

Big Data Mining Unsupervised Learning: Association Analysis

1071BDM08 TLVXM1A (M2244) (8619) (Fall 2018) (MBA, DBETKU) (3 Credits, Required) [Full English Course] (Master's Program in Digital Business and Economics) Mon, 9, 10, 11, (16:10-19:00) (B206)

Min-Yuh Day, Ph.D. Assistant Professor

Department of Information Management

Tamkang University

http://mail.tku.edu.tw/myday

2018-11-05

Course Schedule (1/2)

Week Date Subject/Topics

- 1 2018/09/10 Course Orientation for Big Data Mining
- 2 2018/09/17 ABC: AI, Big Data, Cloud Computing
- 3 2018/09/24 Mid-Autumn Festival (Day off)
- 4 2018/10/01 Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data
- 5 2018/10/08 Fundamental Big Data: MapReduce Paradigm, Hadoop and Spark Ecosystem
- 6 2018/10/15 Foundations of Big Data Mining in Python
- 7 2018/10/22 Supervised Learning: Classification and Prediction
- 8 2018/10/29 Unsupervised Learning: Cluster Analysis
- 9 2018/11/05 Unsupervised Learning: Association Analysis

Course Schedule (2/2)

- Week Date Subject/Topics
- 10 2018/11/12 Midterm Project Report
- 11 2018/11/19 Machine Learning with Scikit-Learn in Python
- 12 2018/11/26 Deep Learning for Finance Big Data with TensorFlow
- 13 2018/12/03 Convolutional Neural Networks (CNN)
- 14 2018/12/10 Recurrent Neural Networks (RNN)
- 15 2018/12/17 Reinforcement Learning (RL)
- 16 2018/12/24 Social Network Analysis (SNA)
- 17 2018/12/31 Bridge Holiday (Extra Day Off)
- 18 2019/01/07 Final Project Presentation

Unsupervised Learning: Association Analysis

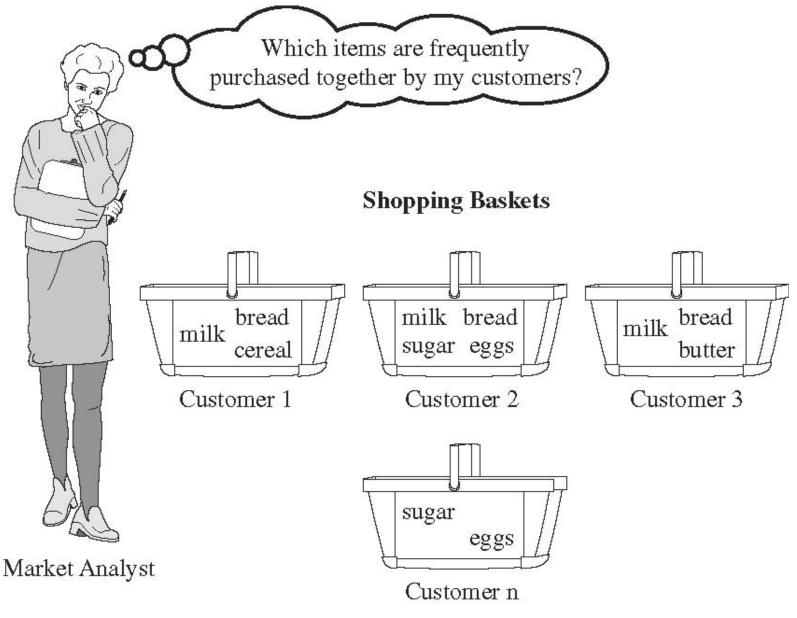
Outline

- Association Analysis
- Apriori algorithm
 - -Frequent Itemsets
 - **–Association Rules**

Data Mining Tasks and Machine Learning

Data Mining Tasks & Methods **Data Mining Algorithms** Learning Type Prediction Decision Trees, Neural Networks, Support Classification Supervised Vector Machines, kNN, Naïve Bayes, GA Linear/Nonlinear Regression, ANN. Supervised Regression Regression Trees, SVM, kNN, GA Autoregressive Methods, Averaging Time series Supervised Methods, Exponential Smoothing, ARIMA Unsupervised Association Learning: Market-basket Apriori, OneR, ZeroR, Eclat, GA Unsupervised Association Expectation Maximization, Apriori Unsupervised Link analysis Algorithm, Graph-Based Matching Analysis Apriori Algorithm, FP-Growth, Unsupervised Sequence analysis Graph-Based Matching Segmentation Clustering k-means, Expectation Maximization (EM) Unsupervised Outlier analysis k-means, Expectation Maximization (EM) Unsupervised

