TensorFlow 深度學習財務金融應用
(Deep Learning for Finance Application with TensorFlow)

Min-Yuh Day
戴敏育
Associate Professor
副教授
Dept. of Information Management, Tamkang University

http://mail.tku.edu.tw/myday/
2019-11-29, 12-13, 12-20
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Subject/Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2019/09/13</td>
<td>Mid-Autumn Festival Day off</td>
</tr>
<tr>
<td>2</td>
<td>2019/09/20</td>
<td>Course Orientation for AI in Financial Application</td>
</tr>
<tr>
<td>3</td>
<td>2019/09/27</td>
<td>Artificial Intelligence for Investment Analysis and Robo-Advisors</td>
</tr>
<tr>
<td>4</td>
<td>2019/10/04</td>
<td>Conversational Commerce and Intelligent Chatbots for Fintech</td>
</tr>
<tr>
<td>5</td>
<td>2019/10/11</td>
<td>Bridge Holiday for National Day, Extra Day Off</td>
</tr>
<tr>
<td>6</td>
<td>2019/10/18</td>
<td>Event Studies in Finance</td>
</tr>
<tr>
<td>週次 (Week)</td>
<td>日期 (Date)</td>
<td>內容 (Subject/Topics)</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------------------</td>
</tr>
</tbody>
</table>
| 7 | 2019/10/25 | 人工智慧財務金融應用個案研究 I
(Case Study on AI in Financial Application I) |
| 8 | 2019/11/01 | Python AI智慧金融分析基礎
(Foundations of AI in Finance Big Data Analytics with Python) |
| 9 | 2019/11/08 | Python Pandas 量化投資分析
(Quantitative Investing with Pandas in Python) |
| 10 | 2019/11/15 | 期中報告 (Midterm Project Report) |
| 11 | 2019/11/22 | Python Scikit-Learn 機器學習財務金融應用
(Machine Learning in Finance Application with Scikit-Learn In Python) |
| 12 | 2019/11/29 | TensorFlow 深度學習財務金融應用 I
(Deep Learning for Finance Application with TensorFlow I) |
<table>
<thead>
<tr>
<th>週次 (Week)</th>
<th>日期 (Date)</th>
<th>內容 (Subject/Topics)</th>
</tr>
</thead>
</table>
| 13 | 2019/12/06 | 人工智慧財務金融應用個案研究 II
(Case Study on AI in Financial Application II) |
| 14 | 2019/12/13 | TensorFlow 深度學習財務金融應用 II
(Deep Learning for Finance Application with TensorFlow II) |
| 15 | 2019/12/20 | TensorFlow 深度學習財務金融應用 III
(Deep Learning for Finance Application with TensorFlow III) |
| 16 | 2019/12/27 | 社會網絡分析財務金融應用
(Social Network Analysis for Finance Application) |
| 17 | 2020/01/03 | 期末報告 I (Final Project Presentation I) |
| 18 | 2020/01/10 | 期末報告 II (Final Project Presentation II) |
Deep Learning for Financial Application with TensorFlow
Outline

• Deep Learning for Financial Application with TensorFlow
 – Deep Learning
 – Financial Application
 – TensorFlow
O’Reilly Media, 2019

https://github.com/ageron/handson-ml2

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Notebooks
1. The Machine Learning landscape
2. End-to-end Machine Learning project
3. Classification
4. Training Models
5. Support Vector Machines
6. Decision Trees
7. Ensemble Learning and Random Forests
8. Dimensionality Reduction
9. Unsupervised Learning Techniques
10. Artificial Neural Nets with Keras
11. Training Deep Neural Networks
12. Custom Models and Training with TensorFlow
13. Loading and Preprocessing Data
14. Deep Computer Vision Using Convolutional Neural Networks
15. Processing Sequences Using RNNs and CNNs
16. Natural Language Processing with RNNs and Attention
17. Representation Learning Using Autoencoders
18. Reinforcement Learning
19. Training and Deploying TensorFlow Models at Scale

https://github.com/ageron/handson-ml2
Sequences using RNNs and CNNs

```python
np.random.seed(43)
series = generate_time_series(1, 50 + 10)
X_new, Y_new = series[:, :50, :], series[:, 50:, :]
Y_pred = model.predict(X_new)[:, -1][..., np.newaxis]

plot_multiple_forecasts(X_new, Y_new, Y_pred)
plt.show()
```
An end-to-end open source machine learning platform

The core open source library to help you develop and train ML models. Get started quickly by running Colab notebooks directly in your browser.

Get started with TensorFlow

https://www.tensorflow.org/
TensorFlow

• An end-to-end open source machine learning platform.

• The core open source library to help you develop and train ML models.

• Get started quickly by running Colab notebooks directly in your browser.

https://www.tensorflow.org/
Why TensorFlow 2.0

Why TensorFlow

TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries and community resources that lets researchers push the state-of-the-art in ML and developers easily build and deploy ML powered applications.

About →

Easy model building
Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging.

Robust ML production anywhere
Easily train and deploy models in the cloud, on-prem, in the browser, or on-device no matter what language you use.

Powerful experimentation for research
A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster.
TensorFlow 2.0 vs. 1.X

TensorFlow 2.0

```python
# TensorFlow 2.0
outputs = f(input)
```

TensorFlow 1.X

```python
# TensorFlow 1.X
outputs = session.run(f(placeholder), feed_dict={placeholder: input})
```

Source: https://www.tensorflow.org/guide/effective_tf2
import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(128, activation='relu'),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation='softmax')])

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

https://www.tensorflow.org/overview/
TensorFlow 2 quickstart for beginners

This short introduction uses Keras to:

1. Build a neural network that classifies images.
2. Train this neural network.
3. And, finally, evaluate the accuracy of the model.

This is a Google Colaboratory notebook file. Python programs are run directly in the browser—a great way to learn and use TensorFlow. To follow this tutorial, run the notebook in Google Colab by clicking the button at the top of this page.

1. In Colab, connect to a Python runtime: At the top-right of the menu bar, select CONNECT.
2. Run all the notebook code cells: Select Runtime > Run all.

Download and install the TensorFlow 2 package. Import TensorFlow into your program:

```
from __future__ import absolute_import, division, print_function, unicode_literals

try:
  # Install TensorFlow
  # @tensorflow_version only exists in Colab.
  @tensorflow_version 2.x
except Exception:
  pass
```

Basic classification: Classify images of clothing

This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details; this is a fast-paced overview of a complete TensorFlow program with the details explained as you go.

This guide uses `tf.keras`, a high-level API to build and train models in TensorFlow.

```python
from __future__ import absolute_import, division, print_function, unicode_literals

# TensorFlow and tf.keras
import tensorflow as tf
from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)
```

https://www.tensorflow.org/tutorials/keras/classification
Image Classification
Fashion MNIST dataset

https://www.tensorflow.org/tutorials/keras/classification
Text classification with TensorFlow Hub: Movie reviews

This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—classification, an important and widely applicable kind of machine learning problem.

