—y Tamkang
T w7 University

Big Data Mining

Reinforcement Learning
(RL)

1071BDM13
TLVXM1A (M2244) (8619) (Fall 2018)
(MBA, DBETKU) (3 Credits, Required) [Full English Course]

(Master’s Program in Digital Business and Economics)
Mon, 9, 10, 11, (16:10-19:00) (B206)

Min-Yuh Day, Ph.D.
Bl Assistant Professor
Department of Information Management
Tamkang University 5 Ti[E

http://mail.tku.edu.tw/myday

COp

2018-12-17

http://www.im.tku.edu.tw/
http://www.tku.edu.tw/
http://mail.tku.edu.tw/myday

Course Schedule

- Tamkang
g’ University

Week Date Subject/Topics

1 2018/09/10
2018/09/17
2018/09/24
2018/10/01

w N

N

ol

2018/10/08

2018/10/15
2018/10/22
2018/10/29
2018/11/05

O 00 N O

Course Orientation for Big Data Mining
ABC: Al, Big Data, Cloud Computing
Mid-Autumn Festival (Day off)

Data Science and Big Data Analytics: Discovering,
Analyzing, Visualizing and Presenting Data

Fundamental Big Data: MapReduce Paradigm,
Hadoop and Spark Ecosystem

Foundations of Big Data Mining in Python
Supervised Learning: Classification and Prediction
Unsupervised Learning: Cluster Analysis
Unsupervised Learning: Association Analysis

Course Schedule

X Tamkang
g’ University

Week Date Subject/Topics

10
11
12

13
14
15
16
17
18

2018/11/12
2018/11/19
2018/11/26

2018/12/03
2018/12/10
2018/12/17
2018/12/24
2018/12/31
2019/01/07

Midterm Project Report
Machine Learning with Scikit-Learn in Python

Deep Learning for Finance Big Data with
TensorFlow

Convolutional Neural Networks (CNN)
Recurrent Neural Networks (RNN)
Reinforcement Learning (RL)

Social Network Analysis (SNA)

Bridge Holiday (Extra Day Off)

Final Project Presentation

Reinforcement

Learning
(RL)

Outline

e Reinforcement Learning (RL)
— Markov Decision Processes (MDP)
 Deep Reinforcement Learning (DRL) Algorithms
—SARSA
—Q-Learning
—DQN
—A3C
— Rainbow

* Google Dopamine

Al, ML, DL

4 Artificial Intelligence (Al) A
4 Machine Learning (ML) A
Supervised Unsupervised
Learning Learning
Deep Learning (DL)
RNN LSTM GRU
. GAN)

Semi-supervised l Reinforcement

k Learning Learning))

Machine Learning (ML)

Meaningful
Compression

Structure Image

. o Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

isualistai : Classification Diagnostics
Visualistaion Reduction Elicitation Detection g

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
*
M ac h I n e Population

Growth
Prediction

Recommender Unsupervised Supervised

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

HEZRE e Skill Acquisition

Learning Tasks

Reinforcement Learning (RL)

Computer Science
Engineering ‘ .‘ . Neuroscience
Opt| 5 = d
ontrol :
DAl IF ../.
xeilnrorcemnm
‘_‘A‘I“ ,
Operation Classical/Opers
X Res‘i onditi 2

Psychology

B¢
Ra

Branches of Machine Learning (ML)
Reinforcement Learning (RL)

No Labels
No feedback
Find hidden structure

Labeled data
Direct feedback
Predict

Unsupervised
Learning

Supervised
Learning

Machine
Learning

Reinforcement
Learning

Decision process
Reward system
Learn series of actions

9

David Silver (2015),
Introduction to reinforcement learning

* Elementary Reinforcement Learning
— 1:Introduction to Reinforcement Learning
— 2: Markov Decision Processes
— 3:Planning by Dynamic Programming
— 4: Model-Free Prediction
— 5: Model-Free Control
* Reinforcement Learning in Practice
— 6: Value Function Approximation
— 7:Policy Gradient Methods
— 8:Integrating Learning and Planning
— 9: Exploration and Exploitation
— 10: Case Study: RL in Classic Games

Reinforcement Learning
AlphaZero (AZ) and AlphaGo Zero (AZ0)

* AlphaZero (Silver et al., 2018)

— A general reinforcement learning algorithm that
masters chess, shogi, and Go through self-play.
(Science)

* AlphaGo Zero (Silver et al., 2017)

— Mastering the game of Go without human
knowledge (Nature)

