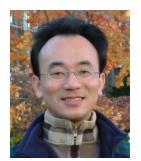


Big Data Mining 巨量資料探勘

關連分析 (Association Analysis)

1082DM05 MI4 (M2244) (2744) Tue 3, 4 (10:10-12:00) (B218)



<u>Min-Yuh Day</u> <u>戴敏育</u> Associate Professor 副教授

 Dept. of Information Management,
 Tamkang University

 淡江大學 資訊管理學系

2020-03-31

課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics)

- 1 2020/03/03 巨量資料探勘課程介紹 (Course Orientation for Big Data Mining)
- 2 2020/03/10 AI人工智慧與大數據分析 (Artificial Intelligence and Big Data Analytics)
- 3 2020/03/17 分群分析 (Cluster Analysis)
- 4 2020/03/24 個案分析與實作一(SAS EM 分群分析): Case Study 1 (Cluster Analysis - K-Means using SAS EM)
- 5 2020/03/31 關連分析 (Association Analysis)
- 6 2020/04/07 個案分析與實作二 (SAS EM 關連分析): Case Study 2 (Association Analysis using SAS EM)
- 7 2020/04/14 分類與預測 (Classification and Prediction)
- 8 2020/04/21 期中報告 (Midterm Project Presentation)

課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics)

- 9 2020/04/28 期中考試週
- 10 2020/05/05 個案分析與實作三 (SAS EM 決策樹、模型評估): Case Study 3 (Decision Tree, Model Evaluation using SAS EM)
- 11 2020/05/12 個案分析與實作四 (SAS EM 迴歸分析、類神經網路): Case Study 4 (Regression Analysis, Artificial Neural Network using SAS EM)
- 12 2020/05/19 機器學習與深度學習 (Machine Learning and Deep Learning)
- 13 2020/05/26 期末報告 (Final Project Presentation)
- 14 2020/06/02 畢業考試週
- 15 2020/06/09 教師彈性補充教學

Association Analysis

Data Mining Tasks & Methods

Data Mining Tasks & Methods	Data Mining Algorithms	Learning Type
Prediction		
Classification	Decision Trees, Neural Networks, Support Vector Machines, kNN, Naïve Bayes, GA	Supervised
Regression	Linear/Nonlinear Regression, ANN, Regression Trees, SVM, kNN, GA	Supervised
Time series	Autoregressive Methods, Averaging Methods, Exponential Smoothing, ARIMA	Supervised
Association		
Market-basket	Apriori, OneR, ZeroR, Eclat, GA	Unsupervised
Link analysis	Expectation Maximization, Apriori Algorithm, Graph-Based Matching	Unsupervised
Sequence analysis	Apriori Algorithm, FP-Growth, Graph-Based Matching	Unsupervised
Segmentation		
Clustering	k-means, Expectation Maximization (EM)	Unsupervised
Outlier analysis	k-means, Expectation Maximization (EM)	Unsupervised