The tutorial demonstrates the basic application of transfer learning with TensorFlow Hub and Keras.

We’ll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Database. These are split into 25,000 reviews for training and 25,000 reviews for testing. The training and testing sets are balanced, meaning they contain an equal number of positive and negative reviews.

This notebook uses tf.keras, a high-level API to build and train models in TensorFlow, and TensorFlow Hub, a library and platform for transfer learning. For a more advanced text classification tutorial using tf.keras, see the MLCC Text Classification Guide.
Text classification with preprocessed text: Movie reviews

This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—classification, an important and widely applicable kind of machine learning problem.

We'll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Database. These are split into 25,000 reviews for training and 25,000 reviews for testing. The training and testing sets are balanced, meaning they contain an equal number of positive and negative reviews.

This notebook uses tf.keras, a high-level API to build and train models in TensorFlow. For a more advanced text classification tutorial using tf.keras, see the MLCC Text Classification Guide.

Setup

```python
from __future__ import absolute_import, division, print_function, unicode_literals
```
Regression

Basic regression: Predict fuel efficiency

In a regression problem, we aim to predict the output of a continuous value, like a price or a probability. Contrast this with a classification problem, where we aim to select a class from a list of classes (for example, where a picture contains an apple or an orange, recognizing which fruit is in the picture).

This notebook uses the classic Auto MPG Dataset and builds a model to predict the fuel efficiency of late-1970s and early 1980s automobiles. To do this, we'll provide the model with a description of many automobiles from that time period. This description includes attributes like: cylinders, displacement, horsepower, and weight.

This example uses the tf.keras API, see this guide for details.

```
# Use seaborn for pairplot
!pip install -q seaborn

from __future__ import absolute_import, division, print_function, unicode_literals

import pathlib
```
Time series forecasting

This tutorial is an introduction to time series forecasting using Recurrent Neural Networks (RNNs). This is covered in two parts: first, you will forecast a univariate time series, then you will forecast a multivariate time series.

```python
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd

cmplrcParams['figure.figsize'] = (8, 6)
cmplrcParams['axes.grid'] = False
```
df['Adj Close'].plot(legend=True, figsize=(12, 8), title='AAPL', label='Adj Close')

Source: https://mapattack.wordpress.com/2017/02/12/using-python-for-stocks-1/
Time Series Data

\[[100, 110, 120, 130, 140, 150] \]
Long Short Term Memory (LSTM) for Time Series Forecasting
Time Series Data

\[[10, 20, 30, 40, 50, 60, 70, 80, 90] \]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10 20 30]</td>
<td>40</td>
</tr>
<tr>
<td>[20 30 40]</td>
<td>50</td>
</tr>
<tr>
<td>[30 40 50]</td>
<td>60</td>
</tr>
<tr>
<td>[40 50 60]</td>
<td>70</td>
</tr>
<tr>
<td>[50 60 70]</td>
<td>80</td>
</tr>
<tr>
<td>[60 70 80]</td>
<td>90</td>
</tr>
</tbody>
</table>
Deep Learning and Neural Networks
Deep Learning Foundations: Neural Networks
Deep Learning and Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

X1 X2

Y
Deep Learning and Neural Networks

Input Layer (X)

Hidden Layer (H)

Output Layer (Y)
Deep Learning and Neural Networks

- Input Layer (X)
- Hidden Layers (H)
- Output Layer (Y)

Deep Neural Networks
Deep Learning
Deep Learning and Deep Neural Networks
Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

Machine-learning technology powers many aspects of modern society: from web searches to content filtering on social networks to recommendations on e-commerce websites, and it is increasingly present in consumer products such as cameras and smartphones. Machine-learning systems are used to identify objects in images, transcribe speech into text, match news items, posts or products with users’ interests, and select relevant results of search. Increasingly, these applications make use of a class of techniques called deep learning.

Conventional machine-learning techniques were limited in their ability to process natural data in their raw form. For decades, conventional models were restricted to linear combinations of inputs or their products with a limited number of layers. Deep learning, on the other hand, uses multiple layers to learn increasingly abstract representations of the input data. The key innovation is the backpropagation algorithm, which allows the model to adjust its parameters in a way that minimizes the difference between the model's predictions and the true labels. This makes deep learning very powerful for tasks that require understanding complex patterns and relationships in large datasets.
Deep Learning

- A powerful class of machine learning model
- Modern reincarnation of artificial neural networks
- Collection of simple, trainable mathematical functions
- Compatible with many variants of machine learning

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
What is Deep Learning?

- Loosely based on (what little) we know about the brain
Neural Networks (NN)

Source: http://www.asimovinstitute.org/neural-network-zoo/
A mostly complete chart of Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

Source: http://www.asimovinstitute.org/neural-network-zoo/
Convolutional Neural Networks
(CNN or Deep Convolutional Neural Networks, DCNN)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Recurrent Neural Networks (RNN)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Long / Short Term Memory (LSTM)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Gated Recurrent Units (GRU)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Generative Adversarial Networks (GAN)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Support Vector Machines (SVM)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Neural networks (NN) 1960

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

Source: https://www.youtube.com/watch?v=bx2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
Multilayer Perceptrons (MLP) 1985

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Support Vector Machine (SVM) 1995

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Hinton presents the Deep Belief Network (DBN)

New interests in deep learning and RBM

State of the art MNIST

2005

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Deep Recurrent Neural Network (RNN) 2009

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Convolutional DBN
2010

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Max-Pooling CDBN 2011

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
From image to text

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

A group of people sitting on a boat in the water.
Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)

Architecture of LeNet-5 (7 Layers) (LeCun et al., 1998)

Convolutional Neural Networks (CNN)

- Convolution
- Pooling
- Fully Connection (FC) (Flattening)
A friendly introduction to Convolutional Neural Networks and Image Recognition

Convolution Layer

Pooling Layer

Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition, https://www.youtube.com/watch?v=2-Ol7ZB0MmU
A friendly introduction to Convolutional Neural Networks and Image Recognition

Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition, https://www.youtube.com/watch?v=2-0I7ZB0MmU
A friendly introduction to Convolutional Neural Networks and Image Recognition

Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition, https://www.youtube.com/watch?v=2-QI7ZB0MmU
A friendly introduction to Convolutional Neural Networks and Image Recognition

Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition, https://www.youtube.com/watch?v=2-OI7ZB0MmU
CNN Architecture

Convolution is a mathematical operation to merge two sets of information.

