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Course Schedule (1/2)

Week    Date    Subject/Topics
1   2018/09/10   Course Orientation for Big Data Mining
2   2018/09/17   ABC: AI, Big Data, Cloud Computing
3   2018/09/24   Mid-Autumn Festival (Day off)
4   2018/10/01   Data Science and Big Data Analytics: Discovering,

Analyzing, Visualizing and Presenting Data
5   2018/10/08   Fundamental Big Data: MapReduce Paradigm,

Hadoop and Spark Ecosystem
6   2018/10/15   Foundations of Big Data Mining in Python 
7   2018/10/22   Supervised Learning: Classification and Prediction 
8   2018/10/29   Unsupervised Learning: Cluster Analysis
9   2018/11/05   Unsupervised Learning: Association Analysis

2

Tamkang
University



Course Schedule (2/2)

Week    Date    Subject/Topics
10   2018/11/12   Midterm Project Report
11   2018/11/19   Machine Learning with Scikit-Learn in Python
12   2018/11/26   Deep Learning for Finance Big Data with 

TensorFlow
13   2018/12/03   Convolutional Neural Networks (CNN)
14   2018/12/10   Recurrent Neural Networks (RNN)
15   2018/12/17   Reinforcement Learning (RL)
16   2018/12/24   Social Network Analysis (SNA)
17   2018/12/31   Bridge Holiday (Extra Day Off) 
18   2019/01/07   Final Project Presentation
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Reinforcement 
Learning 

(RL)
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Outline
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• Reinforcement Learning (RL)
– Markov Decision Processes (MDP) 

• Deep Reinforcement Learning (DRL) Algorithms
– SARSA
–Q-Learning
–DQN
–A3C
–Rainbow

• Google Dopamine



AI, ML, DL

6Source: https://leonardoaraujosantos.gitbooks.io/artificial-inteligence/content/deep_learning.html
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Machine Learning (ML)
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Machine Learning (ML)

7Source: https://www.mactores.com/services/aws-big-data-machine-learning-cognitive-services/



Reinforcement Learning (RL)
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Engineering

Mathematics

Economics

Psychology

Neuroscience

Computer Science

Machine 
Learning

Reward 
System

Classical/Operant 
Conditioning

Bounded 
Rationality

Operations 
Research

Optimal
Control

Reinforcement 
Learning

Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Branches of Machine Learning (ML)
Reinforcement Learning (RL) 
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Unsupervised 
Learning

Machine 
Learning

Reinforcement 
Learning

Supervised 
Learning

• Labeled data
• Direct feedback
• Predict

• No Labels
• No feedback
• Find hidden structure

• Decision process
• Reward system
• Learn series of actions

Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



David Silver (2015), 
Introduction to reinforcement learning
• Elementary Reinforcement Learning
– 1: Introduction to Reinforcement Learning

– 2: Markov Decision Processes

– 3: Planning by Dynamic Programming

– 4: Model-Free Prediction

– 5: Model-Free Control

• Reinforcement Learning in Practice
– 6: Value Function Approximation

– 7: Policy Gradient Methods

– 8: Integrating Learning and Planning

– 9: Exploration and Exploitation

– 10: Case Study: RL in Classic Games
10Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Reinforcement Learning
AlphaZero (AZ) and AlphaGo Zero (AZ0)
• AlphaZero (Silver et al., 2018)
– A general reinforcement learning algorithm that 

masters chess, shogi, and Go through self-play. 
(Science)

• AlphaGo Zero (Silver et al., 2017)
– Mastering the game of Go without human 

knowledge (Nature)

11



AlphaZero: 
Shedding new light on the grand 

games of chess, shogi and Go

12
https://www.youtube.com/watch?v=7L2sUGcOgh0

https://www.youtube.com/watch?v=7L2sUGcOgh0


13

AlphaZero
A general reinforcement learning algorithm 

that masters chess, shogi, and Go through self-play

Source: David Silver et al. (2018), "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play." Science 362, 
no. 6419 (2018): 1140-1144.



AlphaZero’s search procedure

14
Source: David Silver et al. (2018), "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play." Science 362, 

no. 6419 (2018): 1140-1144.



Self-play reinforcement learning in 
AlphaGo Zero

15Source: David Silver et al. (2017), "Mastering the game of Go without human knowledge." Nature 550 (2017): 354–359.



Richard S. Sutton & Andrew G. Barto (2018), 
Reinforcement Learning: An Introduction, 

2nd Edition, A Bradford Book

16
Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262039249



Reinforcement learning 

• Reinforcement learning is 
learning what to do
—how to map situations to actions
—so as to maximize a numerical 
reward signal.

17Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.



Two most important distinguishing 
features of reinforcement learning

• trial-and-error search 
• delayed reward

18Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.



Reinforcement Learning (DL)

19Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

Agent

Environment



Reinforcement Learning (DL)

20Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
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Reinforcement Learning (DL)

21Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
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Agent and Environment

• At each step t the agent: 
– Executes action At
– Receives observation Ot

– Receives scalar reward Rt
• The environment: 
– Receives action At
– Emits observation Ot+1

– Emits scalar reward Rt+1
• t increments at env. step

22

Agent

Environment

action

reward

observation

At

Rt

Ot

Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



History and State

• The history is the sequence of observations, actions, rewards 
Ht = O1, A1, R1,...,At-1,Ot,Rt

• i.e. all observable variables up to time t
• i.e. the sensorimotor stream of a robot or embodied agent 
• What happens next depends on the history:

– The agent selects actions
– The environment selects observations/rewards

• State is the information used to determine what happens 
next 

• Formally, state is a function of the history:
St =f(Ht)

23Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Information State 
• An information state (a.k.a. Markov state) contains all 

useful information from the history.
• Definition

A state St is Markov if and only if
P[St+1 | St] = P[St+1 | S1,...,St]

• “The future is independent of the past given the present”
H1:t → St → Ht+1:∞

• Once the state is known, the history may be thrown away 
i.e. The state is a sufficient statistic of the future

• The environment state Ste is Markov
• The history Ht is Markov

24Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Fully Observable Environments
• Full observability: 
– agent directly observes 

environment state

– Agent state = 
environment state = 
information state 

– Formally, this is a 
Markov decision process 
(MDP)

25Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ
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Partially Observable Environments
• Partial observability: agent indirectly observes 

environment
– A robot with camera vision isn’t told its absolute location
– A trading agent only observes current prices
– A poker playing agent only observes public cards

• Now agent state ≠ environment state
• Formally this is a partially observable Markov decision 

process (POMDP)
• Agent must construct its own state representation Sa

t, e.g.
– Complete history: Sa

t = Ht

– Beliefs of environment state: Sa
t = (P[Se

t = s1],...,P[Se
t = sn])

– Recurrent neural network: Sa
t = σ(Sa

t-1 Ws + Ot Wo )
26Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Reinforcement Learning (DL)
The Agent-Environment Interaction
in a Markov Decision Process (MDP)

27Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
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Characteristics of 
Reinforcement Learning

• No supervisor, only a reward signal
• Feedback is delayed, not 

instantaneous
• Time really matters 

(sequential, non i.i.d data)
• Agent’s actions affect the 

subsequent data it receives

28Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Examples of Reinforcement Learning

• Make a humanoid robot walk

• Play may different Atari games better than 

humans

• Manage an investment portfolio

29Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Examples of Rewards

• Make a humanoid robot walk
– +ve reward for forward motion

– -ve reward for falling over

• Play may different Atari games better than 
humans
– +/-ve reward for increasing/decreasing score

• Manage an investment portfolio
– +ve reward for each $ in bank

30Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Sequential Decision Making
• Goal: select actions to maximize total future reward
• Actions may have long term consequence
• Reward may be delayed
• It may be better to sacrifice immediate reward to gain 

more long-term reward
• Examples:

– A financial investment (may take months to mature)
– Blocking opponent moves (might help winning chances 

many moves from now)

31Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Elements of Reinforcement Learning

• Agent

• Environment

• Policy

• Reward signal

• Value function

• Model

32Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.



Elements of Reinforcement Learning

• Policy
– Agent’s behavior
– It is a map from state to action

• Reward signal
– The goal of a reinforcement learning problem

• Value function
– How good is each state and/or action
– A prediction of future reward

• Model
– Agent’s representation of the environment

33Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.



Major Components of an RL Agent

1. Policy: agent’s behaviour function

2. Value function: how good is each state 

and/or action 

3. Model: agent’s representation of the 

environment

34Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Policy

• A policy is the agent’s behaviour

• It is a map from state to action, e.g.

–Deterministic policy: a = π(s)
– Stochastic policy: π(a|s) = P[At = a|St = s]

35Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Value Function

• Value function is a prediction of future reward 

• Used to evaluate the goodness/badness of 
states 

• And therefore to select between actions, e.g.

vπ(s)=Eπ [Rt+1+γRt+2+γ2Rt+3+...|St =s]

36Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Model

• A model predicts what the environment will 
do next 

• P predicts the next state
• R predicts the next (immediate) reward, e.g.