Source: Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson

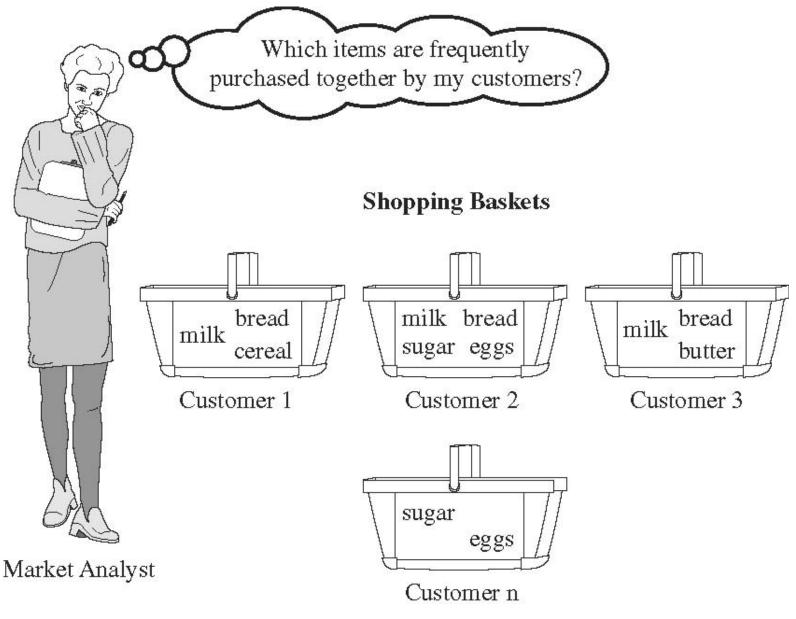
Transaction Database

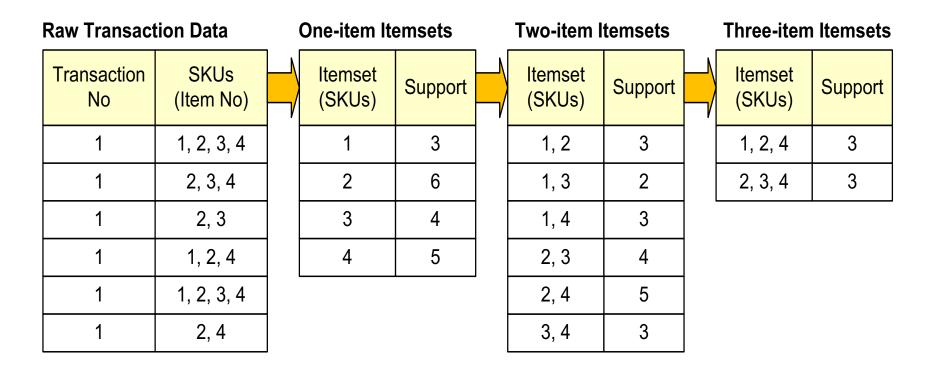
Transaction ID	Items bought
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
T04	A, B, D
T05	A, B, C, E
T06	A, C
T07	B, C, D
T08	B, D
T09	A, C, E
T10	B, D

Association Analysis: Mining Frequent Patterns, Association and Correlations

- Association Analysis
- Mining Frequent Patterns
- Association and Correlations
- Apriori Algorithm

Market Basket Analysis





- A very popular DM method in business
- Finds interesting relationships (affinities) between variables (items or events)
- Part of machine learning family
- Employs unsupervised learning
- There is no output variable
- Also known as market basket analysis
- Often used as an example to describe DM to ordinary people, such as the famous "relationship between diapers and beers!"

- Input: the simple point-of-sale transaction data
- Output: Most frequent affinities among items
- <u>Example:</u> according to the transaction data...

"Customer who bought a laptop computer and a virus protection software, also bought extended service plan 70 percent of the time."

- How do you use such a pattern/knowledge?
 - Put the items next to each other for ease of finding
 - Promote the items as a package (do not put one on sale if the other(s) are on sale)
 - Place items far apart from each other so that the customer has to walk the aisles to search for it, and by doing so potentially seeing and buying other items

- A representative applications of association rule mining include
 - In business: cross-marketing, cross-selling, store design, catalog design, e-commerce site design, optimization of online advertising, product pricing, and sales/promotion configuration
 - In medicine: relationships between symptoms and illnesses; diagnosis and patient characteristics and treatments (to be used in medical DSS); and genes and their functions (to be used in genomics projects)...

• Are all association rules interesting and useful?

A Generic Rule: $X \Rightarrow Y [S\%, C\%]$

- X, Y: products and/or services
- X: Left-hand-side (LHS)
- Y: Right-hand-side (RHS)
- **S:** Support: how often **X** and **Y** go together
- **C:** Confidence: how often **Y** go together with the **X**

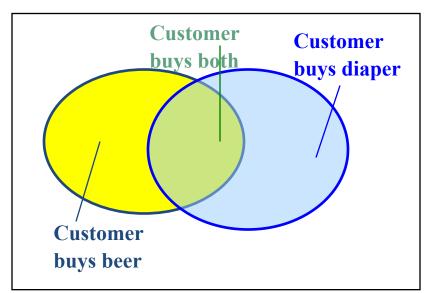
Example: {Laptop Computer, Antivirus Software} ⇒ {Extended Service Plan} [30%, 70%]

