCR	http://aclweb.org/anthology/N18-1140	
	CNN/DM	https://cs.nyu.edu/~kcho/DMQA/	
Reading Comprehension	NewsQA	https://datasets.maluuba.com/NewsQA	
Question Answering	RACE	http://www.qizhexie.com/data/RACE_leaderboard	
Question Answering Question Generation	SQuAD	https://rajpurkar.github.io/SQuAD-explorer/	
Question Generation	Story Cloze Test	http://aclweb.org/anthology/W17-0906.pdf	
	NarativeQA	https://github.com/deepmind/narrativeqa	
	Quasar	https://github.com/bdhingra/quasar	
	SearchQA	https://github.com/nyu-dl/SearchQA	
	AMR parsing	https://amr.isi.edu/index.html	
Semantic Parsing	ATIS (SQL Parsing)	https://github.com/jkkummerfeld/text2sql-data/tree/master/data	
	WikiSQL (SQL Parsing)	https://github.com/salesforce/WikiSQL	
	IMDB Reviews	http://ai.stanford.edu/~amaas/data/sentiment/	
Sentiment Analysis	SST	https://nlp.stanford.edu/sentiment/index.html	
Sentiment Analysis	Yelp Reviews	https://www.yelp.com/dataset/challenge	
	Subjectivity Dataset	http://www.cs.cornell.edu/people/pabo/movie-review-data/	
	AG News	http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html	
Text Classification	DBpedia	https://wiki.dbpedia.org/Datasets	
Text Classification	TREC	https://trec.nist.gov/data.html	
	20 NewsGroup	http://qwone.com/~jason/20Newsgroups/	
	SNLI Corpus	https://nlp.stanford.edu/projects/snli/	
Natural Language Inference	MultiNLI	https://www.nyu.edu/projects/bowman/multinli/	
	SciTail	http://data.allenai.org/scitail/	
Semantic Role Labeling	Proposition Bank	http://propbank.github.io/	
	OneNotes	https://catalog.ldc.upenn.edu/LDC2013T19	

Source: Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavvaf, and Edward A. Fox (2020). "Natural Language Processing Advancements By Deep Learning: A Survey." arXiv preprint arXiv:2003.01200.

Summary

- Unsupervised lexicon-based models
- Traditional supervised machine learning models
- Supervised deep learning models
- Advanced supervised deep learning models

References

- Dipanjan Sarkar (2019), Text Analytics with Python: A Practitioner's Guide to Natural Language Processing, Second Edition. APress. <u>https://github.com/Apress/text-analytics-w-python-2e</u>
- Benjamin Bengfort, Rebecca Bilbro, and Tony Ojeda (2018), Applied Text Analysis with Python, O'Reilly Media. <u>https://www.oreilly.com/library/view/applied-text-analysis/9781491963036/</u>
- Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.
- HuggingFace (2020), Transformers Notebook, https://huggingface.co/transformers/notebooks.html
- The Super Duper NLP Repo, <u>https://notebooks.quantumstat.com/</u>
- Min-Yuh Day (2020), Python 101, https://tinyurl.com/aintpupython101