11

AlphaZero:
Shedding new light on the grand
games of chess, shogi and Go

At Baml Ammé Emks O

https://www.youtube.com/watch?v=7L2sUGcOgh0

AlphaZero
A general reinforcement learning algorithm
that maste{s chess, shogi, and Go through self-play

Chess Shogi Go
AlphaZero vs. Stockfish AlphaZero vs. EImo AlphaZero vs. AGO
W eis & 2 7 HEEEHEEEEE
o &

F || F | | || F R

e e Ed s
A ik
EE R EAE RIS
W:29.0% D:70.6% L:0.4% W:84.2% D:2.2% L:13.6% W: 68.9% L:31.1%
o] | | | I
[} I | [
W: 20% D:97.2% L:0.8% W:982% D:0.0% L: 1.8% W:53.7% L: 46.3%
B Chess Shogi
i o] | I B
1/100 time o I I
i O Il I
1/30 time ol = I EE—
T | I ——
; o] | | I
Hstime o |
C Latest Stockfish Aperyphapaq
O I N 0@]
ol | I
Opening Book CSA time control
o | s 0@}
o mm I
i o | Ny 0@ @]
D Human openings o | I
f O I |
TCEC openings ¢ g i
. AlphaZero wins AlphaZero draws . AlphaZero loses O AlphaZero white . AlphaZero black

Source: David Silver et al. (2018), "A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play." Science 362,
no. 6419 (2018): 1140-1144.

AlphaZero’s search procedure

102 Simulations

FEEEOORRE

102 Simulations 104 Simulations 10°% Simulations ~ 10° Simulations

/.\

a

'>®
>0

exds exds

x
X

2}

c6

@
a
=
o

©)
=00,

S
@

3

[~

©
S,
w

®-®
®

2
3
o
3
3

OO0 000
OO0 60:60-0600

o
D .
2

®+®

.
=3
2]
5
>
o)
S
&

O 020

®
®

Rcel

14

Self-play reinforcement learning in
AlphaGo Zero

a Self-play s

15

Richard S. Sutton & Andrew G. Barto (2018),

Reinforcement Learning: An Introduction,
~ 2" Edition, A Bradford Book
| Ak

Reinforcement
Learning / ;',
An Introduction ',"/ }’

second edition

Richard S. Sutton and Andrew G. Barto / / ‘

/
f

=7

7 r/
Source: Richard S. Sutton & Ar{drew G. Barto (2018), Reinfo-rc?n_eh?Lé_aﬁing: An Introduct'ion, 2nd Edition, A Bradford Book.
https://www.amazon.com/Reinforcement-Learning-Introduction-Adaptive-Computation/dp/0262039249

Reinforcement learning

* Reinforcement learning is
learning what to do
—how to map situations to actions
—sS0 as to maximize a numerical
reward signal.

17

Two most important distinguishing
features of reinforcement learning

* trial-and-error search
* delayed reward

18

Reinforcement Learning (DL)

Agent

{ EnvironmentJ

Reinforcement Learning (DL)

1 observation 2 action
Agent

3 reward T

Environment

20

Reinforcement Learning (DL)

1 observation 2 action
Agent

3 reward T

Environment

t

21

Agent and Environment

* At each step t the agent:
— Executes action A,
— Receives observation O,
— Receives scalar reward R,

* The environment:
— Receives action A,
— Emits observation O,,;
— Emits scalar reward R,,;

* tincrements at env. step

observation

0,

Agent

action

4,
reward TRt

Environment

22

History and State

The history is the sequence of observations, actions, rewards
Hl‘ — 01, A], R]""’At-]’Ot’Rt

i.e. all observable variables up to time t
i.e. the sensorimotor stream of a robot or embodied agent

What happens next depends on the history:
— The agent selects actions
— The environment selects observations/rewards

State is the information used to determine what happens
next

Formally, state is a function of the history:

S; =f(H)

23

Information State

An information state (a.k.a. Markov state) contains all

useful information from the history.