- Algorithms are available for generating association rules
 - Apriori
 - Eclat
 - FP-Growth
 - + Derivatives and hybrids of the three
- The algorithms help identify the frequent item sets, which are, then converted to association rules

- Apriori Algorithm
 - Finds subsets that are common to at least a minimum number of the itemsets
 - uses a bottom-up approach
 - frequent subsets are extended one item at a time (the size of frequent subsets increases from one-item subsets to two-item subsets, then three-item subsets, and so on), and
 - groups of candidates at each level are tested against the data for minimum

Basic Concepts: Frequent Patterns and Association Rules

Transaction-id	Items bought	•
10	A, B, D	
20	A, C, D	
30	A, D, E	
40	B, E, F	
50	B, C, D, E, F	



- Itemset X = $\{x_1, ..., x_k\}$
- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, s, probability that a transaction contains $X \cup Y$
 - confidence, c, conditional probability that a transaction having X also contains Y

Let $sup_{min} = 50\%$, $conf_{min} = 50\%$ Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3} Association rules:

> $A \rightarrow D$ (60%, 100%) $D \rightarrow A$ (60%, 75%)

 $A \rightarrow D$ (support = 3/5 = 60%, confidence = 3/3 = 100%) $D \rightarrow A$ (support = 3/5 = 60%, confidence = 3/4 = 75%)

Market basket analysis

- Example
 - Which groups or sets of items are customers likely to purchase on a given trip to the store?
- Association Rule
 - Computer antivirus_software [support = 2%; confidence = 60%]
 - A support of 2% means that 2% of all the transactions under analysis show that computer and antivirus software are purchased together.
 - A confidence of 60% means that 60% of the customers who purchased a computer also bought the software.

Association rules

- Association rules are considered interesting if they satisfy both
 - a minimum support threshold and
 - a minimum confidence threshold.

Frequent Itemsets, Closed Itemsets, and Association Rules

Let $I = \{I_1, I_2, ..., I_m\}$ be a set of items. Let D, the task-relevant data, be a set of database transactions where each transaction T is a set of items such that $T \subseteq I$. Each transaction is associated with an identifier, called TID. Let A be a set of items. A transaction T is said to contain A if and only if $A \subseteq T$. An association rule is an implication of the form $A \Rightarrow B$, where $A \subset I, B \subset I$, and $A \cap B = \phi$. The rule $A \Rightarrow B$ holds in the transaction set D with support s, where s is the percentage of transactions in D that contain $A \cup B$ (i.e., the *union* of sets A and B, or say, both A and B). This is taken to be the probability, $P(A \cup B)$.¹ The rule $A \Rightarrow B$ has confidence c in the transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, and $A \cup B$. The rule $A \Rightarrow B$ has confidence c in the transaction set D, where c is the percentage of transaction set D, where c is the percentage of transactions in D containing A that also contain B. This is taken to be the conditional probability, P(B|A). That is,

Support (A
$$\rightarrow$$
 B) = P(A \cup B)
Confidence (A \rightarrow B) = P(B|A)

Support $(A \rightarrow B) = P(A \cup B)$ Confidence $(A \rightarrow B) = P(B|A)$

 The notation P(A ∪ B) indicates the probability that a transaction contains the union of set A and set B