Transaction Database


Transaction ID	Items bought
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
T04	A, B, D
T05	A, B, C, E
T06	A, C
T07	B, C, D
T08	B, D
T09	A, C, E
T10	B, D

Association Analysis

Association Analysis: Mining Frequent Patterns, Association and Correlations

- Association Analysis
- Mining Frequent Patterns
- Association and Correlations
- Apriori Algorithm

Market Basket Analysis

• Apriori Algorithm

Raw Transact	tion Data	One-item Itemsets		Two-item Itemsets			Three-item Itemsets		
Transaction No	SKUs (Item No)		ltemset (SKUs)	Support	ltemset (SKUs)	Support		ltemset (SKUs)	Support
1	1, 2, 3, 4		1	3	1, 2	3		1, 2, 4	3
1	2, 3, 4		2	6	1, 3	2		2, 3, 4	3
1	2, 3		3	4	1, 4	3	•		
1	1, 2, 4		4	5	2, 3	4	-		
1	1, 2, 3, 4				2, 4	5			
1	2, 4				3, 4	3			

- A very popular DM method in business
- Finds interesting relationships (affinities) between variables (items or events)
- Part of machine learning family
- Employs unsupervised learning
- There is no output variable
- Also known as market basket analysis
- Often used as an example to describe DM to ordinary people, such as the famous "relationship between diapers and beers!"

- Input: the simple point-of-sale transaction data
- Output: Most frequent affinities among items
- <u>Example:</u> according to the transaction data...

"Customer who bought a laptop computer and a virus protection software, also bought extended service plan 70 percent of the time."

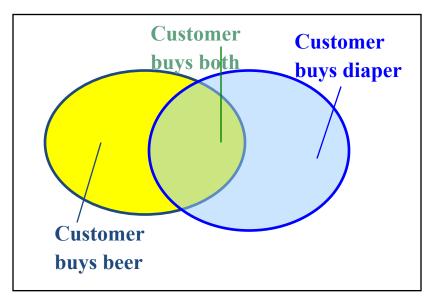
- How do you use such a pattern/knowledge?
 - Put the items next to each other for ease of finding
 - Promote the items as a package (do not put one on sale if the other(s) are on sale)
 - Place items far apart from each other so that the customer has to walk the aisles to search for it, and by doing so potentially seeing and buying other items

- A representative applications of association rule mining include
 - In business: cross-marketing, cross-selling, store design, catalog design, e-commerce site design, optimization of online advertising, product pricing, and sales/promotion configuration
 - In medicine: relationships between symptoms and illnesses; diagnosis and patient characteristics and treatments (to be used in medical DSS); and genes and their functions (to be used in genomics projects)...

• Are all association rules interesting and useful?

A Generic Rule: $X \Rightarrow Y [S\%, C\%]$

- **X, Y**: products and/or services
- X: Left-hand-side (LHS)
- Y: Right-hand-side (RHS)
- **S:** Support: how often **X** and **Y** go together
- **C:** Confidence: how often **Y** go together with the **X**


Example: {Laptop Computer, Antivirus Software} ⇒ {Extended Service Plan} [30%, 70%]

- Algorithms are available for generating association rules
 - Apriori
 - Eclat
 - FP-Growth
 - + Derivatives and hybrids of the three
- The algorithms help identify the frequent item sets, which are, then converted to association rules

- Apriori Algorithm
 - Finds subsets that are common to at least a minimum number of the itemsets
 - uses a bottom-up approach
 - frequent subsets are extended one item at a time (the size of frequent subsets increases from one-item subsets to two-item subsets, then three-item subsets, and so on), and
 - groups of candidates at each level are tested against the data for minimum

Basic Concepts: Frequent Patterns and Association Rules

Transaction-id	Items bought
10	A, B, D
20	A, C, D
30	A, D, E
40	B, E, F
50	B, C, D, E, F

Itemset X = $\{x_1, ..., x_k\}$

- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, s, probability that a transaction contains $X \cup Y$
 - confidence, c, conditional probability that a transaction having X also contains Y

Let $sup_{min} = 50\%$, $conf_{min} = 50\%$ Freq. Pat.: {A:3, B:3, D:4, E:3, AD:3} Association rules:

> $A \rightarrow D$ (60%, 100%) $D \rightarrow A$ (60%, 75%)

 $A \rightarrow D$ (support = 3/5 = 60%, confidence = 3/3 = 100%) $D \rightarrow A$ (support = 3/5 = 60%, confidence = 3/4 = 75%)

Market basket analysis

- Example
 - Which groups or sets of items are customers likely to purchase on a given trip to the store?
- Association Rule
 - Computer → antivirus_software [support = 2%; confidence = 60%]
 - A support of 2% means that 2% of all the transactions under analysis show that computer and antivirus software are purchased together.
 - A confidence of 60% means that 60% of the customers who purchased a computer also bought the software.