Input

```
1 1 1 1 0 0
0 1 1 1 0 0
0 0 1 1 1 1
0 0 1 1 1 0
0 1 1 1 0 0
0 1 1 0 0 0
```

Filter / Kernel

```
1 0 1
0 1 0
1 0 1
```
CNN Convolution Layer

Input x Filter --> Feature Map

receptive field: 3x3

<table>
<thead>
<tr>
<th>1x1</th>
<th>1x0</th>
<th>1x1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>1x1</td>
<td>1x0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0x1</td>
<td>0x0</td>
<td>1x1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Input x Filter

Feature Map

CNN Convolution Layer

Input x Filter ---> Feature Map

receptive field: 3x3

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1x1</th>
<th>1x0</th>
<th>0x1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1x0</td>
<td>1x1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1x0</td>
<td>1x1</td>
<td>1x0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0x1</td>
<td>1x0</td>
<td>1x1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Input x Filter

Feature Map

CNN Convolution Layer

Example convolution operation shown in 2D using a 3x3 filter

10 different filters 10 feature maps of size 32x32x1

final output of the convolution layer: a volume of size 32x32x10

CNN Convolution Layer

Sliding operation at 4 locations

CNN Convolution Layer

two feature maps

CNN Convolution Layer

Stride specifies how much we move the convolution filter at each step.

- **Stride 1**
- **Feature Map**

Stride specifies how much we move the convolution filter at each step.

Stride 2

Feature Map

CNN Convolution Layer

Stride 1 with Padding

Stride 1 with Padding

Feature Map

CNN Pooling Layer

Max Pooling

max pool with 2x2 window and stride 2

CNN Pooling Layer

CNN Architecture

4 convolution + pooling layers, followed by 2 fully connected layers

Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
CNN Architecture
4 convolution + pooling layers, followed by 2 fully connected layers

https://gist.github.com/ardendertat/0fc5515057c47e7386fe04e9334504e3

```python
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', name='conv_1',
                input_shape=(150, 150, 3)))
model.add(MaxPooling2D((2, 2), name='maxpool_1'))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same', name='conv_2'))
model.add(MaxPooling2D((2, 2), name='maxpool_2'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='conv_3'))
model.add(MaxPooling2D((2, 2), name='maxpool_3'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='conv_4'))
model.add(MaxPooling2D((2, 2), name='maxpool_4'))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(512, activation='relu', name='dense_1'))
model.add(Dense(128, activation='relu', name='dense_2'))
model.add(Dense(1, activation='sigmoid', name='output'))
```
Dropout

No Dropout

With Dropout

Model Performance

Train Loss: 0.054, Val Loss: 1.345

Starts Overfitting

Train Accuracy: 0.981, Val Accuracy: 0.732

Visual Recognition
Image Classification
IS THIS A CAT or DOG?

DEEP NEURAL NETWORK

OUTPUT LAYER

ACTIVATED NEURONS

INPUT LAYER

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
Convolutional Neural Networks

(CNNs / ConvNets)

http://cs231n.github.io/convolutional-networks/
A regular 3-layer Neural Network

http://cs231n.github.io/convolutional-networks/
A ConvNet arranges its neurons in three dimensions (width, height, depth)

http://cs231n.github.io/convolutional-networks/
The activations of an example ConvNet architecture.
ConvNets

32x32x3 CIFAR-10 image

first Convolutional layer

http://cs231n.github.io/convolutional-networks/
ConvNets

http://cs231n.github.io/convolutional-networks/
Convolution Demo

<table>
<thead>
<tr>
<th>Input Volume (+pad 1) (7x7x3)</th>
<th>Filter W0 (3x3x3)</th>
<th>Filter W1 (3x3x3)</th>
<th>Output Volume (3x3x2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x[:, :, 0]]</td>
<td>[w0[:, :, 0]]</td>
<td>[w1[:, :, 0]]</td>
<td>[o[:, :, 0]]</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td>-1 -1 0</td>
<td>1 1 0</td>
<td>6 3 6</td>
</tr>
<tr>
<td>0 1 2 0 2 1 0</td>
<td>1 1 1</td>
<td>0 1 1</td>
<td>7 -1 -2</td>
</tr>
<tr>
<td>0 2 2 2 1 1 0</td>
<td>-1 0 1</td>
<td>0 -1 1</td>
<td>2 3 -2</td>
</tr>
<tr>
<td>0 2 2 2 0 1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2 2 2 1 2 1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2 1 2 0 1 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[x[:, :, 1]]</td>
<td>[w0[:, :, 1]]</td>
<td>[w1[:, :, 1]]</td>
<td>[o[:, :, 1]]</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td>0 0 1</td>
<td>-1 1 0</td>
<td>7 -1 -3</td>
</tr>
<tr>
<td>0 0 2 2 1 2 0</td>
<td>0 1 0</td>
<td>-1 -1 1</td>
<td>4 3 2</td>
</tr>
<tr>
<td>0 1 2 0 0 2 0</td>
<td>-1 0 -1</td>
<td>0 0 0</td>
<td>-1 0 -1</td>
</tr>
<tr>
<td>0 0 1 2 1 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2 2 2 2 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2 2 2 0 2 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[x[:, :, 2]]</td>
<td>[w0[:, :, 2]]</td>
<td>[w1[:, :, 2]]</td>
<td>[b0[:, :, 0]]</td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td>-1 -1 0</td>
<td>1 0 -1</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0 0 1 0 0</td>
<td>1 0 -1</td>
<td>0 0 -1</td>
<td></td>
</tr>
<tr>
<td>0 0 2 0 0 0 0 0</td>
<td>-1 0 -1</td>
<td>1 0 1</td>
<td></td>
</tr>
<tr>
<td>0 0 0 1 1 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 2 2 2 1 2 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 2 0 0 2 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0 0 0 0 0 0 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://cs231n.github.io/convolutional-networks/
ConvNets

Input volume of size \([224 \times 224 \times 64]\) is pooled with filter size 2, stride 2 into output volume of size \([112 \times 112 \times 64]\)

http://cs231n.github.io/convolutional-networks/
ConvNets
max pooling

Single depth slice

1 1 2 4
5 6 7 8
3 2 1 0
1 2 3 4

max pool with 2x2 filters and stride 2

6 8
3 4

http://cs231n.github.io/convolutional-networks/
Convolutional Neural Networks (CNN) (LeNet)

Source: http://deeplearning.net/tutorial/lenet.html
Recurrent Neural Networks (RNN)
Recurrent Neural Networks (RNN)
Recurrent Neural Networks (RNN)
Time Series Forecasting

Input

100

X_{t-2}

X_{t-1}

X_t

X_{t+1}

X_{t+2}

Hidden

h_{t-2}

h_{t-1}

h_t

h_{t+1}

h_{t+2}

Output

y_{t-2}

y_{t-1}

y_t

y_{t+1}

y_{t+2}
Recurrent Neural Networks (RNN)

\[X_t - X_{t-1} \quad X_t - X_{t-2} \quad X_{t+2} \]

\[h_t - h_{t-1} \quad h_t - h_{t-2} \quad h_{t+2} \]

\[y \]

Input: \(X_{t-2} \quad X_{t-1} \quad X_t \quad X_{t+1} \quad X_{t+2} \)

Hidden: \(h_{t-2} \quad h_{t-1} \quad h_t \quad h_{t+1} \quad h_{t+2} \)