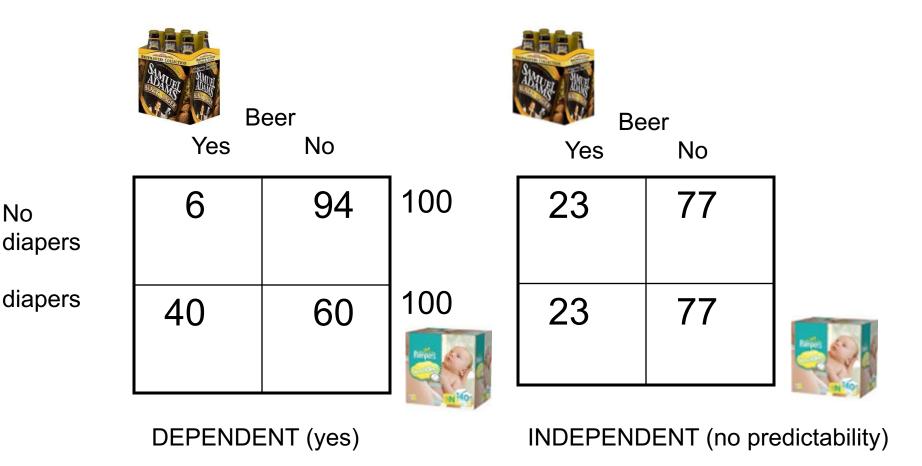
- (i.e., it contains every item in A and in B).

• This should not be confused with P(A or B), which indicates the probability that a transaction contains either A or B.

Does diaper purchase predict beer purchase?

Contingency tables

No



Source: Dickey (2012) http://www4.stat.ncsu.edu/~dickey/SAScode/Encore 2012.ppt

Support $(A \rightarrow B) = P(A \cup B)$

Confidence $(A \rightarrow B) = P(B|A)$ Conf $(A \rightarrow B) = Supp (A \cup B) / Supp (A)$

Lift $(A \rightarrow B) = Supp (A \cup B) / (Supp (A) x Supp (B))$ Lift (Correlation) Lift $(A \rightarrow B) = Confidence (A \rightarrow B) / Support(B)$

Source: Dickey (2012) http://www4.stat.ncsu.edu/~dickey/SAScode/Encore_2012.ppt

Lift

Lift = Confidence / Expected Confidence if Independent

Checking	No (1500)	Yes (8500)	(10000)
No	500	3500	4000
Yes	1000	5000	6000

SVG=>CHKG Expect 8500/10000 = 85% if independent Observed Confidence is 5000/6000 = 83%Lift = 83/85 < 1.

Savings account holders actually LESS likely than others to have checking account !!!

Minimum Support and Minimum Confidence

- Rules that satisfy both a minimum support threshold (*min_sup*) and a minimum confidence threshold (*min_conf*) are called strong.
- By convention, we write support and confidence values so as to occur between 0% and 100%, rather than 0 to 1.0.

K-itemset

- itemset
 - A set of items is referred to as an itemset.
- K-itemset
 - An itemset that contains k items is a k-itemset.
- Example:
 - The set {computer, antivirus software} is a 2-itemset.

Absolute Support and Relative Support

- Absolute Support
 - The occurrence frequency of an itemset is the number of transactions that contain the itemset
 - frequency, support count, or count of the itemset
 - Ex: 3
- Relative support
 - Ex: 60%

Frequent Itemset

 If the relative support of an itemset *I satisfies* a prespecified minimum support threshold, then I is a frequent itemset.

– i.e., the absolute support of I satisfies the corresponding minimum support count threshold

 The set of frequent k-itemsets is commonly denoted by L_K

Confidence

 $confidence(A \Rightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)} = \frac{support_count(A \cup B)}{support_count(A)}$

- the confidence of rule A → B can be easily derived from the support counts of A and A ∪ B.
- once the support counts of A, B, and A ∪ B are found, it is straightforward to derive the corresponding association rules A →B and B →A and check whether they are strong.
- Thus the problem of mining association rules can be reduced to that of mining frequent itemsets.

Association rule mining: Two-step process

- 1. Find all frequent itemsets
 - By definition, each of these itemsets will occur at least as frequently as a predetermined minimum support count, *min_sup*.
- 2. Generate strong association rules from the frequent itemsets
 - By definition, these rules must satisfy minimum support and minimum confidence.

Efficient and Scalable Frequent Itemset Mining Methods

- The Apriori Algorithm
 - Finding Frequent Itemsets Using Candidate Generation

- Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining frequent itemsets for Boolean association rules.
- The name of the algorithm is based on the fact that the algorithm uses prior knowledge of frequent itemset properties, as we shall see following.