Association rules

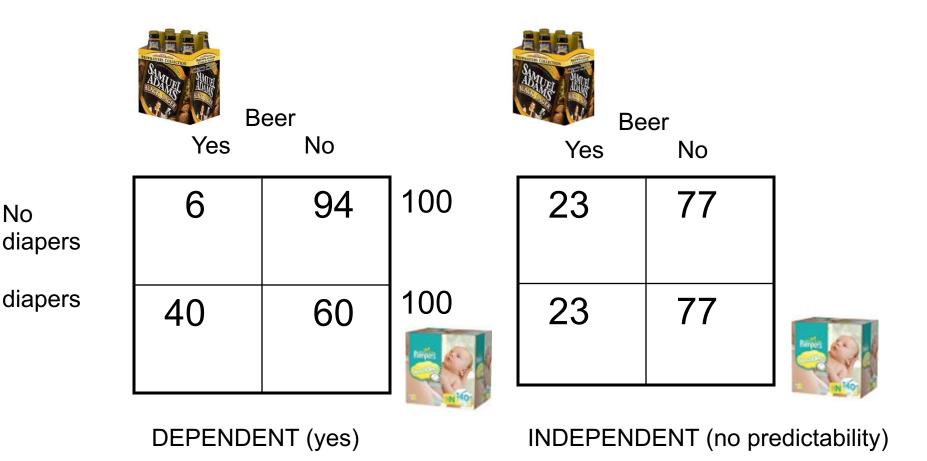
- Association rules are considered interesting if they satisfy both
 - a minimum support threshold and
 - a minimum confidence threshold.

Frequent Itemsets, Closed Itemsets, and Association Rules

Let $I = \{I_1, I_2, ..., I_m\}$ be a set of items. Let D, the task-relevant data, be a set of database transactions where each transaction T is a set of items such that $T \subseteq I$. Each transaction is associated with an identifier, called TID. Let A be a set of items. A transaction T is said to contain A if and only if $A \subseteq T$. An association rule is an implication of the form $A \Rightarrow B$, where $A \subset I, B \subset I$, and $A \cap B = \phi$. The rule $A \Rightarrow B$ holds in the transaction set D with support s, where s is the percentage of transactions in D that contain $A \cup B$ (i.e., the *union* of sets A and B, or say, both A and B). This is taken to be the probability, $P(A \cup B)$.¹ The rule $A \Rightarrow B$ has confidence c in the transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, and $A \cup B$. The rule $A \Rightarrow B$ has confidence c in the transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D, where c is the percentage of transaction set D. That is,

Support (A
$$\rightarrow$$
 B) = P(A \cup B)
Confidence (A \rightarrow B) = P(B|A)

Support $(A \rightarrow B) = P(A \cup B)$ Confidence $(A \rightarrow B) = P(B|A)$


 The notation P(A ∪ B) indicates the probability that a transaction contains the union of set A and set B

- (i.e., it contains every item in A and in B).

• This should not be confused with P(A or B), which indicates the probability that a transaction contains either A or B.

Does diaper purchase predict beer purchase?

• Contingency tables

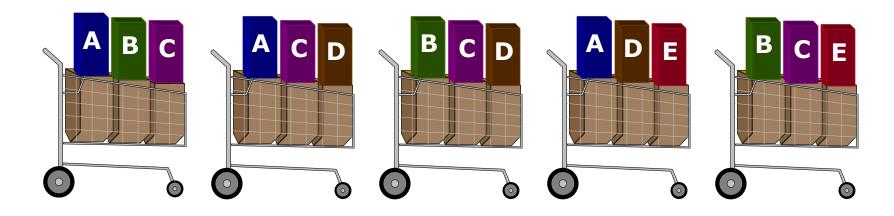
Source: Dickey (2012) http://www4.stat.ncsu.edu/~dickey/SAScode/Encore_2012.ppt

Support $(A \rightarrow B) = P(A \cup B)$

Confidence $(A \rightarrow B) = P(B|A)$ Conf $(A \rightarrow B) = Supp (A \cup B) / Supp (A)$