Output: \(y \)
Recurrent Neural Networks (RNN) Sentiment Analysis

This movie is very good

Input X_{t-2} X_{t-1} X_t X_{t+1} X_{t+2}

hidden h_{t-2} h_{t-1} h_t h_{t+1} h_{t+2}

output y

Diagram showing the flow of information through hidden and input states in an RNN for sentiment analysis.
Recurrent Neural Networks (RNN)
Sentiment Analysis

This movie is very boring

Input: X_{t-2}, X_{t-1}, X_{t}, X_{t+1}, X_{t+2}

Hidden: h_{t-2}, h_{t-1}, h_{t}, h_{t+1}, h_{t+2}

Output: y
Recurrent Neural Network (RNN)

Course Description

Natural language processing (NLP) is one of the most important technologies of the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate most everything in language: web search, advertisement, emails, customer service, language translation, radiology reports, etc. There are a large variety of underlying tasks and machine learning models powering NLP applications. Recently, deep learning approaches have obtained very high performance across many different NLP tasks. These models can often be trained with a single end-to-end model and do not require traditional, task-specific feature engineering. In this spring quarter course students will learn to implement, train, debug, visualize and invent their own neural network models. The course provides a deep excursion into cutting-edge research in deep learning applied to NLP. The final project will involve training a complex recurrent neural network and applying it to a large scale NLP problem. On the model side we will cover word vector representations,
Recurrent Neural Networks (RNNs)
RNN

I grew up in France... I speak fluent French.

Vanishing Gradient
Exploding Gradient

Recurrent Neural Networks (RNN)
RNN

Vanishing Gradient problem
Exploding Gradient problem

If $|W| < 1$ (Vanishing)
If $|W| > 1$ (Exploding)

RNN
Vanishing Gradient problem

W = 0.9 < 1 (Vanishing)

RNN
Exploding Gradient problem

\[W = 1.1 > 1 \text{ (Exploding)} \]

RNN LSTM

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU)

LSTM

Inputs:
- X_t: Input vector
- C_{t-1}: Memory from previous block
- h_{t-1}: Output of previous block

Outputs:
- C_t: Memory from current block
- h_t: Output of current block

Nonlinearities:
- σ: Sigmoid
- tanh: Hyperbolic tangent

Vector operations:
- \times: Element-wise multiplication
- $+$: Element-wise summation / Concatenation

LSTM vs GRU

LSTM

i, f and o are the input, forget and output gates, respectively. c and c˜ denote the memory cell and the new memory cell content.

GRU

r and z are the reset and update gates, and h and h˜ are the activation and the candidate activation.

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM)

\[C_{t-1} \xrightarrow{f_t} C_t \xrightarrow{h_t} \]

\[h_{t-1} \xrightarrow{i_t} \tilde{C}_t \xrightarrow{o_t} h_t \]

\[x_t \xrightarrow{\sigma} \sigma \]

\[\xrightarrow{\sigma} \sigma \]

\[\xrightarrow{\text{tanh}} \]

\[\xrightarrow{\sigma} \]

\[\xrightarrow{\text{tanh}} \]

LSTM
Memory state (C)
LSTM

forget gate (f)

\[
f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f)
\]

LSTM

input gate (i)

\[
i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)\\
\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)
\]

LSTM

Memory state \((C)\)

\[
C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t
\]

LSTM

output gate (o)

\[
o_t = \sigma (W_o \ [h_{t-1}, x_t] + b_o)
\]

\[
h_t = o_t \times \tanh(C_t)
\]

LSTM

forget (f), input (i), output (o) gates

\[
f_t = \sigma \left(W_f \cdot \left[C_{t-1}, h_{t-1}, x_t \right] + b_f \right)
\]
\[
i_t = \sigma \left(W_i \cdot \left[C_{t-1}, h_{t-1}, x_t \right] + b_i \right)
\]
\[
o_t = \sigma \left(W_o \cdot \left[C_t, h_{t-1}, x_t \right] + b_o \right)
\]

Gated Recurrent Unit (GRU)

update (z), reset (r) gates

\[z_t = \sigma (W_z \cdot [h_{t-1}, x_t]) \]
\[r_t = \sigma (W_r \cdot [h_{t-1}, x_t]) \]
\[\tilde{h}_t = \tanh (W \cdot [r_t \ast h_{t-1}, x_t]) \]
\[h_t = (1 - z_t) \ast h_{t-1} + z_t \ast \tilde{h}_t \]
LSTM Recurrent Neural Network

- **Traditional Neural Network**
- **Music Generation**
- **Sentiment Classification**
- **Name Entity Recognition**
- **Machine Translation**

Source: https://github.com/Vict0rSch/deep_learning/tree/master/keras/recurrent
Long Short Term Memory (LSTM) for Time Series Forecasting
The Sequence to Sequence model (seq2seq)
Sequence to Sequence (Seq2Seq)

Encoder

$e_0 \rightarrow e_1 \rightarrow e_2 \rightarrow e_3 \rightarrow e_4 \rightarrow e_5 \rightarrow e_6$

Attention

Decoder

$d_0 \rightarrow d_1 \rightarrow d_2 \rightarrow d_3$

Knowledge is power

Source: https://google.github.io/seq2seq/
Transformer (Attention is All You Need)
(Vaswani et al., 2017)
Transformer

Transformer Encoder Decoder

Transformer
Encoder Decoder Stack

INPUT: je suis étudiant

OUTPUT: I am a student

Transformer
Decoder

Transformer
Encoder with Tensors
Word Embeddings

Transformer
Positional Encoding Vectors

Transformer
Self-Attention Softmax Output

Input
Embedding
Queries
Keys
Values
Score
Divide by $8 (\sqrt{d_k})$
Softmax
Softmax X
Value
Sum

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT (Bidirectional Encoder Representations from Transformers)

Overall pre-training and fine-tuning procedures for BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT (Bidirectional Encoder Representations from Transformers)

BERT input representation

BERT, OpenAI GPT, ELMo

Fine-tuning BERT on Different Tasks

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

(b) Single Sentence Classification Tasks: SST-2, CoLA

(c) Question Answering Tasks: SQuAD v1.1

(d) Single Sentence Tagging Tasks: CoNLL-2003 NER

Illustrated BERT

1 - **Semi-supervised** training on large amounts of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp patterns in language. By the end of the training process, BERT has language-processing abilities capable of empowering many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

Model: BERT

Dataset:
- Books
- Wikipedia

Objective: Predict the masked word (language modeling)

2 - **Supervised** training on a specific task with a labeled dataset.

Supervised Learning Step

Model: (pre-trained in step #1)

Classifier

<table>
<thead>
<tr>
<th>Email message</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buy these pills</td>
<td>Spam</td>
</tr>
<tr>
<td>Win cash prizes</td>
<td>Spam</td>
</tr>
<tr>
<td>Dear Mr. Atreides, please find attached...</td>
<td>Not Spam</td>
</tr>
</tbody>
</table>

Source: Jay Alammar (2019), The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning),
http://jalammar.github.io/illustrated-bert/
BERT Encoder Input

Source: Jay Alammar (2019), The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning),
http://jalammar.github.io/illustrated-bert/
BERT Classifier

85% Spam
15% Not Spam

85% Spam
15% Not Spam

Classifier
(Feed-forward neural network + softmax)

Source: Jay Alammar (2019), The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning),
http://jalammar.github.io/illustrated-bert/
Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

Source: https://www.youtube.com/watch?v=bxerT-V8XR8&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZlgZRa1PoU
The Neuron

\[x_1 \rightarrow w_1 \rightarrow y \]
\[x_2 \rightarrow w_2 \rightarrow y \]
\[\vdots \]
\[x_n \rightarrow w_n \rightarrow y \]
The Neuron

\[y = F \left(\sum_i w_i x_i \right) \]

\[F(x) = \max(0, x) \]
\[y = \max(0, -0.21 \times x_1 + 0.3 \times x_2 + 0.7 \times x_3) \]
Neural Networks
Neural Networks

Input Layer \((X)\)
Hidden Layer \((H)\)
Output Layer \((Y)\)

Source: https://www.youtube.com/watch?v=bxetV8XR&index=1&list=PLiaHhY2lBX9hdHaRr6b7XevZtgZRa1PoU
Neural Networks

Input Layer (X)

Hidden Layers (H)

Output Layer (Y)

Deep Neural Networks
Deep Learning

Source: https://www.youtube.com/watch?v=bxetV8XRc&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

Source: https://www.youtube.com/watch?v=bx2T-V8XR&index=1&list=PLiaHhY2iBX9hdHaR6b7XevZtgZRa1PoU
Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

Score

Hours
Sleep

Hours
Study
Neural Networks

Input Layer (X)

Hidden Layer (H)

Output Layer (Y)

Source: https://www.youtube.com/watch?v=P2HPcj8lRJE&list=PLjJh1vlSEYqvGod9wWiydumYl8hOXixNu&index=2
Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

Source: https://www.youtube.com/watch?v=bx2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hours Sleep</td>
<td>Hours Study</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>93</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>?</td>
</tr>
<tr>
<td>Hours</td>
<td>Hours</td>
<td>Score</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Sleep</td>
<td>Study</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>93</td>
</tr>
<tr>
<td>Testing</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

Source: https://www.youtube.com/watch?v=bxetV8XR6s&index=1&list=PLiaHhY2iBX9hdHatr6b7XevZtgZRa1PoU
\(Y = W X + b \)
Output

\[Y = W X + b \]

Weights

Trained

bias

Source: https://www.youtube.com/watch?v=G8eNWzOggE
\(W \mathbf{X} + b = \mathbf{Y} \)

Scores \(\to \) Probabilities

Source: https://www.youtube.com/watch?v=G8eNWzxOgqE
SoftMAX

\[WX + b = Y \]

Logits	Scores	Probabilities
2.0 | | 0.7
1.0 | | 0.2
0.1 | | 0.1

\[S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} \]
\[S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} = \frac{e^{2.0}}{e^{2.0} + e^{1.0} + e^{0.1}} = \frac{2.7182^{2.0}}{2.7182^{2.0} + 2.7182^{1.0} + 2.7182^{0.1}} = 0.7 \]

\[S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} = \frac{e^{1.0}}{e^{2.0} + e^{1.0} + e^{0.1}} = \frac{2.7182^{1.0}}{2.7182^{2.0} + 2.7182^{1.0} + 2.7182^{0.1}} = 0.2 \]

\[S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} = \frac{e^{0.1}}{e^{2.0} + e^{1.0} + e^{0.1}} = \frac{2.7182^{0.1}}{2.7182^{2.0} + 2.7182^{1.0} + 2.7182^{0.1}} = 0.1 \]

\[W \times X + b = Y \]

Logits \[\begin{bmatrix} 2.0 \\ 1.0 \\ 0.1 \end{bmatrix} \] Scores \[S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} \] Probabilities \[\begin{bmatrix} 0.7 \\ 0.2 \\ 0.1 \end{bmatrix} \]

Source: https://www.youtube.com/watch?v=G8eNWzxOgqE
Training a Network

= Minimize the Cost Function
Training a Network

= Minimize the Cost Function

Minimize the Loss Function

Source: https://www.youtube.com/watch?v=bxet-V8XR9s&index=1&list=PLiaHhY2iBX9hdHaaR6b7XevZrgZRa1P0U
Error = Predict Y - Actual Y

Error : Cost : Loss
Error = Predict Y - Actual Y

Error : Cost : Loss
Error = Predict Y - Actual Y

Error : Cost : Loss

Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRtr6b7XevZtgZRa1PoU
Activation Functions
Activation Functions

Sigmoid

\[f(x) = \frac{1}{1 + e^{-x}} \]

Domain: \([0, 1]\)

TanH

\[f(x) = \tanh(x) \]

Domain: \([-1, 1]\)

ReLU

(Rectified Linear Unit)

\[f(x) = \max(0, x) \]

Activation Functions

Sigmoid

\[f(x) = \frac{1}{1 + e^{-x}} \]

TanH

\[\tanh(x) = \frac{2}{1 + e^{-2x}} - 1 \]

ReLU

\[f(x) = \begin{cases} 0 & \text{for } x < 0 \\ x & \text{for } x \geq 0 \end{cases} \]

Source: http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
Binary Classification: 2 Class

Activation Function: Sigmoid

Loss Function: Binary Cross-Entropy
Multiple Classification: 10 Class

Activation Function: SoftMAX

Loss Function: Categorical Cross-Entropy
Dropout

Dropout: a simple way to prevent neural networks from overfitting

(a) Standard Neural Net

(b) After applying dropout.

Learning Algorithm

While not done:

Pick a random training example “(input, label)”
Run neural network on “input”
Adjust weights on edges to make output closer to “label”

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
\[y = \text{max} (0, -0.21 * x_1 + 0.3 * x_2 + 0.7 * x_3) \]
Next time:

\[
y = \max (0, -0.23 \times x_1 + 0.31 \times x_2 + 0.65 \times x_3)
\]

\[
y = \max (0, -0.21 \times x_1 + 0.3 \times x_2 + 0.7 \times x_3)
\]

Weights
Optimizer: Stochastic Gradient Descent (SGD)
This shows a function of 2 variables: real neural nets are functions of hundreds of millions of variables!
Neural Network and Deep Learning

Source: 3Blue1Brown (2017), But what *is* a Neural Network? | Chapter 1, deep learning, https://www.youtube.com/watch?v=aircAruvnKk
Gradient Descent
how neural networks learn

Average cost of all training data...

\[\text{Cost of } 8 = \left(0.18 - 0.00\right)^2 + \left(0.29 - 0.00\right)^2 + \left(0.58 - 0.00\right)^2 + \left(0.77 - 0.00\right)^2 + \left(0.20 - 0.00\right)^2 + \left(0.36 - 0.00\right)^2 + \left(0.93 - 0.00\right)^2 + \left(1.00 - 0.00\right)^2 + \left(0.95 - 1.00\right)^2 + \left(0.35 - 0.00\right)^2 \]

What's the "cost" of this difference?

Source: 3Blue1Brown (2017), Gradient descent, how neural networks learn | Chapter 2, deep learning, https://www.youtube.com/watch?v=IHZwWFHWa-w
Backpropagation

Source: 3Blue1Brown (2017), What is backpropagation really doing? | Chapter 3, deep learning, https://www.youtube.com/watch?v=Ilg3gGewQ5U
Learning Algorithm

While not done:

Pick a random training example “(input, label)”
Run neural network on “input”
Adjust weights on edges to make output closer to “label”

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
Financial Time Series Forecasting
Time Series Data
Time Series Data

\[[100, 110, 120, 130, 140, 150] \]
Deep Learning with TensorFlow
Deep Learning Software

• TensorFlow
 – TensorFlow™ is an open source software library for high performance numerical computation.

• Keras
 – Deep Learning library for TensorFlow, CNTK

• PyTorch
 – An open source deep learning platform that provides a seamless path from research prototyping to production deployment.

• CNTK
 – Computational Network Toolkit by Microsoft Research

Source: http://deeplearning.net/software_links/
tf.keras

Keras:
High-level API for TensorFlow
Keras: The Python Deep Learning library

You have just found Keras.

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

Use Keras if you need a deep learning library that:

- Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility).
- Supports both convolutional networks and recurrent networks, as well as combinations of the two.
- Runs seamlessly on CPU and GPU.

Read the documentation at Keras.io.

Keras is compatible with: Python 2.7-3.6.

http://keras.io/
FROM RESEARCH TO PRODUCTION

An open source deep learning platform that provides a seamless path from research prototyping to production deployment.

Get Started ➤

KEY FEATURES & CAPABILITIES

http://pytorch.org/
• Keras is a high-level neural networks API
• Written in Python and capable of running on top of TensorFlow, CNTK, or Theano.
• It was developed with a focus on enabling fast experimentation.
• Being able to go from idea to result with the least possible delay is key to doing good research.

Source: https://keras.io/
TensorFlow

An end-to-end open source machine learning platform

The core open source library to help you develop and train ML models. Get started quickly by running Colab notebooks directly in your browser.

Get started with TensorFlow

https://www.tensorflow.org/
TensorFlow

• An end-to-end open source machine learning platform.

• The core open source library to help you develop and train ML models.

• Get started quickly by running Colab notebooks directly in your browser.

https://www.tensorflow.org/
```python
import tensorflow as tf
mnist = tf.keras.datasets.mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([tf.keras.layers.Flatten(input_shape=(28, 28)),
                                      tf.keras.layers.Dense(128, activation='relu'),
                                      tf.keras.layers.Dropout(0.2),
                                      tf.keras.layers.Dense(10, activation='softmax')])

model.compile(optimizer='adam',
               loss='sparse_categorical_crossentropy',
               metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
```

https://www.tensorflow.org/overview/
TensorFlow 2 quickstart for beginners

This short introduction uses Keras to:

1. Build a neural network that classifies images.
2. Train this neural network.
3. And, finally, evaluate the accuracy of the model.

This is a Google Colaboratory notebook file. Python programs are run directly in the browser—a great way to learn and use TensorFlow. To follow this tutorial, run the notebook in Google Colab by clicking the button at the top of this page.

1. In Colab, connect to a Python runtime: At the top-right of the menu bar, select CONNECT.
2. Run all the notebook code cells: Select Runtime > Run all.

Download and install the TensorFlow 2 package. Import TensorFlow into your program:

```python
from __future__ import absolute_import, division, print_function, unicode_literals

# Install TensorFlow
try:
    # `tensorflow_version` only exists in Colab.
    %tensorflow_version 2.x
except Exception:
    pass
```

Time series forecasting

This tutorial is an introduction to time series forecasting using Recurrent Neural Networks (RNNs). This is covered in two parts: first, you will forecast a univariate time series, then you will forecast a multivariate time series.

```python
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd

mpl.rcParams['figure.figsize'] = (8, 6)
mpl.rcParams['axes.grid'] = False
```
TensorFlow Playground

Tinker With a Neural Network Right Here in Your Browser. Don’t Worry, You Can’t Break It. We Promise.

http://playground.tensorflow.org/
TensorFlow is an Open Source Software Library for Machine Intelligence

https://www.tensorflow.org/
Tensor

• 3
 – # a rank 0 tensor; this is a **scalar** with shape []
• [1., 2., 3.]
 – # a rank 1 tensor; this is a **vector** with shape [3]
• [[1., 2., 3.], [4., 5., 6.]]
 – # a rank 2 tensor; a **matrix** with shape [2, 3]
• [[[1., 2., 3.], [[7., 8., 9.]]]
 – # a rank 3 **tensor** with shape [2, 1, 3]

https://www.tensorflow.org/
Scalar

Vector

Matrix

Tensor
TensorFlow
TensorBoard

Main Graph

Auxiliary nodes

https://www.tensorflow.org/tensorboard/index.html#graphs
Deep Learning for Financial Application Forecasting
Deep Learning for Financial Market Prediction

Stock Market Prediction

Stock Price Prediction

Time Series Prediction
df['Adj Close'].plot(legend=True, figsize=(12, 8), title='AAPL', label='Adj Close')

AAPL

140
130
120
110
100
90

2015-06 2015-09 2015-12 2016-03 2016-06 2016-09 2016-12 2017-03

Source: https://mapattack.wordpress.com/2017/02/12/using-python-for-stocks-1/
Time Series Data

\[\{100, 110, 120, 130, 140, 150\}\]
Long Short Term Memory (LSTM) for Time Series Forecasting
Time Series Data

\[[10, 20, 30, 40, 50, 60, 70, 80, 90] \]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10 20 30]</td>
<td>40</td>
</tr>
<tr>
<td>[20 30 40]</td>
<td>50</td>
</tr>
<tr>
<td>[30 40 50]</td>
<td>60</td>
</tr>
<tr>
<td>[40 50 60]</td>
<td>70</td>
</tr>
<tr>
<td>[50 60 70]</td>
<td>80</td>
</tr>
<tr>
<td>[60 70 80]</td>
<td>90</td>
</tr>
</tbody>
</table>
Deep Learning for Financial Time Series Forecasting

https://colab.research.google.com/drive/1aEK0eSev8Q-Y0nNY32geFk7CB8pVgSQM

```python
# univariate data preparation
from numpy import array
# split a univariate sequence into samples
def split_sequence(sequence, n_steps):
    X, y = list(), list()
    for i in range(len(sequence)):
        # find the end of this pattern
        end_ix = i + n_steps
        # check if we are beyond the sequence
        if end_ix > len(sequence)-1:
            break
        # gather input and output parts of the pattern
        seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
        X.append(seq_x)
        y.append(seq_y)
    return array(X), array(y)
# define input sequence
raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]
# choose a number of time steps
n_steps = 3
# split into samples
X, y = split_sequence(raw_seq, n_steps)
# summarize the data
for i in range(len(X)):
    print(X[i], y[i])
```

Source: https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
Deep Learning for Financial Time Series Forecasting

https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/

```python
# univariate lstm example
from numpy import array
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
import matplotlib.pyplot as plt
%matplotlib inline

# define dataset
X = array([[100, 110, 120], [110, 120, 130], [120, 130, 140], [130, 140, 150], [140, 150, 160]])
y = array([130, 140, 150, 160, 170])
# reshape from [samples, timesteps] into [samples, timesteps, features]
X = X.reshape((X.shape[0], X.shape[1], 1))

# define model
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(3, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

# fit model
history = model.fit(X, y, epochs=2000, verbose=0)

# demonstrate prediction
x_input = array([150, 160, 170])
x_input = x_input.reshape((1, 3, 1))
yhat = model.predict(x_input, verbose=0)
print('yhat:', yhat)
print(model.summary())
# list all data in history
print(history.history.keys())
# summarize history for loss
print('loss:', history.history['loss'][-1])
plt.plot(history.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

yhat [[181.34615]]
```

Source: https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
Deep Learning for Financial Time Series Forecasting

https://colab.research.google.com/drive/1aEK0eSev8Q-Y0nNY32geFk7CB8pVgSQM

```python
# univariate lstm example
from numpy import array
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
import matplotlib.pyplot as plt

# split a univariate sequence into samples
def split_sequence(sequence, n_steps):
    X, y = list(), list()
    for i in range(len(sequence)):
        # find the end of this pattern
        end_ix = i + n_steps
        # check if we are beyond the sequence
        if end_ix > len(sequence)-1:
            break
        # gather input and output parts of the pattern
        seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
        X.append(seq_x)
        y.append(seq_y)
    return array(X), array(y)

# define input sequence
raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]
# choose a number of time steps
n_steps = 3
# split into samples
X, y = split_sequence(raw_seq, n_steps)
# reshape from [samples, timesteps] into [samples, timesteps, features]
n_features = 1
X = X.reshape((X.shape[0], X.shape[1], n_features))
# define model
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
# fit model
history = model.fit(X, y, epochs=500, verbose=0)
# demonstrate prediction
x_input = array([70, 80, 90])
x_input = x_input.reshape((1, n_steps, n_features))
yhat = model.predict(x_input, verbose=0)
print(yhat)
print('yhat', yhat)
print(model.summary())
```

Source: https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
Deep Learning for Financial Time Series Forecasting

https://colab.research.google.com/drive/1aEK0eSev8Q-Y0nNY32geFk7CB8pVgSQM

Using TensorFlow backend.

<table>
<thead>
<tr>
<th>Layer (type)</th>
<th>Output Shape</th>
<th>Param #</th>
</tr>
</thead>
<tbody>
<tr>
<td>lstm_1 (LSTM)</td>
<td>(None, 50)</td>
<td>10400</td>
</tr>
<tr>
<td>dense_1 (Dense)</td>
<td>(None, 1)</td>
<td>51</td>
</tr>
</tbody>
</table>

Total params: 10,451
Trainable params: 10,451
Non-trainable params: 0

None
dict_keys(['loss'])
loss: 0.000000
loss: 1.2578432517784677e-07
Deep Learning for Financial Time Series Forecasting

https://colab.research.google.com/drive/1aEK0eSev8Q-Y0nNY32geFk7CB8pVgSQM

Source: https://github.com/yash-1337/AAPL_LSTM_Stock_Predictor/blob/master/AAPL_daily_LSTM_stock_predictor.ipynb
Basic Classification

Fashion MNIST Image Classification

https://colab.research.google.com/drive/19PJOJi1vn1kjcutlzNHjRSLbeVI4kd5z

Copyright 2018 The TensorFlow Authors.

Licensed under the Apache License, Version 2.0 (the "License");

MIT License

Train your first neural network: basic classification

Import the Fashion MNIST dataset

Explore the data

Preprocess the data

Build the model

Setup the layers

Compile the model

Train the model

Evaluate accuracy

Make predictions

This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details, this is a fast-paced overview of a complete TensorFlow program with the details explained as we go.

This guide uses tf.keras, a high-level API to build and train models in TensorFlow.

```python
# memory footprint support libraries/code
ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
!pip install gputil
!pip install putil
!pip install humanize
import psutil
import humanize
import os
import GPUtil as GPU
GPUs = GPU.getGPUs()
gpu = GPUs[0]
def printm():
    process = putil.Process(os.getpid())
    print("Gen RAM Free: " + humanize.naturalsize( putil.virtual_memory().available ), " | Pro
    print("GPU RAM Free: (0:0.0f)MB | Used: {1:.0f}MB | Util {2:.0f}% | Total {3:.0f}MB".format
    printm()
```
Text Classification

IMDB Movie Reviews

https://colab.research.google.com/drive/1x16h1GhHsLrLYtPCvCHaoO1W-i_gror

Copyright 2018 The TensorFlow Authors.

Licensed under the Apache License, Version 2.0 (the "License");
MIT License

Text classification with movie reviews

Download the IMDB dataset
Explore the data
Convert the integers back to words
Prepare the data
Build the model
Hidden units
Loss function and optimizer
Create a validation set
Train the model
Evaluate the model

View on TensorFlow.org Run in Google Colab View source on GitHub

This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—classification, an important and widely applicable kind of machine learning problem.

We'll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Database. These are split into 25,000 reviews for training and 25,000 reviews for testing. The training and testing sets are balanced, meaning they contain an equal number of positive and negative reviews.

This notebook uses tf.keras, a high-level API to build and train models in TensorFlow. For a more advanced text classification tutorial using tf.keras, see the MLCC Text Classification Guide.

```python
# memory footprint support libraries/code
!ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
!pip install gputil
!pip install psutil
!pip install humanize
import psutil
import humanize
import os
import GPUtil as GPU
GPUs = GPU.getGPUs()
gpu = GPUs[0]
def printm():
    print(f'process = psutil.Process(os.getpid())')
```
Basic Regression
Predict House Prices

https://colab.research.google.com/drive/1v4c8ZHTnRtgld2_25K_AURjR6SCVBRdlj

In a regression problem, we aim to predict the output of a continuous value, like a price or a probability. Contrast this with a classification problem, where we aim to predict a discrete label (for example, where a picture contains an apple or an orange).

This notebook builds a model to predict the median price of homes in a Boston suburb during the mid-1970s. To do this, we'll provide the model with some data points about the suburb, such as the crime rate and the local property tax rate.

This example uses the tf.keras API, see this guide for details.

```python
1  # memory footprint support libraries/code
2  !ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
3  !pip install gputil
4  !pip install psutil
5  !pip install humanize
6  import psutil
7  import humanize
8  import os
9  import GPUtil as GPU
10  GPUs = GPU.getGPUs()
11  gpu = GPUs[0]
12  def printm():
13     process = psutil.Process(os.getpid())
14     print("Gen RAM Free: " + humanize.naturalsize( process.virtual_memory().available ), " | Proc size: ", process.info.vm_size_bytes / 1024 / 1024, "MB")
15     print("GPU RAM Free: {0:.1f}MB | Used: {1:.1f}MB | Util {2:.1f}% | Total {3:.1f}MB".format(gpu.memory.free / 1024 / 1024, gpu.memory.used / 1024 / 1024, gpu.memory.utilization, gpu.memory.total / 1024 / 1024))
```
!pip install pandas_datareader
import numpy as np
import pandas as pd
import pandas_datareader.data as web
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt
import matplotlib inline

Read Stock Data from Yahoo Finance
end = dt.datetime.now()
start = dt.datetime(end.year-2, end.month, end.day)
start = dt.datetime(2018, 1, 1)
df = web.DataReader("^TWII", 'yahoo', start, end) #^TWII #2330.TW #^DJI #AAPL
df.to_csv('TWII.csv')
print(df.head())
print(df.tail())
df2 = pd.read_csv('TWII.csv')
df.from_csv('AAPL.csv')
print(df2.tail())

df['Adj Close'].plot(legend=True, figsize=(12, 8), title='TWII', label='Adj Close')
plt.figure(figsize=(12,9))
top = plt.subplot2grid((12,9), (0, 0), rowspan=10, colspan=9)
bottom = plt.subplot2grid((12,9), (10,0), rowspan=2, colspan=9)
top.plot(df.index, df['Adj Close'], color='blue') # df.index gives the dates
bottom.bar(df.index, df['Volume'])

set the labels
top.axes.get_xaxis().set_visible(False)
top.set_title('TWII')
top.set_ylabel('Adj Close')
bottom.set_ylabel('Volume')
np.where
(df['MA20'] > df['MA60'], 12000, 9000)

simple moving averages
df['MA05'] = df['Adj Close'].rolling(5).mean() # 5 days
df['MA20'] = df['Adj Close'].rolling(20).mean() # 20 days
df['MA60'] = df['Adj Close'].rolling(60).mean() # 60 days
df['Positions'] = np.where(df['MA20'] > df['MA60'], 12000, 9000)
df2 = pd.DataFrame({'Adj Close': df['Adj Close'], 'MA05': df['MA05'], 'MA20': df['MA20'], 'MA60': df['MA60'], 'Positions': df['Positions']})
df2.plot(figsize=(12, 9), legend=True, title='AAPL', secondary_y='Positions').legend(bbox_to_anchor=(1.2, 0.5))
np.where
(df['MA20'] > df['MA60'], 1, 0)

simple moving averages
df['MA05'] = df['Adj Close'].rolling(5).mean() # 5 days
df['MA20'] = df['Adj Close'].rolling(20).mean() # 20 days
df['MA60'] = df['Adj Close'].rolling(60).mean() # 60 days

df['Positions'] = np.where(df['MA20'] > df['MA60'], 1, 0)
df2 = pd.DataFrame({'Adj Close': df['Adj Close'], 'MA05': df['MA05'], 'MA20': df['MA20'], 'MA60': df['MA60'], 'Positions': df['Positions']})
Yves Hilpisch (2018),
Python for Finance: Mastering Data-Driven Finance,
O'Reilly

https://github.com/yhilpisch/py4fi2nd

Source: https://www.amazon.com/Python-Finance-Mastering-Data-Driven/dp/1492024333
Aurélien Géron (2019),
O’Reilly Media, 2019

https://github.com/ageron/handson-ml2

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

https://github.com/ageron/handson-ml2
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Notebooks
1. The Machine Learning landscape
2. End-to-end Machine Learning project
3. Classification
4. Training Models
5. Support Vector Machines
6. Decision Trees
7. Ensemble Learning and Random Forests
8. Dimensionality Reduction
9. Unsupervised Learning Techniques
10. Artificial Neural Nets with Keras
11. Training Deep Neural Networks
12. Custom Models and Training with TensorFlow
13. Loading and Preprocessing Data
14. Deep Computer Vision Using Convolutional Neural Networks
15. Processing Sequences Using RNNs and CNNs
16. Natural Language Processing with RNNs and Attention
17. Representation Learning Using Autoencoders
18. Reinforcement Learning
19. Training and Deploying TensorFlow Models at Scale

https://github.com/ageron/handson-ml2
Papers with Code
Stock Market Prediction

Leaderboards
No evaluation results yet. Help compare methods by submit evaluation metrics.

Subtasks

- Stock Price Prediction
 - 3 papers with code

- Stock Trend Prediction
 - 2 papers with code

- Stock Prediction
 - 1 papers with code

https://paperswithcode.com/task/stock-market-prediction
The Quant Finance PyData Stack

PyThalesians
Zipline
DX Analytics
PyAlgoTrade
QuantLib

Quantopian

StatsModels
Statistics in Python

scikit-learn

matplotlib
pandas

SciPy

NumPy
Python

IPython

Python

Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#5

Jake VanderPlas
Summary

• Deep Learning for Financial Application with TensorFlow
 – Deep Learning
 – Financial Application
 – TensorFlow
References

- Ties de Kok (2017), Learn Python for Research, https://github.com/TiesdeKok/LearnPythonforResearch
- Data School (2015), Machine learning in Python with scikit-learn, https://www.youtube.com/playlist?list=PL5da3qGB5iCeMbQuqbbCOQWcS6OYBr5A
- Deep Learning Basics: Neural Networks Demystified, https://www.youtube.com/playlist?list=PLlIAHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
- Deep Learning SIMPLIFIED, https://www.youtube.com/playlist?list=PLjJh1vIseyGvG0d9wWiydumYl8hOXixNu
- 3Blue1Brown (2017), But what *is* a Neural Network? | Chapter 1, deep learning, https://www.youtube.com/watch?v=aircAruvnKk
- 3Blue1Brown (2017), Gradient descent, how neural networks learn | Chapter 2, deep learning, https://www.youtube.com/watch?v=iHzwWFHwaw
- 3Blue1Brown (2017), What is backpropagation really doing? | Chapter 3, deep learning, https://www.youtube.com/watch?v=Ilg3gGewQ5U
- Jay Alammar (2019), The Illustrated BERT, ELMo, and co. (How NLP Cracked Transfer Learning), http://jalammar.github.io/illustrated-bert/
- TensorFlow: https://www.tensorflow.org/
- Keras: http://keras.io/
- Udacity, Deep Learning, https://www.youtube.com/playlist?list=PLAwxTw4SYaPn_OWPFT9ulXLuQrlmzHfOV
- https://github.com/leriomaggio/deep-learning-keras-tensorflow