- Apriori employs an iterative approach known as a *level-wise search, where k-itemsets are used to explore (k+1)-itemsets.*
- First, the set of frequent 1-itemsets is found by scanning the database to accumulate the count for each item, and collecting those items that satisfy minimum support. The resulting set is denoted L₁.
- Next, L₁ is used to find L₂, the set of frequent 2-itemsets, which is used to find L₃, and so on, until no more frequent kitemsets can be found.
- The finding of each L_k requires one full scan of the database.

- To improve the efficiency of the level-wise generation of frequent itemsets, an important property called the Apriori property.
- Apriori property
 - All nonempty subsets of a frequent itemset must also be frequent.

Apriori algorithm (1) Frequent Itemsets (2) Association Rules

Transaction Database

Transaction ID	Items bought
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
T04	A, B, D
T05	A, B, C, E
T06	A, C
T07	B, C, D
T08	B, D
T09	A, C, E
T10	B, D

Table 1 shows a database with 10 transactions.

Let *minimum support* = 20% and *minimum confidence* = 80%. Please use **Apriori algorithm** for generating **association rules** from frequent itemsets.

Table 1: Transaction Database

Transaction	Items bought
ID	
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
Т04	A, B, D
T05	A, B, C, E
Т06	A, C
T07	B, C, D
T08	B, D
Т09	A, C, E
T10	B, D

Transaction ID	Items bought
T01	A, B, D
T02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
T05	А, В, С, Е
Т06	A, C
Т07	B, C, D
Т08	B, D
Т09	A, C, E
T10	B, D

Е

3

Apriori Algorithm $C_1 \rightarrow L_1$

C ₁			L ₁	
ltemset	Support Count	minimum support = 20%	ltemset	Support Count
А	6	= 2 / 10 Min. Support	А	6
В	7	Count = 2	В	7
С	6	\longrightarrow	С	6
D	7		D	7

Ε

3

Transaction	Items
ID	bought
T01	A, B, D
Т02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
т06	A, C
Т07	B, C, D
Т08	B, D
т09	A, C, E
T10	B, D

L ₁	
Itemset	

Itemset	Support Count
А	6
В	7
С	6
D	7
E	3

Apriori Algorithm $C_2 \rightarrow L_2$

 C_2

Itemset	Support Count
А, В	3
Α, C	4
A, D	3
Α, Ε	2
В, С	3
B, D	6
В, Е	2
C, D	3
С, Е	3
D, E	1

minimum support = 20% = 2 / 10 Min. Support Count = 2

ltemset	Support Count
А, В	3
A, C	4
A, D	3
Α, Ε	2
В, С	3
B, D	6
B <i>,</i> E	2
C, D	3
С, Е	3

L2

Step **1-2**

Transaction	Items
ID	bought
T01	A, B, D
Т02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
т06	A, C
Т07	B, C, D
Т08	B, D
т09	A, C, E
Т10	B, D

L_2

ltemset	Support Count
А, В	3
A, C	4
A, D	3
Α, Ε	2
В, С	3
B, D	6
В, Е	2
C, D	3
С, Е	3

Apriori Algorithm $C_3 \rightarrow L_3$

Step **1-3**

C₃

Itemset	Support Count
А, В, С	1
A, B, D	2
A, B, E	1
A, C, D	1
A, C, E	2
B, C, D	2
В, С, Е	2

minimum support = 20% = 2 / 10 Min. Support Count = 2

 \rightarrow

ltemset	Support Count
A, B, D	2
A, C, E	2
B, C, D	2
B, C, E	2

 L_3

Transaction	Items
ID	bought
T01	A, B, D
Т02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
т06	A, C
Т07	B, C, D
Т08	B, D
т09	A, C, E
Т10	B, D

Generating Association Rules

minimum confidence = 80%

L ₂			
L_1		Itemset	Support Count
Itemset	Support	А, В	3
A	Count 6	A, C	4
B	7	A, D	3
С	6	A, E	2
D	7	В, С	3
E	3	B, D	6
		В <i>,</i> Е	2
		C, D	3