Definition

A state S, is Markov if and only if

P[S;1 | S = P[Si1 | Sp--n S

“The future is independent of the past given the present
Hi,— 8 — H o

Once the state is known, the history may be thrown away

i.e. The state is a sufficient statistic of the future

The environment state 5,° is Markov
The history H, is Markov

7

24

Fully Observable Environments

* Full observability:

— agent directly observes

environment state state action
Agent y
— Agent state = S :
environment state =
. . reward | R,
information state

— Formally, this is a Environment
Markov decision process
(MDP)

25

Partially Observable Environments

Partial observability: agent indirectly observes
environment

— A robot with camera vision isn’t told its absolute location
— A trading agent only observes current prices
— A poker playing agent only observes public cards

Now agent state # environment state

Formally this is a partially observable Markov decision
process (POMDP)

Agent must construct its own state representation §¢, e.g.
— Complete history: 8¢, = H,

— Beliefs of environment state: ¢, = (P/S¢, = s,/,...,P[S¢, = s,])
— Recurrent neural network: $¢, = (8%, W, + O, W,)

26

Reinforcement Learning (DL)

The Agent-Environment Interaction
in @ Markov Decision Process (MDP)

Agent

reward

action
R, A

§< R (
.1 | Environment

27

Characteristics of
Reinforcement Learning

* No supervisor, only a reward signal

* Feedback is delayed, not
Instantaneous

* Time really matters
(sequential, non i.i.d data)

* Agent’s actions affect the
subsequent data it receives

28

Examples of Reinforcement Learning

e Make a humanoid robot walk

* Play may different Atari games better than
humans

* Manage an investment portfolio

29

Examples of Rewards

e Make a humanoid robot walk
— +ve reward for forward motion

— -ve reward for falling over

* Play may different Atari games better than
humans

— +/-ve reward for increasing/decreasing score

* Manage an investment portfolio

— +ve reward for each S in bank

30

Sequential Decision Making

Goal: select actions to maximize total future reward
Actions may have long term consequence
Reward may be delayed

It may be better to sacrifice immediate reward to gain
more long-term reward
Examples:

— A financial investment (may take months to mature)

— Blocking opponent moves (might help winning chances
many moves from now)

31

Elements of Reinforcement Learning

Agent
Environment
Policy
Reward signal

Value function
Model

32

Elements of Reinforcement Learning

* Policy
— Agent’s behavior
— |t is a map from state to action

* Reward signal
— The goal of a reinforcement learning problem

e Value function
— How good is each state and/or action
— A prediction of future reward

* Model
— Agent’s representation of the environment

33

Major Components of an RL Agent

1. Policy: agent’s behaviour function

2. Value function: how good is each state
and/or action

3. Model: agent’s representation of the
environment

34

Policy

* A policyis the agent’s behaviour

* |t is a map from state to action, e.g.
—Deterministic policy: a = n(s)
—Stochastic policy: (a|s) = P[A, = a|S, = s]

35

Value Function

* Value function is a prediction of future reward

* Used to evaluate the goodness/badness of
states

* And therefore to select between actions, e.g.
Vo(S)=E [R jTYR Ty R 3+...|S, =s]

36

Model

A model predicts what the environment will
do next

e P predicts the next state

* R predicts the next (immediate) reward, e.g.
Pt =P[S,; =s"|S,=s, A=al
R = E[R;; |S; =s, 4, =a]

37

Reinforcement Learning

* Value Based

— Value Function

* Policy Based
— Policy

 Actor Critic
— Policy
— Value Function

38

Reinforcement Learning

* Model Free
— Policy and/or Value Function

* Model Based
— Policy and/or Value Function
— Model

39

Reinforcement Learning (RL)
Taxonomy

Source: David Silver (2015), Introduction to reinforcement learning, https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ 40

Learning and Planning

 Two fundamental problems in
sequential decision making

— Reinforcement Learning
* The environment is initially unknown
* The agent interacts with environment
* The agent improves its policy

— Planning
* A model of the environment is known

* The agent performs computations with its model
(without any external interaction)

* The agent improves its policy

* a.k.a deliberation, reasoning, introspection, pondering,
thought, search

41

Atari Example:
Reinforcement Learning

* Rules of the game are
unknown

Learn directly from
interactive game-play

Pick actions on joystick,
see pixels and scores

42

Atari Example:
Planning

Rules of the game are known
Can query emulator

— perfect model inside agent’s
brain

If | take action a from state s:

— what would the next state be?
— what would the score be?