Lift $(A \rightarrow B) = Supp (A \cup B) / (Supp (A) x Supp (B))$ Lift (Correlation) Lift $(A \rightarrow B) = Confidence (A \rightarrow B) / Support(B)$

Source: Dickey (2012) http://www4.stat.ncsu.edu/~dickey/SAScode/Encore_2012.ppt


Lift = Confidence / Expected Confidence if Independent

Checking	No (1500)	Yes (8500)	(10000)
No	500	3500	4000
Yes	1000	5000	6000

SVG=>CHKG Expect 8500/10000 = 85% if independent Observed Confidence is 5000/6000 = 83%Lift = 83/85 < 1.

Savings account holders actually LESS likely than others to have checking account !!!

Support & Confidence

Rule	Support	Confidence
$A \Rightarrow D$	2/5	2/3
$C \Rightarrow A$	2/5	2/4
$A \Rightarrow C$	2/5	2/3
$B \And C \Rightarrow D$	1/5	1/3

Support & Confidence & Lift

Support(SVG \Rightarrow CK) = 50%=5,000/10,000 Confidence(SVG \Rightarrow CK) = 83%=5,000/6,000 Expected Confidence(SVG \Rightarrow CK) = 85%=8,500/10,000 Lift (SVG \rightarrow CK) = Confidence/Expected Confidence = 0.83/0.85 < 1 Support $(A \rightarrow B)$ Confidence $(A \rightarrow B)$ Expected Confidence $(A \rightarrow B)$ Lift $(A \rightarrow B)$

Support $(A \rightarrow B) = P(A \cup B)$ Count(A&B)/Count(Total) Confidence $(A \rightarrow B) = P(B|A)$ Conf $(A \rightarrow B) = Supp (A \cup B) / Supp (A)$ Count(A&B)/Count(A) Expected Confidence $(A \rightarrow B) = Support(B)$ Count(B)

Lift $(A \rightarrow B)$ = Confidence $(A \rightarrow B)$ / Expected Confidence $(A \rightarrow B)$ Lift $(A \rightarrow B)$ = Supp $(A \cup B)$ / (Supp (A) x Supp (B)) Lift (Correlation) Lift $(A \rightarrow B)$ = Confidence $(A \rightarrow B)$ / Support(B)

Lift (A→B)

- Lift $(A \rightarrow B)$
 - = Confidence ($A \rightarrow B$) / Expected Confidence ($A \rightarrow B$)
 - = Confidence $(A \rightarrow B)$ / Support(B)
 - = (Supp (A&B) / Supp (A)) / Supp(B)
 - = Supp (A&B) / Supp (A) x Supp (B)

Minimum Support and Minimum Confidence

- Rules that satisfy both a minimum support threshold (*min_sup*) and a minimum confidence threshold (*min_conf*) are called strong.
- By convention, we write support and confidence values so as to occur between 0% and 100%, rather than 0 to 1.0.

K-itemset

- itemset
 - A set of items is referred to as an itemset.
- K-itemset
 - An itemset that contains k items is a k-itemset.
- Example:
 - The set {computer, antivirus software} is a 2-itemset.

Absolute Support and Relative Support

- Absolute Support
 - The occurrence frequency of an itemset is the number of transactions that contain the itemset
 - frequency, support count, or count of the itemset
 - Ex: 3
- Relative support
 - Ex: 60%

Frequent Itemset

 If the relative support of an itemset *I satisfies* a prespecified minimum support threshold, then I is a frequent itemset.

– i.e., the absolute support of I satisfies the corresponding minimum support count threshold

 The set of frequent k-itemsets is commonly denoted by L_K

Confidence

 $confidence(A \Rightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)} = \frac{support_count(A \cup B)}{support_count(A)}$

- the confidence of rule $A \rightarrow B$ can be easily derived from the support counts of A and $A \cup B$.
- once the support counts of A, B, and A ∪ B are found, it is straightforward to derive the corresponding association rules A → B and B → A and check whether they are strong.
- Thus the problem of mining association rules can be reduced to that of mining frequent itemsets.

Association rule mining: Two-step process

- 1. Find all frequent itemsets
 - By definition, each of these itemsets will occur at least as frequently as a predetermined minimum support count, *min_sup*.
- 2. Generate strong association rules from the frequent itemsets
 - By definition, these rules must satisfy minimum support and minimum confidence.

Efficient and Scalable Frequent Itemset Mining Methods

- The Apriori Algorithm
 - Finding Frequent Itemsets Using Candidate Generation

Apriori Algorithm

- Apriori is a seminal algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining frequent itemsets for Boolean association rules.
- The name of the algorithm is based on the fact that the algorithm uses prior knowledge of frequent itemset properties, as we shall see following.

Apriori Algorithm

- Apriori employs an iterative approach known as a *level-wise search, where k-itemsets are used to explore (k+1)-itemsets.*
- First, the set of frequent 1-itemsets is found by scanning the database to accumulate the count for each item, and collecting those items that satisfy minimum support. The resulting set is denoted L₁.
- Next, L₁ is used to find L₂, the set of frequent 2-itemsets, which is used to find L₃, and so on, until no more frequent kitemsets can be found.
- The finding of each L_k requires one full scan of the database.

Apriori Algorithm

- To improve the efficiency of the level-wise generation of frequent itemsets, an important property called the Apriori property.
- Apriori property
 - All nonempty subsets of a frequent itemset must also be frequent.

Apriori algorithm (1) Frequent Itemsets (2) Association Rules

Transaction Database

Transaction ID	Items bought
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
T04	A, B, D
T05	A, B, C, E
T06	A, C
T07	B, C, D
T08	B, D
T09	A, C, E
T10	B, D

Table 1 shows a database with 10 transactions.

Let *minimum support* = 20% and *minimum confidence* = 80%. Please use **Apriori algorithm** for generating **association rules** from frequent itemsets.

Table 1: Transaction Database

Transaction	Items bought
ID	
T01	A, B, D
T02	A, C, D
T03	B, C, D, E
Т04	A, B, D
T05	A, B, C, E
Т06	A, C
T07	B, C, D
T08	B, D
T09	Α, Ϲ, Ε
T10	B, D

Transaction ID	Items bought
T01	A, B, D
Т02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
Т06	Α, C
Т07	B, C, D
Т08	B, D
Т09	Α, Ϲ, Ε
T10	B, D

Е

3

Apriori Algorithm $C_1 \rightarrow L_1$

C ₁			L ₁	
Itemset	Support Count	minimum support = 20%	ltemset	Support Count
А	6	= 2 / 10 Min. Support	А	6
В	7	Count = 2	В	7
С	6	$ \longrightarrow $	С	6
D	7		D	7

Ε

3

Transaction	Items
ID	bought
T01	A, B, D
Т02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
т06	Α, C
Т07	B, C, D
Т08	B, D
т09	A, C, E
Т10	B, D

Itemset	Support Count
А	6
В	7
С	6
D	7
E	3

 C_2

Itemset	Support Count
А, В	3
A, C	4
A, D	3
Α, Ε	2
В, С	3
B, D	6
В, Е	2
C, D	3
С, Е	3
D, E	1

minimum support = 20% = 2 / 10 Min. Support Count = 2

ltemset	Support Count
А, В	3
A, C	4
A, D	3
Α, Ε	2
В, С	3
B, D	6
В, Е	2
C, D	3
С, Е	3

 L_2

Transaction	Itoma
Transaction	Items
ID	bought
T01	A, B, D
Т02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
т06	А, С
Т07	B, C, D
Т08	B, D
т09	A, C, E
T10	B, D

L_2

ltemset	Support Count
А, В	3
A, C	4
A, D	3
Α, Ε	2
В, С	3
B, D	6
В, Е	2
C, D	3
С, Е	3

Apriori Algorithm $C_3 \rightarrow L_3$

C₃

Itemset	Support Count
А, В, С	1
A, B, D	2
A, B, E	1
A, C, D	1
A, C, E	2
B, C, D	2
В, С, Е	2

minimum support = 20% = 2 / 10 Min. Support Count = 2

$$\rightarrow$$

ltemset	Support Count
A, B, D	2
A, C, E	2
B, C, D	2
В, С, Е	2

 L_3

Transaction	Items
ID	bought
T01	A, B, D
т02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
Т06	А, С
Т07	B, C, D
Т08	B, D
т09	A, C, E
T10	B, D

Generating Association Rules

minimum confidence = 80%

		L ₂	
L_1		Itemset	Support Count
Itemset	Support	А, В	3
A	Count 6	A, C	4
B	7	A, D	3
С	6	Α, Ε	2
D	7	B, C	3
E	3	B, D	6
		B, E	2
		C, D	3

С, Е

3

Association Rules Generated from L₂

B→A: 3/7
C→A: 4/6
D→A: 3/7
E→A: 2/3
C→B: 3/6
D→B: 6/7=85.7% *
E→B: 2/3
D→C: 2/7
E→C: 3/3=100% *

Step **2-1**

Transaction	Items
ID	bought
T01	A, B, D
Т02	A, C, D
Т03	B, C, D, E
Т04	A, B, D
Т05	A, B, C, E
т06	Α, C
Т07	B, C, D
Т08	B, D
т09	A, C, E
T10	B, D

Generating Association Rules

minimum confidence = 80%

Association Rules Generated from L₃

		A→BD: 2/6	B→CD: 2/7
		B→AD: 2/7	C→BD: 2/6
		D→AB: 2/7	D→BC: 2/7
		AB→D: 2/3	BC→D: 2/3
port		AD→B: 2/3	BD→C: 2/6
unt		BD→A: 2/6	CD→B: 2/3
2		A→CE: 2/6	B→CE: 2/7
2		C→AE: 2/6	C→BE: 2/6
2	4	E→AC: 2/3	E→BC: 2/3
2		AC→E: 2/4	BC→E: 2/3
		AE→C: 2/2=100%*	BE→C: 2/2=100%*
		CE→A: 2/3	CE→B: 2/3

L_1		L_2		L
ltemset	Support Count	ltemset	Support Count	lte
А	6	А, В	3	
В	7	A, C	4	Α,
С	6	A, D	3	Α,
D	7	Α, Ε	2	Β,
Е	3	В, С	3	
		B, D	6	Β,
		В, Е	2	
		C, D	3	
		C, E	3	

L ₃	
Itemset	Support Count
A, B, D	2
A, C, E	2
B, C, D	2
B, C, E	2

Step **2-2**

Transaction ID T01	Items bought A, B, D	Frequent I	tem	sets		and	Ass	ociatio	on Rule
T02	A, C, D								
Т03	B, C, D, E		-1			-2		-3	
Т04	A, B, D		-		ſ				
Т05	А, В, С, Е		Itemset	Support		Itemset	Support	Itemset	Support
т06	A, C			Count			Count		Count
Т07	B, C, D		A	6		А, В	3		Count
Т08	B, D		В	7		A, C	4		2
Т09	A, C, E			,		,,,,		A, B, D	2
T10	B, D		C	6		A, D	3		
			D	7		Α, Ε	2	A, C, E	2
			E	3		В, С	3	B, C, D	2

B, D

В, Е С, D

C, E

6

2

3

3

B, C, E

2

minimum support = 20% minimum confidence = 80%

Association Rules:

B→D (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) D→B (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) E→C (30%, 100%) (Sup.: 3/10, Conf.: 3/3) AE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2) BE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2) Table 1 shows a database with 10 transactions.

Let *minimum support* = 20% and *minimum confidence* = 80%.

Please use **Apriori algorithm** for generating **association rules** from frequent itemsets.

Transaction ID	Items bought
T01	A, B, D
T02	A, C, D
Т03	B, C, D, E
T04	A, B, D
T05	A, B, C, E
Т06	A, C
T07	B, C, D
T08	B, D
Т09	A, C, E
T10	B, D

Association Rules:

B→D (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) D→B (60%, 85.7%) (Sup.: 6/10, Conf.: 6/7) E→C (30%, 100%) (Sup.: 3/10, Conf.: 3/3) AE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2) BE→C (20%, 100%) (Sup.: 2/10, Conf.: 2/2)

Association Analysis in Google Colab

https://colab.research.google.com/drive/1dkZITXbEM9hZykd5qyWZ2rljri1Pdtud

CO			ysis.ipynb 🏠 Runtime Tools Help		SHARE	A
Đ	CODE 🛨	TEXT	CELL 🗣 CELL	✓ CONNECTED ▼	EDITING	^
			Generation from F	requent Itemsets		
	- 2 in 3 ff: 5 ff: 6 7 d 8 9 10 11 12 13 t 14 t 15 d 16 ff: 17	<pre>rom mlxtend. rom mlxtend. ataset = [[' [' [' e = Transact e_ary = te.f f = pd.DataF</pre>	as pd preprocessing import T frequent_patterns impo frequent_patterns impo Milk', 'Onion', 'Nutme Dill', 'Onion', 'Nutme Milk', 'Apple', 'Kidne Milk', 'Unicorn', 'Cor Corn', 'Onion', 'Onion ionEncoder() it(dataset).transform() rame(te_ary, columns=t sets = apriori(df, min	<pre>rt apriori rt association_rules g', 'Kidney Beans', 'Eggs', 'Yogurt'], g', 'Kidney Beans', 'Eggs', 'Yogurt'], y Beans', 'Eggs'], n', 'Kidney Beans', 'Yogurt'], ', 'Kidney Beans', 'Ice cream', 'Eggs']] dataset)</pre>		
C		upport	itemsets			
	0	0.8	(Eggs)			
	1	1.0	(Kidney Beans)			
	2	0.6	(Milk)			
	3	0.6	(Onion)			
	4	0.6	(Yogurt)			
	5	0.8	(Eggs, Kidney Beans)			
	6	0.6	(Onion, Eggs)			
	h	+ //-	alah racaarah	google com /drive /1 dk7ITVbEN40b7vkdEgv/M/72rligi1Ddtu	1	