С, Е

3

Association Rules Generated from L₂

A→B: 3/6	B→A: 3/7
A→C: 4/6	C→A: 4/6
A→D: 3/6	D→A: 3/7
A→E: 2/6	E→A: 2/3
B→C: 3/7	C→B: 3/6
B→D: 6/7=85.7% *	D→B: 6/7=85.7% *
B→E: 2/7	E→B: 2/3
C→D: 3/6	D→C: 2/7
C→E: 3/6	E→C: 3/3=100% *

Step 2-1

Transaction	Items
ID	bought
T01	A, B, D
Т02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
т06	Α, C
Т07	B, C, D
Т08	B, D
т09	A, C, E
T10	B, D

Generating Association Rules

minimum confidence = 80%

Association Rules Generated from L₃

		A→BD: 2/6	B→CD: 2/7
		B→AD: 2/7	C→BD: 2/6
		D→AB: 2/7	D→BC: 2/7
		AB→D: 2/3	BC→D: 2/3
Support		AD→B: 2/3	BD→C: 2/6
Count		BD→A: 2/6	CD→B: 2/3
2		A→CE: 2/6	B→CE: 2/7
2		C→AE: 2/6	C→BE: 2/6
2	4	E→AC: 2/3	E→BC: 2/3
2		AC→E: 2/4	BC→E: 2/3
		AE→C: 2/2=100%*	BE→C: 2/2=100%*
		CE→A: 2/3	CE→B: 2/3

L_1		L_2			
ltemset	Support Count	ltemset	Support Count		lt
А	6	А, В	3		
В	7	A, C	4		/
С	6	A, D	3		4
D	7	Α, Ε	2		E
Е	3	В, С	3		
-		B, D	6		E
		В, Е	2		
		C, D	3		
		C. E	3	l	

L 3		
Itemset	Support Count	
A, B, D	2	
A, C, E	2	
B, C, D	2	
B, C, E	2	

Step **2-2**

Transaction ID T01 T02 T03	Items bought A, B, D A, C, D B, C, D, E	Frequent I	tem L ₁	sets	and L ₂	Ass	ociatio L ₃	on Rul	e
T04 T05	A, B, D A, B, C, E		Itemset	Support Count	ltemset	Support Count	Itemset	Support]
T06 T07	A, C B, C, D		A	6	А, В	3		Count	
Т08 Т09	B, D A, C, E		В	7	A, C	4	A, B, D	2	
T10	А, С, Е В, D		С	6	A, D	3	Α, Β, Β	2	
			D	7	Α, Ε	2	А <i>,</i> С, Е	2	
			E	3	В, С	3	B, C, D	2	1
					B, D	6			-

B, E

C, D

C, E

2

3

3

B, C, E

2

minimum support = 20% minimum confidence = 80%

Association Rules:

B→D (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) D→B (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) E→C (30%, 100%) (Sup.: 3/10, Conf.: 3/3) AE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2) BE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2) Table 1 shows a database with 10 transactions.

Let *minimum support* = 20% and *minimum confidence* = 80%.

Please use **Apriori algorithm** for generating **association rules** from frequent itemsets.

Transaction ID	Items bought
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
T04	A, B, D
T05	А, В, С, Е
Т06	А, С
T07	B, C, D
T08	B, D
Т09	А, С, Е
T10	B, D

Association Rules:

B→D (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) D→B (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) E→C (30%, 100%) (Sup.: 3/10, Conf.: 3/3) AE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2) BE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2)

Summary

- Association Analysis
- Apriori algorithm
 - -Frequent Itemsets
 - **–Association Rules**

References

- Jiawei Han and Micheline Kamber, Data Mining: Concepts and Techniques, Second Edition, Elsevier, 2006.
- Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques, Third Edition, Morgan Kaufmann 2011.
- Efraim Turban, Ramesh Sharda, Dursun Delen, Decision Support and Business Intelligence Systems, Ninth Edition, Pearson, 2011.
- EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015