Plan ahead to find optimal
policy

— e.g. tree search

43

Exploration and Exploitation

Reinforcement learning is like trial-and-error learning
The agent should discover a good policy

From its experiences of the environment

Without losing too much reward along the way

Exploration finds more information about the
environment

Exploitation exploits known information to maximise
reward

It is usually important to explore as well as exploit

44

Exploration and Exploitation
Examples

Restaurant Selection

— Exploitation: Go to your favorite restaurant

— Exploration: Try a new restaurant Online Banner
Advertisements

— Exploitation: Show the most successful advert
— Exploration: Show a different advert

Oil Drilling

— Exploitation: Drill at the best known location
— Exploration: Drill at a new location

Game Playing

— Exploitation: Play the move you believe is best

— Exploration: Play an experimental move
45

Prediction and Control

* Prediction: evaluate the future
—Given a policy

* Control: optimize the future
—Find the best policy

Markov Decision Processes (MDP)
Example: Student MRP

47

Generalized Policy Iteration (GPI)

evaluation

/7N
T V
N2

Improvement

/4% >V %

48

Generalized Policy Iteration (GPI)

Any iteration of policy evaluation and policy improvement,
independent of their granularity.

evaluation

ﬂ - q\
4 &/

iImprovement

49

Temporal-Difference (TD) Learning

* Sarsa: On-policy TD Control
* Q-learning: Off-policy TD Control

SARSA
(state-action-reward-state-action)
On-policy TD Control

Q(Sy, Ay) «— Q(Si, Ap) + a[Ryyy Ty Q(Sei1, Airr) - Q(Sy, Ay)]

S, A
R

S’

A’
SARSA

51

Q-lea rning (Watkins, 1989)
Off-policy TD Control

Q(S, Ay < Q(Si, Ay + a[Ryyy Ty max Q(Sy, a) - Q(Sy, Ay) |

® oA

Q-learning

52

Q-learning and Expected SARSA

® oA

Q-learning Expected SARSA

53

Q-learning and Double Q-learning

100% N(-0.1.1)
0 0

75%¢t B left right D
% left \
actions 50%; Q-learning
from A

Double
259} Q-learning
5"6, ——————————————————————————————————— — optimal
1 100 200 300
Episodes

Figure 6.5: Comparison of Q-learning and Double Q-learning on a simple episodic MDP (shown
inset). Q-learning initially learns to take the left action much more often than the right action,
and always takes it significantly more often than the 5% minimum probability enforced by
e-greedy action selection with € = 0.1. In contrast, Double Q-learning is essentially unaffected by
maximization bias. These data are averaged over 10,000 runs. The initial action-value estimates
were zero. Any ties in e-greedy action selection were broken randomly.

54

n-step methods for
sate-action value

1-step Sarsa co-step Sarsa n-step
aka Sarsa(0) 2-step Sarsa 3-step Sarsa n-step Sarsa aka Monte Carlo Expected Sarsa

SR R U U
I S
! GRS O
I 111
S O
[

o—O+—0—O—o—10

Figure 7.3: The backup diagrams for the spectrum of n-step methods for state—action values.

They range from the one-step update of Sarsa(0) to the up-until-termination update of the
Monte Carlo method. In between are the n-step updates, based on n steps of real rewards and
the estimated value of the nth next state—action pair, all appropriately discounted. On the far
right is the backup diagram for n-step Expected Sarsa.

55

Reinforcement Learning
Actor-Critic (AC) Architecture

®
\ -
= Policy
\
Actor
B TD
Critic / error
Value
state —» : i
Function action
'// A
reward

{ Environment j«

Reinforcement Learning
Actor-Critic (AC) Learning Methods

r

Policy
State (Actor) Action

TCritique

é)

Value Table
(Critic))

State T Reward

Environment

57

Reinforcement Learning Methods

width
S >
Temporal- of update /O\ Dynamic
difference . R A programming
learning O O O

depth
(length)
of update

Exhaustive
N(l:o;t - /' search
! N
; Had b
!

Figure 8.11: A slice through the space of reinforcement learning methods, highlighting the
two of the most important dimensions explored in Part I of this book: the depth and width of
the updates.

Source: Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition, A Bradford Book.

58

Monte Carlo Tree Search (MCTS)

, Repeat while time remains .
Selection = Expansion —— Simulation ———» Backup —J

%%§§

Tree Rollout
Policy Policy

Figure 8.10: Monte Carlo Tree Search. When the environment changes to a new state, MCTS
executes as many iterations as possible before an action needs to be selected, incrementally
building a tree whose root node represents the current state. Each iteration consists of the four
operations Selection, Expansion (though possibly skipped on some iterations), Simulation,
and Backup, as explained in the text and illustrated by the bold arrows in the trees. Adapted
from Chaslot, Bakkes, Szita, and Spronck (2008).