Pa
ss′ = P[St+1 =s′ |St+1=s, At=a] 

Ra
s = E[Rt+1 |St =s, At =a]

37Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Reinforcement Learning
• Value Based
– No Policy (Implicit)
– Value Function

• Policy Based
– Policy
– No Value Function

• Actor Critic
– Policy
– Value Function

38Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Reinforcement Learning
• Model Free

– Policy and/or Value Function

– No Model

• Model Based

– Policy and/or Value Function

– Model

39Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Reinforcement Learning (RL) 
Taxonomy 

40

Actor
Critic

Model

Policy-Based

PolicyValue Function

Model-Free

Value-Based
Model-Based

Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Learning and Planning
• Two fundamental problems in 

sequential decision making
– Reinforcement Learning
• The environment is initially unknown
• The agent interacts with environment
• The agent improves its policy

– Planning
• A model of the environment is known
• The agent performs computations with its model 

(without any external interaction)
• The agent improves its policy
• a.k.a deliberation, reasoning, introspection, pondering, 

thought, search

41Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Atari Example: 
Reinforcement Learning

• Rules of the game are 
unknown

• Learn directly from 
interactive game-play

• Pick actions on joystick, 
see pixels and scores

42Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Atari Example: 
Planning

• Rules of the game are known 
• Can query emulator
– perfect model inside agent’s 

brain 

• If I take action a from state s:
– what would the next state be? 
– what would the score be?

• Plan ahead to find optimal 
policy 
– e.g. tree search

43Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Exploration and Exploitation
• Reinforcement learning is like trial-and-error learning 
• The agent should discover a good policy
• From its experiences of the environment
• Without losing too much reward along the way
• Exploration finds more information about the 

environment
• Exploitation exploits known information to maximise

reward 
• It is usually important to explore as well as exploit

44Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Exploration and Exploitation
Examples

• Restaurant Selection
– Exploitation: Go to your favorite restaurant
– Exploration: Try a new restaurant Online Banner

• Advertisements
– Exploitation: Show the most successful advert
– Exploration: Show a different advert

• Oil Drilling
– Exploitation: Drill at the best known location
– Exploration: Drill at a new location 

• Game Playing
– Exploitation: Play the move you believe is best 
– Exploration: Play an experimental move

45Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Prediction and Control

• Prediction: evaluate the future 
–Given a policy

• Control: optimize the future 
–Find the best policy

46Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Markov Decision Processes (MDP) 
Example: Student MRP

47Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ



Generalized Policy Iteration (GPI)

48Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

evaluation

improvement

! V
! → greedy (V)

V → v!

v*!*



Generalized Policy Iteration (GPI)

49Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

Any iteration of policy evaluation and policy improvement, 
independent of their granularity.

evaluation

improvement

! �

! → greedy (�)

�→ q!



• Sarsa: On-policy TD Control 
• Q-learning: Off-policy TD Control

50

Temporal-Difference (TD) Learning

Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.



SARSA 
(state-action-reward-state-action)

On-policy TD Control

51Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

Q(St, At) ← Q(St, At) + α[Rt+1 + γ Q(St+1, At+1) - Q(St, At) ]

SARSA

S, A
R

S’

A’



Q-learning
Off-policy TD Control

Q(St, At) ← Q(St, At) + α[Rt+1 + γ max Q(St+1, a) - Q(St, At) ]

52

(Watkins, 1989)

Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

Q-learning

S, A
R

S’

A’



Q-learning and Expected SARSA

53Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
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Q-learning and Double Q-learning

54Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.



n-step methods for 
sate-action value

55Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.



Reinforcement Learning
Actor-Critic (AC) Architecture

56Source: https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html



Reinforcement Learning
Actor-Critic (AC) Learning Methods

57
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Reinforcement Learning Methods

58Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.



Monte Carlo Tree Search (MCTS)

59Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.



Monte Carlo Tree Search (MCTS)
MCTS in AlphaGo Zero

60Source: David Silver et al. (2017), "Mastering the game of Go without human knowledge." Nature 550 (2017): 354–359.



MCTS in AlphaGo Zero

61Source: David Silver et al. (2017), "Mastering the game of Go without human knowledge." Nature 550 (2017): 354–359.

a: Each simulation traverses the tree by selecting the edge with 

maximum action value Q, plus an upper confidence bound U 

that depends on a stored prior probability P and visit count N 

for that edge (which is incremented once traversed).



62Source: David Silver et al. (2017), "Mastering the game of Go without human knowledge." Nature 550 (2017): 354–359.

b: The leaf node is expanded and the associated position s is 

evaluated by the neural network (P(s, ·),V(s)) =   fθ(s); the vector 

of P values are stored in the outgoing edges from s.

MCTS in AlphaGo Zero



63Source: David Silver et al. (2017), "Mastering the game of Go without human knowledge." Nature 550 (2017): 354–359.

c: Action value Q is updated to track the mean of all evaluations 

V in the subtree below that action

MCTS in AlphaGo Zero



64Source: David Silver et al. (2017), "Mastering the game of Go without human knowledge." Nature 550 (2017): 354–359.

d: Once the search is complete, search probabilities π are 

returned, proportional to N1/τ, where N is the visit count of each 

move from the root state and τ is a parameter controlling 

temperature.

MCTS in AlphaGo Zero



Reinforcement Learning
Actor Critic ANN

65Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.



Reinforcement Learning
General Dyna Architecture

66Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
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Dyna: 
Integrated Planning, Acting, and Learning

67Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
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Model-Based RL

68Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

value/policy
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planning

model 
learning

acting



Model-Free RL
(DQN, A3C) 

69Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.
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Reinforcement Learning 
Algorithms

70Source: https://amitray.com/deep-learning-past-present-and-future-a-review/

Q-Learning

TD Learning Partially Observable MDP
(POMDP) Actor-Critic Methods

Deep Reinforcement Learning (DRL)

Dynamic Programming Markov Decision Process 
(MDP) Monte Carlo Method

Deep Q Network (DQN)

Double DQN Neural Fitted Q 
Learning

Deep Recurrent Q 
Network (DQRN) A3C Rainbow



Human-level control through 
deep reinforcement learning (DQN)

71
Source: Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex Graves et al. "Human-level control 
through deep reinforcement learning." Nature 518, no. 7540 (2015): 529.

Schematic illustration of the convolutional neural network



Deep Q-Network (DQN)

72Source: https://neuro.cs.ut.ee/demystifying-deep-reinforcement-learning/

State StateStateState Action

Q-value Q-value 1 Q-value 2 Q-value 3

Network Network



Reinforcement Learning 
with policy represented via DNN

73
Source: Hongzi Mao, Mohammad Alizadeh, Ishai Menache, and Srikanth Kandula. (2016) "Resource management with deep reinforcement learning." In 

Proceedings of the 15th ACM Workshop on Hot Topics in Networks, pp. 50-56. ACM, 2016.



Reinforcement Learning
Deep Q-Learning in FIFA 18

74Source: https://towardsdatascience.com/using-deep-q-learning-in-fifa-18-to-perfect-the-art-of-free-kicks-f2e4e979ee66



Asynchronous Advantage Actor-Critic 
(A3C)

75Source: https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2



Training workflow of each 
worker agent in A3C

76Source: https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-8-asynchronous-actor-critic-agents-a3c-c88f72a5e9f2



Reinforcement Learning
Example: PCMAN

77Source: https://www.kdnuggets.com/2018/03/5-things-reinforcement-learning.html



Dueling Network Architectures for 
Deep Reinforcement Learning

78

Single stream Q-network

Dueling Q-network 

Source: Ziyu Wang et al. (2015). "Dueling network architectures for deep reinforcement learning." arXiv preprint arXiv:1511.06581 (2015)



Rainbow: Combining improvements in 
deep reinforcement learning

79
Source: Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and 

David Silver (2017). "Rainbow: Combining improvements in deep reinforcement learning." arXiv preprint arXiv:1710.02298 (2017).



A Typical Strategy Development 
Workflow

80Source: http://www.wildml.com/2018/02/introduction-to-learning-to-trade-with-reinforcement-learning/



Reinforcement Learning (RL) in 
Trading Strategies

81Source: http://www.wildml.com/2018/02/introduction-to-learning-to-trade-with-reinforcement-learning/



Google TensorFlow

82https://www.tensorflow.org/

https://www.tensorflow.org/


Google Dopamine

83

Dopamine is a research framework 
for fast prototyping of 

reinforcement learning algorithms.
https://github.com/google/dopamine

https://github.com/google/dopamine


Deep Reinforcement Learning 
Dopamine Colab Examples

DQN Rainbow

84https://colab.research.google.com/github/google/dopamine/blob/master/dopamine/colab/agents.ipynb

https://colab.research.google.com/github/google/dopamine/blob/master/dopamine/colab/agents.ipynb


Summary

85

• Reinforcement Learning (RL)
– Markov Decision Processes (MDP) 

• Deep Reinforcement Learning (DRL) Algorithms
– SARSA
–Q-Learning
–DQN
–A3C
–Rainbow

• Google Dopamine
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