https://colab.research.google.com/drive/1dkZITXbEM9hZykd5qyWZ2rljri1Pdtud

! pip install mlxtend

from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

```
frequent_itemsets = apriori(df, min_support=0.6,
use_colnames=True)
```

```
1 # ! pip install mlxtend
 2 import pandas as pd
 3 from mlxtend.preprocessing import TransactionEncoder
 4 from mlxtend.frequent patterns import apriori
 5 from mlxtend.frequent patterns import association rules
 6
 7 dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
           ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
8
9
              ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
              ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
10
              ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]
11
12
13 te = TransactionEncoder()
14 te ary = te.fit(dataset).transform(dataset)
15 df = pd.DataFrame(te ary, columns=te.columns)
16 frequent itemsets = apriori(df, min support=0.6, use colnames=True)
17
18 frequent itemsets
```

! pip install mlxtend

import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

dataset = [['Milk', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
 ['Dill', 'Onion', 'Nutmeg', 'Kidney Beans', 'Eggs', 'Yogurt'],
 ['Milk', 'Apple', 'Kidney Beans', 'Eggs'],
 ['Milk', 'Unicorn', 'Corn', 'Kidney Beans', 'Yogurt'],
 ['Corn', 'Onion', 'Onion', 'Kidney Beans', 'Ice cream', 'Eggs']]

```
te = TransactionEncoder()
te_ary = te.fit(dataset).transform(dataset)
df = pd.DataFrame(te_ary, columns=te.columns_)
frequent_itemsets = apriori(df, min_support=0.6,
use_colnames=True)
```

```
frequent_itemsets
```

frequent_itemsets = apriori(df, min_support=0.6, use colnames=True)

	support	itemsets
0	0.8	(Eggs)
1	1.0	(Kidney Beans)
2	0.6	(Milk)
3	0.6	(Onion)
4	0.6	(Yogurt)
5	0.8	(Eggs, Kidney Beans)
6	0.6	(Onion, Eggs)
7	0.6	(Milk, Kidney Beans)
8	0.6	(Onion, Kidney Beans)
9	0.6	(Yogurt, Kidney Beans)
10	0.6	(Onion, Eggs, Kidney Beans)

association_rules(frequent_itemsets, metric="confidence", min_threshold=0.7)

0	association_rules(fr	requent_itemsets, met	cric="confidence", min	_threshold=0.7 <u>)</u>					
C→	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(Eggs)	(Kidney Beans)	0.8	1.0	0.8	1.00	1.00	0.00	inf
1	(Kidney Beans)	(Eggs)	1.0	0.8	0.8	0.80	1.00	0.00	1.000000
2	(Onion)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
3	(Eggs)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000
4	(Milk)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
5	(Onion)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
6	(Yogurt)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
7	(Onion, Eggs)	(Kidney Beans)	0.6	1.0	0.6	1.00	1.00	0.00	inf
8	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
9	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000
10	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.00	1.25	0.12	inf
11	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000

rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.2) rules

1 rules = association rules(frequent itemsets, metric="lift", min threshold=1.2)

2 rules

	Tutes								
	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction
0	(Onion)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
1	(Eggs)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000
2	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf
3	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000
4	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.00	1.25	0.12	inf
5	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000
	0 1 2 3 4	 antecedents 0 (Onion) 1 (Eggs) 2 (Onion, Kidney Beans) 3 (Eggs, Kidney Beans) 4 (Onion) 	antecedentsconsequents0(Onion)(Eggs)1(Eggs)(Onion)2(Onion, Kidney Beans)(Eggs)3(Eggs, Kidney Beans)(Onion)4(Onion)(Eggs, Kidney Beans)	antecedentsconsequentsantecedentsupport0(Onion)(Eggs)0.61(Eggs)(Onion)0.82(Onion, Kidney Beans)(Eggs)0.63(Eggs, Kidney Beans)(Onion)0.84(Onion)(Eggs, Kidney Beans)0.6	antecedentsconsequentsantecedentsupportconsequentsupport0(Onion)(Eggs)0.60.80.81(Eggs)(Onion)0.80.60.62(Onion, Kidney Beans)(Eggs)0.60.80.83(Eggs, Kidney Beans)(Onion)0.80.64(Onion)(Eggs, Kidney Beans)0.60.8	antecedentsconsequentsantecedentsupportconsequentsupportsupport0(Onion)(Eggs)0.60.60.80.61(Eggs)(Onion)0.80.60.60.62(Onion, Kidney Beans)(Eggs)0.60.60.60.63(Eggs, Kidney Beans)(Onion)0.60.60.60.64(Onion)(Eggs, Kidney Beans)0.60.60.80.6	antecedentsconsequentsauportsupportsupportsupportconfidence0(Onion)(Eggs)0.60.80.61.001(Eggs)(Onion)0.00.80.60.752(Onion, Kidney Beans)(Eggs)0.00.60.80.61.003(Eggs, Kidney Beans)(Onion)0.00.80.60.754(Onion)(Eggs, Kidney Beans)0.60.80.80.61.00	antecedentsconsequentsantecedentsupportsupportsupportconfidencelift0(Onion)(Eggs)0.60.60.80.61.001.251(Eggs)(Onion)(Eggs)0.60.60.60.60.751.252(Onion, Kidney Beans)(Eggs)0.00.60.60.60.751.253(Eggs, Kidney Beans)(Onion)0.00.60.60.60.751.254(Onion)(Eggs, Kidney Beans)0.60.60.80.61.001.25	antecedentsconsequentsantecedentsupportsupportsupportsupportconfidencelifleverage0(Onion)(Eggs)0.60.60.80.61.001.250.121(Eggs)(Onion)0.00.60.60.60.60.751.250.122(Onion, Kidney Beans)(Onion)0.00.60.60.60.60.1001.250.124(Onion)(Eggs, Kidney Beans)0.00.60.80.60.61.250.12

rules["antecedent_len"] = rules["antecedents"].apply(lambda x: len(x)) rules

0

C→

```
1 rules["antecedent_len"] = rules["antecedents"].apply(lambda x: len(x))
2 rules
```

•		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	antecedent_len
(0	(Onion)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf	1
	1	(Eggs)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	1
:	2	(Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.00	1.25	0.12	inf	2
;	3	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	2
4	4	(Onion)	(Eggs, Kidney Beans)	0.6	0.8	0.6	1.00	1.25	0.12	inf	1
4	5	(Eggs)	(Onion, Kidney Beans)	0.8	0.6	0.6	0.75	1.25	0.12	1.600000	1

rules[(rules['antecedent_len'] >= 2) & (rules['confidence'] > 0.75) & (rules['lift'] > 1.2)]

0	<pre>1 rules[(rules['antecedent_len'] >= 2) & 2</pre>									•	
C→	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	antecedent_1	len
	2 (Onion, Kidney Beans)	(Eggs)	0.6	0.8	0.6	1.0	1.25	0.12	inf		2

rules[rules['antecedents'] == {'Eggs', 'Kidney Beans'}]

0	1	rules[rules['	antecedents']	== {'Eggs', '	Kidney Beans']	1					:
C→		antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	antecedent_len
	3	(Eggs, Kidney Beans)	(Onion)	0.8	0.6	0.6	0.75	1.25	0.12	1.6	2

Summary

- Association Analysis
- Apriori algorithm

-Frequent Itemsets

–Association Rules

References

- Jiawei Han and Micheline Kamber (2006), Data Mining: Concepts and Techniques, Second Edition, Elsevier, 2006.
- Jiawei Han, Micheline Kamber and Jian Pei (2011), Data Mining: Concepts and Techniques, Third Edition, Morgan Kaufmann 2011.
- Efraim Turban, Ramesh Sharda, Dursun Delen (2011), Decision Support and Business Intelligence Systems, Ninth Edition, Pearson.
- Ramesh Sharda, Dursun Delen, and Efraim Turban (2017), Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson.
- Jake VanderPlas (2016), Python Data Science Handbook: Essential Tools for Working with Data, O'Reilly Media.
- Wes McKinney (2017), Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2nd Edition, O'Reilly Media. https://github.com/wesm/pydata-book