59

Monte Carlo Tree Search (MCTS)
MCTS in AlphaGo Zero

a Sel* t b Expand and evaluat € Backup d Play
v i
. R A ®
B T T (B A l)
_ Q+Upfhap 0V (ma;\gﬁ ______________________________________ O/ N\Q. | i & SN SN FANPEN
(V) =1, v v
--------------------------------------- ;p P \p.\m-m)-

60

MCTS in AlphaGo Zero

a Select

a: Each simulation traverses the tree by selecting the edge with
maximum action value Q, plus an upper confidence bound U
that depends on a stored prior probability P and visit count N
for that edge (which is incremented once traversed).

61

MCTS in AlphaGo Zero

b Expand and evaluate

b: The leaf node is expanded and the associated position s is
evaluated by the neural network (P(s, -),V(s)) = fg(s); the vector
of P values are stored in the outgoing edges from s.

62

MCTS in AlphaGo Zero

€ Backup

c: Action value Q is updated to track the mean of all evaluations
V in the subtree below that action

63

MCTS in AlphaGo Zero

d Play

1T

|
Ay

d: Once the search is complete, search probabilities t are
returned, proportional to N/, where N is the visit count of each

move from the root state and t is a parameter controlling
temperature.

Environment

States/Stimuli

Reinforcement Learning
Actor Critic ANN

Reward
)
fC . g
po (Critic
S A
E *l e85
w i =] _" c w
5 < % 5
g = y Z
< & o 0 <
=2 Dopamine
.g 4 /ﬁ
S _,_,//’/
== ¢
iR < 2
. & dE
o v
% 3
(a]
“\%
Actor

Environment

65

Reinforcement Learning
General Dyna Architecture

Val X
Policy/value

functions

planning update
direct DL S|mulated
experlence odel search
learning control
Model

(Environment)

66

Dyna:

Integrated Planning, Acting, and Learning

value/policy

acting
planning direct
RL
model experience
model

learning

67

Model-Based RL

value/policy

acting
planning

model experience

“ "

model
learning

68

Model-Free RL
(DQN, A3C)

value/policy

acting
planning direct
RL
model experience
model

learning

69

Reinforcement Learning

Algorithms

Deep Reinforcement Learning (DRL)

Dynamic Programming‘

Markov Decision Process
(MDP)

Monte Carlo Method

Q-Learning

TD Learning

Partially Observable MDP
(POMDP)

Actor-Critic Methods

.~ 4

Deep Q Network (DQN)

Double DQN

Neural Fitted Q | Deep Recurrent Q
Learning Network (DQRN)

A3C

Rainbow

Human-level control through
deep reinforcement learning (DQN)

Convglution Convglution Fully cgnnected Fully cgnnected

No input

e o 000 0 ¢

“® © © 0 0 0 0 0 0 0 O

O

O

o o0 00000 0 0 o

STANAARANAN|
@] (@] (@] (0] (@ O

C e e e e 0 e

Schematic illustration of the convolutional neural network

71

Deep Q-Network (DQN)

Q-value

T

Network

N

State Action

Q-value 1

L

Q-value 2

Network

I

State

Q-value 3

72

Reinforcement Learning

with policy represented via DNN

Reward r

Take action a

parameter 6

Observe state s

-

Environment

73

Reinforcement Learning
Deep Q-Learning in FIFA 18

reward r Optical Character . Obtain Reward
Recognition (pytesseract)
Al Bot FIFA 18 Game Window
Policy Q(s,a)
ﬂ Take Action
state s Q-Learning Model

Feature Map

Observe Game

MobileNet Feature Extractor

74

So

Asynchronous Advantage Actor-Critic

/K/

A
—
7
s

Worker 1

(A3C)

/ Global Network \

——7

Worker 2

\
T
—

Worker 3

=
ﬁ.ﬁ
-

\;/

e: https://medium.com/emergent-future/simple-

inforcement-lea

ing-with-ten

orflow-part-8-asynchro

ritic-agents-a3c-c88f72a5e9f2

75

Training workflow of each
worker agent in A3C

5. Worker q
updates global 1. Worker reset

network with to global
gradients network
4. Worker 2. Worker
gets interacts
gradients with
from losses environment
3. Worker
calculates

value and
policy loss

76

Reinforcement Learning
Example: PCMAN

Dueling Network Architectures for

Deep Reinforcement Learning
Single stream Q-network

=

Dueling Q-network I

AR

N\

e

Rainbow: Combining improvements in

deep reinforcement learning

Median human-normalized score

200%

100%

0%

DQN

DDQN

Prioritized DDQN

Dueling DDQN /
A3C

Distributional DQN
Noisy DQN

Rainbow f

| |
100 200

Millions of frames

Source: Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and
David Silver (2017). "Rainbow: Combining improvements in deep reinforcement learning." arXiv preprint arXiv:1710.02298 (2017).

79

A Typical Strategy Development
Workflow

Policy Parameter
Supervised Strategy Simulation &
Data Analysis —» —» Development —» —>» Optimization —» —>» Live Trading
Model Training (By Hand) Backtesting (Simulation) Paper Trading

1 | | |

80

Reinforcement Learning (RL) in

Trading Strategies
Data Analysis —» #;uﬁg;'}:m —> Fﬂ:‘:‘f}:‘;’;& —» Live Trading

1 |

Google TensorFlow

TensorFIOW M Install Learn APl ¥ Resources ¥ Community O\ GITHUB

An open source machine learning

framework for everyone

GET STARTED

£ 2

TensorFlow Dev Summit 2019 TensorFlow 1.12 is herel! High-level APIs in TensorFlow
2.

The 2019 TensorFlow Dev Summit is back TensorFlow 1.12 is available, see the release 0

March 6-7! Space is limited - request an notes for the latest updates.

By using Keras as the high-level API for the
upcoming TensorFlow 2.0 release, we will
make it easier for developers new to
machine learning to get started while
providing advanced capabilities for
researchers.

invite to stay up to date.

https://www.tensorflow.org/ 82

https://www.tensorflow.org/

Google Dopamine

A
SN

Dopamine is a research framework
for fast prototyping of
reinforcement learning algorithms.

https://github.com/google/dopamine

83

https://github.com/google/dopamine

Deep Reinforcement Learning
Dopamine Colab Examples
DQN Rainbow

© agents.ipynb B GD SHARE o

File Edit View Insert Runtime Tools Help

CODE TEXT 4 CELL ¥ CELL 43 COPY TO DRIVE / CONNECTED ~ /‘ EDITING A

Table of contents Code snippets Files X

Copyright 2018 The Dopamine Authors.

Dopamine: How to create and train a custom Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You
agent may obtain a copy of the License at

https:/www.apache.org/licenses/LICENSE-2.0

Install necessary packages.
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS,

Necessary imports and globals. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language

governing permissions and limitations under the License.
Load baseline data

Example 1: Train a modified version of DQN

~ Dopamine: How to create and train a custom agent

This colab demonstrates how to create a variant of a provided agent (Example 1) and how to create a new agent from scratch
(Example 2).

Train MyRandomDQNAgent. Run all the cells below in order.

Create an agent based on DQN, but
choosing actions randomly.

Load the training logs.
[1 Install necessary packages.

Plot training results.

[1 Necessary imports and globals.
Example 2: Train an agent built from scratch.

BASE_PATH: '/tmp/colab_dope_run'

Create a completely new agent from

scratch. . y
GAME: 'Asterix

Train StickyAgent.

Load the training logs. [1 Load baseline data

https://colab.research.google.com/github/google/dopamine/blob/master/dopamine/colab/agents.ipynb 84

https://colab.research.google.com/github/google/dopamine/blob/master/dopamine/colab/agents.ipynb

Summary

e Reinforcement Learning (RL)
— Markov Decision Processes (MDP)
 Deep Reinforcement Learning (DRL) Algorithms
—SARSA
—Q-Learning
—DQN
—A3C
— Rainbow

* Google Dopamine

85

References

Richard S. Sutton & Andrew G. Barto (2018), Reinforcement Learning: An Introduction, 2nd Edition,
A Bradford Book.

David Silver (2015), Introduction to reinforcement learning,
https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Simonyan,
Demis Hassabis (2018), "A general reinforcement learning algorithm that masters chess, shogi, and
Go through self-play.” Science 362, no. 6419 (2018): 1140-1144.

David Silver, Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui,
Laurent Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis (2017), "Mastering the
game of Go without human knowledge." Nature 550 (2017): 354-359.

Hado Van Hasselt, Arthur Guez, and David Silver (2016). "Deep Reinforcement Learning with Double
Q-Learning." In AAAI, vol. 2, p. 5. 2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver (2017). "Rainbow: Combining improvements
in deep reinforcement learning." arXiv preprint arXiv:1710.02298 (2017).

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,
Alex Graves et al. (2015) "Human-level control through deep reinforcement learning." Nature 518,
no. 7540 (2015): 529.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and Nando De Freitas
(2015). "Dueling network architectures for deep reinforcement learning." arXiv preprint
arXiv:1511.06581 (2015).

https://www.youtube.com/playlist?list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ

