TensorFlow 深度學習財務時間序列預測
(Deep Learning for Financial Time Series Forecasting with TensorFlow)

Min-Yuh Day
Assistant Professor
Dept. of Information Management, Tamkang University

http://mail.tku.edu.tw/myday/
2018-11-22; 2018-11-29; 2018-12-13
<table>
<thead>
<tr>
<th>週次 (Week)</th>
<th>日期 (Date)</th>
<th>內容 (Subject/Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2018/09/13</td>
<td>人工智慧投資分析課程介紹 (Course Orientation on Artificial Intelligence for Investment Analysis)</td>
</tr>
<tr>
<td>2</td>
<td>2018/09/20</td>
<td>AI 金融科技: 金融服務創新應用 (AI in FinTech: Financial Services Innovation and Application)</td>
</tr>
<tr>
<td>3</td>
<td>2018/09/27</td>
<td>機器人理財顧問與AI交談機器人 (Robo-Advisors and AI Chatbots)</td>
</tr>
<tr>
<td>4</td>
<td>2018/10/04</td>
<td>投資心理學與行為財務學 (Investing Psychology and Behavioral Finance)</td>
</tr>
<tr>
<td>5</td>
<td>2018/10/11</td>
<td>財務金融事件研究法 (Event Studies in Finance)</td>
</tr>
<tr>
<td>6</td>
<td>2018/10/18</td>
<td>人工智慧投資分析個案研究 I (Case Study on Artificial Intelligence for Investment Analysis I)</td>
</tr>
<tr>
<td>項目 (Week)</td>
<td>日期 (Date)</td>
<td>內容 (Subject/Topics)</td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
</tbody>
</table>
| 7 | 2018/10/25 | Python AI投資分析基礎
(Foundations of AI Investment Analysis in Python) |
| 8 | 2018/11/01 | Python Pandas量化投資分析
(Quantitative Investing with Pandas in Python) |
| 9 | 2018/11/08 | Python Scikit-Learn 機器學習
(Machine Learning with Scikit-Learn in Python) |
| 10 | 2018/11/15 | 期中報告 (Midterm Project Report) |
| 11 | 2018/11/22 | TensorFlow 深度學習財務時間序列預測 I
(Deep Learning for Financial Time Series Forecasting with TensorFlow I) |
| 12 | 2018/11/29 | TensorFlow 深度學習財務時間序列預測 II
(Deep Learning for Financial Time Series Forecasting with TensorFlow II) |
<table>
<thead>
<tr>
<th>週次 (Week)</th>
<th>日期 (Date)</th>
<th>內容 (Subject/Topics)</th>
</tr>
</thead>
</table>
| 13 | 2018/12/06 | 人工智慧投資分析個案研究 II
(Case Study on Artificial Intelligence for Investment Analysis II) |
| 14 | 2018/12/13 | TensorFlow 深度學習財務時間序列預測 III
(Deep Learning for Financial Time Series Forecasting with TensorFlow III) |
| 15 | 2018/12/20 | 投資組合最佳化與程式交易
(Portfolio Optimization and Algorithmic Trading) |
| 16 | 2018/12/27 | 自然語言處理 (Natural Language Processing) |
| 17 | 2019/01/03 | 期末報告 I (Final Project Presentation I) |
| 18 | 2019/01/10 | 期末報告 II (Final Project Presentation II) |
Outline

• Deep Learning for Financial Time Series Forecasting with TensorFlow
 – Deep Learning
 – Financial Time Series Forecasting
 – TensorFlow
Artificial Intelligence (AI)

Machine Learning (ML)

Supervised Learning

Unsupervised Learning

Deep Learning (DL)

CNN
RNN LSTM GRU
GAN

Semi-supervised Learning

Reinforcement Learning

Source: https://leonardoaraujosantos.gitbooks.io/artificial-intelligence/content/deep_learning.html
Deep Learning Evolution

Source: http://www.erogol.com/brief-history-machine-learning/
3 Machine Learning Algorithms

Machine Learning (ML) / Deep Learning (DL)

Machine Learning (ML)
- Supervised Learning
 - Decision Tree Classifiers
 - Linear Classifiers
 - Rule-based Classifiers
 - Probabilistic Classifiers
 - Support Vector Machine (SVM)
 - Neural Network (NN)
 - Deep Learning (DL)
- Unsupervised Learning
 - Naïve Bayes (NB)
 - Bayesian Network (BN)
 - Maximum Entropy (ME)
- Reinforcement Learning

Deep Learning and Neural Networks
Deep Learning Foundations: Neural Networks
Deep Learning and Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

X1 X2
Deep Learning and Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)
Deep Learning and Neural Networks

Input Layer (X)

Hidden Layers (H)

Output Layer (Y)

Deep Neural Networks
Deep Learning
Deep Learning
and
Deep Neural Networks
LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton.

"Deep learning."

Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

Machine-learning technology powers many aspects of modern society: from web searches to content filtering on social networks to recommendations on e-commerce websites, and it is increasingly present in consumer products such as cameras and smartphones. Machine-learning systems are used to identify objects in images, transcribe speech into text, match news items, posts or products with users’ interests, and select relevant results of search. Increasingly, these applications make use of a class of techniques called deep learning.

Conventional machine-learning techniques were limited in their ability to process natural data in their raw form. For decades, conventional machine-learning techniques were limited in their ability to process natural data in their raw form.
Deep Learning

- A powerful class of machine learning model
- Modern reincarnation of artificial neural networks
- Collection of simple, trainable mathematical functions
- Compatible with many variants of machine learning

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
What is Deep Learning?

- Loosely based on (what little) we know about the brain

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
Neural Networks (NN)
Convolutional Neural Networks

(CNN or Deep Convolutional Neural Networks, DCNN)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Recurrent Neural Networks (RNN)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Long / Short Term Memory (LSTM)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Gated Recurrent Units (GRU)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Generative Adversarial Networks (GAN)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Support Vector Machines (SVM)

Source: http://www.asimovinstitute.org/neural-network-zoo/
Neural networks (NN) 1960

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

Source: https://www.youtube.com/watch?v=bx2T-V8XRs&index=1&list=PLiaHhY2lBX9hdHaRr6b7XevZtgZRa1PoU
Multilayer Perceptrons (MLP) 1985

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Support Vector Machine (SVM) 1995

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Hinton presents the Deep Belief Network (DBN)

New interests in deep learning and RBM

State of the art MNIST 2005

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Deep Recurrent Neural Network (RNN) 2009

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Convolutional DBN
2010

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Max-Pooling CDBN 2011

Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing
Deep Learning

Geoffrey Hinton
Yann LeCun
Yoshua Bengio
Andrew Y. Ng
A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A stop sign is on a road with a mountain in the background.

A little girl sitting on a bed with a teddy bear.

A group of people sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

A group of people shopping at an outdoor market.

There are many vegetables at the fruit stand.
From image to text

Image: deep convolution neural network (CNN)
Text: recurrent neural network (RNN)

Convolutional Neural Networks (CNN)
Convolutional Neural Networks (CNN)

Architecture of LeNet-5 (7 Layers) (LeCun et al., 1998)

Convolutional Neural Networks (CNN)

• Convolution
• Pooling
• Fully Connection (FC) (Flattening)
A friendly introduction to Convolutional Neural Networks and Image Recognition

Convolution Layer

Pooling Layer

Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition, https://www.youtube.com/watch?v=2-Ol7ZB0MmU
A friendly introduction to Convolutional Neural Networks and Image Recognition

Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition, https://www.youtube.com/watch?v=2OlZB0MmU
A friendly introduction to Convolutional Neural Networks and Image Recognition

Source: Luis Serrano (2017), A friendly introduction to Convolutional Neural Networks and Image Recognition, https://www.youtube.com/watch?v=2-Oj7ZB0MmU
CNN Architecture

Convolution is a mathematical operation to merge two sets of information.

3x3 convolution

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Input

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Filter / Kernel

CNN Convolution Layer

Input x Filter --> Feature Map

receptive field: 3x3

Input x Filter

Feature Map

Source: Arden Dertat (2017), Applied Deep Learning - Part 4: Convolutional Neural Networks,
https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2
CNN Convolution Layer

Input x Filter --> Feature Map

receptive field: 3x3

<table>
<thead>
<tr>
<th></th>
<th>1x1</th>
<th>1x0</th>
<th>0x1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input x Filter

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feature Map

4 3

CNN Convolution Layer

Example convolution operation shown in 2D using a 3x3 filter

```
<table>
<thead>
<tr>
<th>1x1</th>
<th>1x0</th>
<th>1x1</th>
<th>0</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>1x1</td>
<td>1x0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0x1</td>
<td>0x0</td>
<td>1x1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
```

CNN Convolution Layer

10 different filters 10 feature maps of size 32x32x1

final output of the convolution layer: a volume of size 32x32x10

CNN Convolution Layer
Sliding operation at 4 locations

CNN Convolution Layer

two feature maps
CNN Convolution Layer

Stride specifies how much we move the convolution filter at each step.

Stride 1

Feature Map

CNN Convolution Layer

Stride specifies how much we move the convolution filter at each step.

- **Stride 2**
- **Feature Map**

CNN Convolution Layer

Stride 1 with Padding

Stride 1 with Padding
Feature Map

CNN Pooling Layer

Max Pooling

max pool with 2x2 window and stride 2

CNN Pooling Layer

CNN Architecture

4 convolution + pooling layers, followed by 2 fully connected layers

CNN Architecture
4 convolution + pooling layers, followed by 2 fully connected layers

https://gist.github.com/ardendertat/0fc5515057c47e7386fe04e9334504e3

model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', name='conv_1',
 input_shape=(150, 150, 3)))
model.add(MaxPooling2D((2, 2), name='maxpool_1'))
model.add(Conv2D(64, (3, 3), activation='relu', padding='same', name='conv_2'))
model.add(MaxPooling2D((2, 2), name='maxpool_2'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='conv_3'))
model.add(MaxPooling2D((2, 2), name='maxpool_3'))
model.add(Conv2D(128, (3, 3), activation='relu', padding='same', name='conv_4'))
model.add(MaxPooling2D((2, 2), name='maxpool_4'))
model.add(Flatten())
model.add(Dropout(0.5))
model.add(Dense(512, activation='relu', name='dense_1'))
model.add(Dense(128, activation='relu', name='dense_2'))
model.add(Dense(1, activation='sigmoid', name='output'))

Dropout

No Dropout

With Dropout

Model Performance

Train Loss: 0.054, Val Loss: 1.345

Starts Overfitting

Train Accuracy: 0.981, Val Accuracy: 0.732

Visual Recognition

Image Classification
IS THIS A CAT or DOG?

CAT DOG

OUTPUT LAYER

ACTIVATED NEURONS

INPUT LAYER

DEEP NEURAL NETWORK

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
Convolutional Neural Networks
(CNNs / ConvNets)

http://cs231n.github.io/convolutional-networks/
A regular 3-layer Neural Network

http://cs231n.github.io/convolutional-networks/
A ConvNet arranges its neurons in three dimensions (width, height, depth)

http://cs231n.github.io/convolutional-networks/
The activations of an example ConvNet architecture.

http://cs231n.github.io/convolutional-networks/
ConvNets

32x32x3 CIFAR-10 image

first Convolutional layer

http://cs231n.github.io/convolutional-networks/
ConvNets

http://cs231n.github.io/convolutional-networks/
Convolution Demo

Input Volume (+pad 1) (7x7x3)

Filter W0 (3x3x3)

Filter W1 (3x3x3)

Output Volume (3x3x2)

Dimensions:
- Input Volume: 7x7x3
- Filter W0: 3x3x3
- Filter W1: 3x3x3
- Output Volume: 3x3x2

Parameters:
- Bias b0 (1x1x1)
- Bias b1 (1x1x1)

Link:
http://cs231n.github.io/convolutional-networks/
ConvNets

input volume of size [224x224x64] is pooled with filter size 2, stride 2 into output volume of size [112x112x64]

http://cs231n.github.io/convolutional-networks/
ConvNets
max pooling

http://cs231n.github.io/convolutional-networks/
Convolutional Neural Networks (CNN) (LeNet)

Source: http://deeplearning.net/tutorial/lenet.html
Recurrent Neural Networks (RNN)
Recurrent Neural Networks (RNN)
Recurrent Neural Networks (RNN)

Time Series Forecasting

\[
\begin{align*}
X_t &= 2X_{t-1} - 1 \\
X_t &= 2X_{t-1} - 2 \\
Y_t &= 2Y_{t-1} - 1 \\
Y_t &= 2Y_{t-1} - 2 \\
\end{align*}
\]
Recurrent Neural Networks (RNN)
Recurrent Neural Networks (RNN)
Sentiment Analysis

\[X_t \rightarrow h_t \rightarrow h_{t+1} \rightarrow h_{t+2} \]

Input: This movie is very good

Output: y
Recurrent Neural Networks (RNN)

Sentiment Analysis

This movie is very boring

Input: $X_{t-2}, X_{t-1}, X_t, X_{t+1}, X_{t+2}$

Output: y

Hidden states: $h_{t-2}, h_{t-1}, h_t, h_{t+1}, h_{t+2}$
Recurrent Neural Network (RNN)

Course Description

Natural language processing (NLP) is one of the most important technologies of the information age. Understanding complex language utterances is also a crucial part of artificial intelligence. Applications of NLP are everywhere because people communicate most everything in language: web search, advertisement, emails, customer service, language translation, radiology reports, etc. There are a large variety of underlying tasks and machine learning models powering NLP applications. Recently, deep learning approaches have obtained very high performance across many different NLP tasks. These models can often be trained with a single end-to-end model and do not require traditional, task-specific feature engineering. In this spring quarter course students will learn to implement, train, debug, visualize and invent their own neural network models. The course provides a deep excursion into cutting-edge research in deep learning applied to NLP. The final project will involve training a complex recurrent neural network and applying it to a large scale NLP problem. On the model side we will cover word vector representations,
Recurrent Neural Networks (RNNs)
RNN

\[\begin{array}{c}
\text{RNN} \\
\hline
\end{array} \]

RNN long-term dependencies

I grew up in France… I speak fluent French.

Vanishing Gradient
Exploding Gradient

Vanishing Gradient
Exploding Gradient

Recurrent Neural Networks (RNN)
RNN

Vanishing Gradient problem
Exploding Gradient problem

if $|W| < 1$ (Vanishing)
if $|W| > 1$ (Exploding)
RNN

Vanishing Gradient problem

\[W = 0.9 < 1 \text{ (Vanishing)} \]

RNN
Exploding Gradient problem

\[W = 1.1 > 1 \text{ (Exploding)} \]

Long Short Term Memory (LSTM)

Long Short Term Memory (LSTM)

Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU)

LSTM

LSTM vs GRU

LSTM

i, f and o are the input, forget and output gates, respectively. c and c˜ denote the memory cell and the new memory cell content.

GRU

r and z are the reset and update gates, and h and h˜ are the activation and the candidate activation.

Long Short Term Memory (LSTM)

\[C_t = f_t C_{t-1} + i_t \tanh(\sigma x_t) \]

\[h_t = o_t \tanh(C_t) \]

Long Short Term Memory (LSTM)

LSTM
Memory state (C)
LSTM

forget gate (f)

\[
f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f)
\]

LSTM
input gate (i)

\[i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i) \]

\[\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C) \]
LSTM

Memory state (C)

\[C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t \]

LSTM

output gate (o)

\[
o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)
\]

\[
h_t = o_t \times \text{tanh} (C_t)
\]

LSTM

forget (f), input (i), output (o) gates

\[
\begin{align*}
 f_t &= \sigma (W_f \cdot [C_{t-1}, h_{t-1}, x_t] + b_f) \\
 i_t &= \sigma (W_i \cdot [C_{t-1}, h_{t-1}, x_t] + b_i) \\
 o_t &= \sigma (W_o \cdot [C_t, h_{t-1}, x_t] + b_o)
\end{align*}
\]

Gated Recurrent Unit (GRU)

update (z), reset (r) gates

\[
\begin{align*}
 z_t &= \sigma (W_z \cdot [h_{t-1}, x_t]) \\
 r_t &= \sigma (W_r \cdot [h_{t-1}, x_t]) \\
 \tilde{h}_t &= \tanh (W \cdot [r_t \cdot h_{t-1}, x_t]) \\
 h_t &= (1 - z_t) \cdot h_{t-1} + z_t \cdot \tilde{h}_t
\end{align*}
\]

LSTM Recurrent Neural Network

Traditional Neural Network
Music Generation
Sentiment Classification
Name Entity Recognition
Machine Translation

Source: https://github.com/Vict0rSch/deep_learning/tree/master/keras/recurrent
Long Short Term Memory (LSTM) for Time Series Forecasting

\begin{align*}
X_t & \rightarrow LSTM & h_t \\
\end{align*}
The Sequence to Sequence model (seq2seq)
Sequence to Sequence (Seq2Seq)
Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

Source: https://www.youtube.com/watch?v=bxetV8XRs&index=1&list=PLiaHhY2iBX9hdHaRt6b7XevZtgZRa1PoU
Neuron and Synapse

Source: https://en.wikipedia.org/wiki/Neuron
The Neuron

\[
y = F\left(\sum_i w_i x_i \right)
\]

\[F(x) = \max(0, x)\]
\[y = \max (0, -0.21 \times x_1 + 0.3 \times x_2 + 0.7 \times x_3) \]
Neural Networks
Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

X1
X2

Source: https://www.youtube.com/watch?v=bxelT-V8XR6&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
Neural Networks

Input Layer
(X)

Hidden Layers
(H)

Output Layer
(Y)

Deep Neural Networks
Deep Learning

Source: https://www.youtube.com/watch?v=bxetV8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
Neural Networks

Input Layer (X) **Hidden Layer** (H) **Output Layer** (Y)

Source: https://www.youtube.com/watch?v=bxT-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
Neural Networks

Input Layer (X)
Hidden Layer (H)
Output Layer (Y)

Source: https://www.youtube.com/watch?v=bxerT-V8XR8&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1P0U
Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

Source: https://www.youtube.com/watch?v=P2HPcj8lRJE&list=PLjJh1vlSEYqvGod9wWiydumYl8hOXixNu&index=2
Neural Networks

Input Layer (X) Hidden Layer (H) Output Layer (Y)

Source: https://www.youtube.com/watch?v=bxCT-V%75%09XRs:index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
<table>
<thead>
<tr>
<th>Hours Sleep</th>
<th>Hours Study</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>93</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>?</td>
</tr>
</tbody>
</table>

Source: https://www.youtube.com/watch?v=bx2T-V8XR&index=1&list=PLiaHhY2iBX9hdHaRt6b7XevZtgZRa1PoU
<table>
<thead>
<tr>
<th>Hours Sleep</th>
<th>Hours Study</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>82</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>93</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hours Sleep</th>
<th>Hours Study</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
<td>?</td>
</tr>
</tbody>
</table>
Y = WX + b

Source: https://www.youtube.com/watch?v=G8eNWzxOgqE
\[Y = W X + b \]

Output -> input

Weights

bias

Trained

Source: https://www.youtube.com/watch?v=G8eNWzxOgqE
$W X + b = Y$

Scores → Probabilities

Source: https://www.youtube.com/watch?v=G8eNWzxOgqE
SoftMAX

\[W \times X + b = Y \]

\[S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} \]

Logits \quad \text{Scores} \quad \text{Probabilities}

Source: https://www.youtube.com/watch?v=G8eNWzxOgqE
\[
S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} = \frac{e^{2.0}}{e^{2.0}+e^{1.0}+e^{0.1}} = \frac{2.7182^{2.0}}{2.7182^{2.0}+2.7182^{1.0}+2.7182^{0.1}} = 0.7
\]

\[
S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} = \frac{e^{1.0}}{e^{2.0}+e^{1.0}+e^{0.1}} = \frac{2.7182^{1.0}}{2.7182^{2.0}+2.7182^{1.0}+2.7182^{0.1}} = 0.2
\]

\[
S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}} = \frac{e^{0.1}}{e^{2.0}+e^{1.0}+e^{0.1}} = \frac{2.7182^{0.1}}{2.7182^{2.0}+2.7182^{1.0}+2.7182^{0.1}} = 0.1
\]

\[
W \mathbf{X} + \mathbf{b} = \mathbf{Y}
\]

\[
\begin{bmatrix}
2.0 \\
1.0 \\
0.1
\end{bmatrix}
\]

\[
S(y_i) = \frac{e^{y_i}}{\sum_j e^{y_j}}
\]

\[
\begin{bmatrix}
0.7 \\
0.2 \\
0.1
\end{bmatrix}
\]

Logits \rightarrow Scores \rightarrow Probabilities

Source: https://www.youtube.com/watch?v=G8eNWzxOgqE
Training a Network

= Minimize the Cost Function

Source: https://www.youtube.com/watch?v=bxe2T-V8XRs&index=1&list=PLiaHhY2iBX9hdHaRr6b7XevZtgZRa1PoU
Training a Network

= Minimize the Cost Function

Minimize the Loss Function

Source: https://www.youtube.com/watch?v=bxet-V8XR&s=index=1&list=PLiaHhY2iBX9hdHaRt6b7XevZtgZRa1PoU
Error = Predict Y - Actual Y

Error : Cost : Loss

Source: https://www.youtube.com/watch?v=bxen2T-V8XR&index=1&list=PLiaHhY2iBX9hdHaR6b7XevZtgZRa1PoU
Error = Predict Y - Actual Y
Error : Cost : Loss

Source: https://www.youtube.com/watch?v=bx2T-V7XR&index=1&list=PLiaHhY2iBX9hdHaRt6b7XevZtgZRa1PoU
Error = Predict Y - Actual Y
Error : Cost : Loss

Source: https://www.youtube.com/watch?v=bx2T-V8XR&index=1&list=PLiaHhY2tBX9hdHaRt6b7XevZtgZRa1PoU
Activation Functions
Activation Functions

Sigmoid

TanH

ReLU
(Rectified Linear Unit)

\[f(x) = \max(0, x) \]

Activation Functions

Sigmoid: \(f(x) = \frac{1}{1 + e^{-x}} \)

TanH: \(\tanh(x) = \frac{2}{1 + e^{-2x}} - 1 \)

ReLU: \(f(x) = \begin{cases}
0 & \text{for } x < 0 \\
 x & \text{for } x \geq 0
\end{cases} \)
Loss Function
Binary Classification: 2 Class

Activation Function: Sigmoid

Loss Function: Binary Cross-Entropy
Multiple Classification: 10 Class

Activation Function: SoftMAX

Loss Function: Categorical Cross-Entropy
Dropout

Dropout: a simple way to prevent neural networks from overfitting

(a) Standard Neural Net

(b) After applying dropout.

Learning Algorithm

While not done:

Pick a random training example “(input, label)”
Run neural network on “input”
Adjust weights on edges to make output closer to “label”

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
\[y = \max(0, -0.21 \times x_1 + 0.3 \times x_2 + 0.7 \times x_3) \]
Next time:

\[y = \max(0, -0.23 \times x_1 + 0.31 \times x_2 + 0.65 \times x_3) \]

\[y = \max(0, -0.21 \times x_1 \lor 0.3 \times x_2 \lor 0.7 \times x_3) \]

Weights
Optimizer: Stochastic Gradient Descent (SGD)

$J(w)$

w

Initial weight

Global cost minimum

Gradient
This shows a function of 2 variables: real neural nets are functions of hundreds of millions of variables!
Neural Network and Deep Learning

28 × 28 = 784

1.00 “Activation”

Source: 3Blue1Brown (2017), But what *is* a Neural Network? | Chapter 1, deep learning, https://www.youtube.com/watch?v=aircAruvnKk
Gradient Descent
how neural networks learn

Average cost of all training data...

\[
\text{Cost of } g = (0.18 - 0.00)^2 + (0.29 - 0.00)^2 + (0.58 - 0.00)^2 + (0.77 - 0.00)^2 + (0.20 - 0.00)^2 + (0.36 - 0.00)^2 + (0.93 - 0.00)^2 + (1.00 - 0.00)^2 + (0.95 - 1.00)^2 + (0.35 - 0.00)^2
\]

What’s the “cost” of this difference?

Source: 3Blue1Brown (2017), Gradient descent, how neural networks learn | Chapter 2, deep learning, https://www.youtube.com/watch?v=IHZwWFHWa-w
Backpropagation

Source: 3Blue1Brown (2017), What is backpropagation really doing? | Chapter 3, deep learning, https://www.youtube.com/watch?v=Ilg3gGewQ5U
Learning Algorithm

While not done:

Pick a random training example “(input, label)”
Run neural network on “input”
Adjust weights on edges to make output closer to “label”

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
Financial
Time Series
Forecasting
Time Series Data

![Graph showing time series data for AAPL with different moving averages: Adj Close, MA05, MA20, MA60. The graph displays data from 2015-02 to 2018-10, showing trends and fluctuations.](image-url)
Time Series Data

\[[100, 110, 120, 130, 140, 150] \]
The Quant Finance PyData Stack

- PyThalesians
- Zipline
- DX Analytics

- Quantopian
- PyTables
- NetworkX
- PyAlgoTrade
- QuantLib

- StatsModels
- Statistics in Python

- matplotlib
- pandas

- SciPy

- NumPy

- Python

- IPython

- SymPy

- jupyter

Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#5
```python
# !pip install pandas_datareader
import pandas as pd
import pandas_datareader.data as web
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt

# Read Stock Data from Yahoo Finance
end = dt.datetime.now()
start = dt.datetime(2016, 1, 1)
df = web.DataReader('AAPL', 'yahoo', start, end)
df.to_csv('AAPL.csv')
df.tail()

df['Adj Close'].plot(legend=True, figsize=(12, 8), title='AAPL', label='Adj Close')
plt.figure(figsize=(12, 9))
top = plt.subplot2grid((12, 9), (0, 0), rowspan=10, colspan=9)
bottom = plt.subplot2grid((12, 9), (10, 0), rowspan=2, colspan=9)
top.plot(df.index, df['Adj Close'], color='blue')
bottom.bar(df.index, df['Volume'])

# set the labels
top.set_title('AAPL')
top.set_ylabel('Adj Close')
bottom.set_ylabel('Volume')
sns.distplot(df['Adj Close'].dropna(), bins=50, color='purple')

# simple moving averages
df['MA05'] = df['Adj Close'].rolling(5).mean()  # 5 days
df['MA20'] = df['Adj Close'].rolling(20).mean()  # 20 days
df['MA60'] = df['Adj Close'].rolling(60).mean()  # 60 days
df = pd.DataFrame(df['Adj Close']
df['MA05'] = df['MA05']
df['MA20'] = df['MA20']
df['MA60'] = df['MA60']

df2.plot(figsize=(12, 9), legend=True, title='AAPL')
df2.to_csv('AAPL_MA.csv')
fig = plt.gcf()
fig.set_size_inches(12, 9)
fig.savefig('AAPL_plot.png', dpi=300)
```
pandas

Python Data Analysis Library

providing high-performance, easy-to-use data structures and data analysis tools for the Python programming language.

Source: http://pandas.pydata.org/
pandas Ecosystem

- **Statistics and Machine Learning**
 - Statsmodels
 - sklearn-pandas

- **Visualization**
 - Bokeh
 - yhat/ggplot
 - Seaborn
 - Vincent
 - IPython Vega
 - Plotly
 - Pandas-Qt

- **IDE**
 - IPython
 - quantopian/qgrid
 - Spyder

- **API**
 - pandas-datareader
 - quandl/Python
 - pydatastream
 - pandaSDMX
 - fredapi

- **Domain Specific**
 - Geopandas
 - xarray

- **Out-of-core**
 - Dask
 - Blaze
 - Odo

pandas-datareader

Up to date remote data access for pandas, works for multiple versions of pandas.

⚠ Warning

As of v0.6.0 Yahoo!, Google Options, Google Quotes and EDGAR have been immediately deprecated due to large changes in their API and no stable replacement.

⚠ Note

As of v0.6.0 Google finance is still functioning for historical price data, although there are frequent reports of failures. Failure is frequently encountered when bulk downloading historical price data.

Usage

Starting in 0.19.0, pandas no longer supports `pandas.io.data` or `pandas.io.wb`, so you must replace your imports from `pandas.io` with those from `pandas_datareader`:

```python
from pandas.io import data, wb
# becomes
from pandas_datareader import import data, wb
```

Many functions from the data module have been included in the top level API.

Get Financial Data Directly into Python

Get millions of financial and economic datasets from hundreds of publishers directly into Python.

Load Quandl Data Directly Into Python

All the Data You Want
Quandl unifies financial and economic datasets from hundreds of publishers on a single user-friendly platform.

Directly Into Python

https://www.quandl.com/tools/python
PyDatastream

PyDatastream 0.5.1

pip install PyDatastream

Python interface to the Thomson Reuters Dataworks Enterprise (Datastream) API

Navigation

- Project description
- Release history
- Download files

Project description

PyDatastream is a Python interface to the Thomson Dataworks Enterprise (DWE) SOAP API (non free), with some convenience functions for retrieving Datastream data specifically. This package requires valid credentials for this API.

For the documentation please refer to README.md inside the package or on the GitHub (https://github.com/vfillimonov/pydatastream/blob/master/README.md).

https://pypi.org/project/PyDatastream/
pandaSDMX: Statistical Data and Metadata eXchange in Python

pandaSDMX is an Apache 2.0-licensed Python client to retrieve and acquire statistical data and metadata disseminated in SDMX 2.1, an ISO-standard widely used by institutions such as statistics offices, central banks, and international organisations. pandaSDMX exposes datasets and related structural metadata including dataflows, codelists, and datastructure definitions as pandas Series or multi-indexed DataFrames. Many other output formats and storage backends are available thanks to Odo.

Supported data providers

pandaSDMX ships with built-in support for the following agencies (others may be configured by the user):

- Australian Bureau of Statistics (ABS)
- European Central Bank (ECB)
- Eurostat
- French National Institute for Statistics (INSEE)
- Instituto Nacional de la Estadistica y Geografia - INEGI (Mexico)
- International Monetary Fund (IMF) - SDMX Central only
- International Labour Organization (ILO)
- Italian statistics Office (ISTAT)
- Norges Bank (Norway)
- Organisation for Economic Cooperation and Development (OECD)
- United Nations Statistics Division (UNSD)
- UNESCO (free registration required)
- World Bank - World Integrated Trade Solution (WITS)

https://pandasdmx.readthedocs.io/en/latest/
Fred API

FRED® API

General Documentation | API | Toolkits

The FRED® API is a web service that allows developers to write programs and build applications that retrieve economic data from the FRED® and ALFRED® websites hosted by the Economic Research Division of the Federal Reserve Bank of St. Louis. Requests can be customized according to data source, release, category, series, and other preferences.

General Documentation

- Overview
- What is FRED®?
- What is ALFRED®?
- FRED® versus ALFRED®
- Real-Time Periods
- Errors

API

Categories

- fred/category – Get a category.
- fred/category/children – Get the child categories for a specified parent category.
- fred/category/related – Get the related categories for a category.
- fred/category/series – Get the series in a category.
- fred/category/tags – Get the tags for a category.
- fred/category/related_tags – Get the related tags for a category.

https://research.stlouisfed.org/docs/api/fred/
Python Pandas for Finance

Source: https://mapattack.wordpress.com/2017/02/12/using-python-for-stocks-1/
! pip install pandas_datareader

Collecting pandas_datareader
 Downloading https://files.pythonhosted.org/packages/cc/5c/ea5b6dced0f55c5fbb1e37fb45335ec01c3c0199b8a79339137f5ed269e0/pandas_datareader-0.7.0.tar.gz (112kB)
 100% |████████████████████████████████| 112kB 2.7MB/s

Collecting lxml (from pandas_datareader)
 Downloading https://files.pythonhosted.org/packages/03/a4/9ee4b035f5c7670e5eab97f34ff2e0d7d78a491bf96df5acc3db0e63f5/lxml-4.2.5-cp36-cp36m-macosx_10_9_24.9.png (5.8MB)
 100% |████████████████████████████████| 5.8MB 7.5MB/s

Requirement already satisfied: pandas>=0.19.2 in /usr/local/lib/python3.6/dist-packages (from pandas_datareader) (0.22.0)
Requirement already satisfied: requests>=2.3.0 in /usr/local/lib/python3.6/dist-packages (from pandas_datareader) (2.18.4)
Requirement already satisfied: wrapt in /usr/local/lib/python3.6/dist-packages (from pandas_datareader) (1.10.11)
Requirement already satisfied: python-dateutil>=2.0 in /usr/local/lib/python3.6/dist-packages (from pandas-datareader) (2.8.1)
Requirement already satisfied: numpy>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from pandas-datareader) (1.14.0)
Requirement already satisfied: idna<=2.5 in /usr/local/lib/python3.6/dist-packages (from requests>=2.3.0->pandas_datareader) (2.5)
Requirement already satisfied: urllib3<1.23,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->2.3.0->pandas_datareader) (1.21.1)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2->pandas-datareader) (1.11.0)
Installing collected packages: lxml, pandas_datareader
Successfully installed lxml-4.2.5 pandas-datareader-0.7.0
conda install pandas-datareader

[Output]

conda install pandas-datareader

Package plan for installation in environment /Users/imi/anaconda:

The following NEW packages will be INSTALLED:

- pandas-datareader: 0.2.1-py36_0
 requests-file: 1.4.1-py36_0

Proceed ([y]/n)? y

requests-file- 100% |##| Time: 0:00:00 1.55 MB/s
pandas-datareader 100% |##| Time: 0:00:00 409.66 kB/s

[Output]

packages in environment at /Users/imi/anaconda:

- _license 1.1 py36_1
- alabaster 0.7.9 py36_0
- anaconda 4.3.1 np111py36_0
- anaconda-client 1.6.0 py36_0
- anaconda-navigator 1.5.0 py36_0
- anaconda-project 0.4.1 py36_0
Finance Data from Yahoo Finance

!pip install pandas_datareader
import pandas_datareader.data as web
import datetime as dt

Read Stock Data from Yahoo Finance
end = dt.datetime(2017, 12, 31)
start = dt.datetime(2016, 1, 1)
df = web.DataReader("AAPL", 'yahoo', start, end)
df.to_csv('AAPL.csv')
df.from_csv('AAPL.csv')
df.tail()
!pip install pandas_datareader
import pandas as pd
import pandas_datareader.data as web
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt

%matplotlib inline

#Read Stock Data from Yahoo Finance
end = dt.datetime.now()
#start = dt.datetime(end.year-2, end.month, end.day)
start = dt.datetime(2016, 1, 1)
df = web.DataReader("AAPL", 'yahoo', start, end)
df.to_csv('AAPL.csv')
df.from_csv('AAPL.csv')
df.tail()
df['Adj Close'].plot(legend=True, figsize=(12,8), title='AAPL', label='Adj Close')
```python
plt.figure(figsize=(12,9))
top = plt.subplot2grid((12,9), (0, 0), rowspan=10, colspan=9)
bottom = plt.subplot2grid((12,9), (10,0), rowspan=2, colspan=9)
top.plot(df.index, df['Adj Close'], color='blue')  # df.index gives the dates
bottom.bar(df.index, df['Volume'])
```
set the labels
top.axes.get_xaxis().set_visible(False)
top.set_title('AAPL')
top.set_ylabel('Adj Close')
bottom.set_ylabel('Volume')

plt.figure(figsize=(12,9))
sns.distplot(df['Adj Close'].dropna(), bins=50, color='purple')
simple moving averages

df['MA05'] = df['Adj Close'].rolling(5).mean() # 5 days

df['MA20'] = df['Adj Close'].rolling(20).mean() # 20 days

df['MA60'] = df['Adj Close'].rolling(60).mean() # 60 days

df2 = pd.DataFrame({'Adj Close': df['Adj Close'], 'MA05': df['MA05'], 'MA20': df['MA20'], 'MA60': df['MA60']})

df2.plot(figsize=(12, 9), legend=True, title='AAPL')

df2.to_csv('AAPL_MA.csv')

fig = plt.gcf()
fig.set_size_inches(12, 9)
fig.savefig('AAPL_plot.png', dpi=300)
plt.show()
!pip install pandas_datareader
import pandas as pd
import pandas_datareader.data as web
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt
%matplotlib inline

#Read Stock Data from Yahoo Finance
end = dt.datetime.now()
#start = dt.datetime(end.year-2, end.month, end.day)
start = dt.datetime(2016, 1, 1)
df = web.DataReader("AAPL", 'yahoo', start, end)
df.to_csv('AAPL.csv')
df.from_csv('AAPL.csv')
df.tail()

df['Adj Close'].plot(legend=True, figsize=(12, 8), title='AAPL', label='Adj Close')
plt.figure(figsize=(12,9))
top = plt.subplot2grid((12,9), (0, 0), colspan=9)
bottom = plt.subplot2grid((12,9), (10,0), colspan=9)
top.plot(df.index, df['Adj Close'], color='blue')
bottom.bar(df.index, df['Volume'])

set the labels
top.axes.get_xaxis().set_visible(False)
top.set_title('AAPL')
top.set_ylabel('Adj Close')
bottom.set_ylabel('Volume')

plt.figure(figsize=(12,9))
sns.distplot(df['Adj Close'].dropna(), bins=50, color='purple')

simple moving averages
df['MA05'] = df['Adj Close'].rolling(5).mean() #5 days
df['MA20'] = df['Adj Close'].rolling(20).mean() #20 days
df['MA60'] = df['Adj Close'].rolling(60).mean() #60 days
df2 = pd.DataFrame({'Adj Close': df['Adj Close'], 'MA05': df['MA05'], 'MA20': df['MA20'], 'MA60': df['MA60']})
df2.plot(figsize=(12, 9), legend=True, title='AAPL')
df2.to_csv('AAPL_MA.csv')
fig = plt.gcf()
fig.set_size_inches(12,9)
fig.savefig('AAPL_plot.png', dpi=300)
plt.show()
```python
# !pip install pandas_datareader
import pandas as pd
import pandas_datareader.data as web
import matplotlib.pyplot as plt
import seaborn as sns
import datetime as dt

# Read Stock Data from Yahoo Finance
end = dt.datetime.now()
# start = dt.datetime(end.year-2, end.month, end.day)
start = dt.datetime(2016, 1, 1)
df = web.DataReader("AAPL", 'yahoo', start, end)
df.to_csv('AAPL.csv')
df.from_csv('AAPL.csv')
df.tail()

df['Adj Close'].plot(legend=True, figsize=(12, 8), title='AAPL', label='Adj Close')
plt.figure(figsize=(12,9))
top = plt.subplot2grid((12,9), (0, 0), colspan=9)
bottom = plt.subplot2grid((12,9), (10,0), colspan=9)
top.plot(df.index, df['Adj Close'], color='blue') # df.index gives the dates
bottom.bar(df.index, df['Volume'])

# set the labels
top.axes.get_xaxis().set_visible(False)
top.set_title('AAPL')
top.set_ylabel('Adj Close')
bottom.set_ylabel('Volume')

plt.figure(figsize=(12,9))
sns.distplot(df['Adj Close'].dropna(), bins=50, color='purple')

# simple moving averages
df['MA05'] = df['Adj Close'].rolling(5).mean() #5 days
df['MA20'] = df['Adj Close'].rolling(20).mean() #20 days
df['MA60'] = df['Adj Close'].rolling(60).mean() #60 days
df2 = pd.DataFrame({"Adj Close": df['Adj Close'], 'MA05': df['MA05'], 'MA20': df['MA20'], 'MA60': df['MA60']})
df2.plot(figsize=(12, 9), legend=True, title='AAPL')
df2.to_csv('AAPL_MA.csv')
fig = plt.gcf()
fig.set_size_inches(12, 9)
fig.savefig('AAPL_plot.png', dpi=300)
plt.show()
# ! pip install quandl
import quandl
# quandl.ApiConfig.api_key = "YOURAPIKEY"
df = quandl.get("WIKI/AAPL", start_date="2016-01-01", end_date="2017-12-31")
df.to_csv('AAPL.csv')
df.from_csv('AAPL.csv')
df.tail()

Finance Data from Quandl
Deep Learning
with
TensorFlow
Get started with TensorFlow

There are new tutorials to get started with TensorFlow using tf.keras and eager execution. Run the Colab notebooks directly in the browser.

TensorFlow 1.12 is here!

TensorFlow 1.12 is available, see the release notes for the latest updates.

Announcing TensorFlow.js

Learn about our JavaScript library for machine learning in the browser.

https://www.tensorflow.org/
Deep Learning Software

• TensorFlow
  – TensorFlow™ is an open source software library for high performance numerical computation.

• Keras
  – Deep Learning library for TensorFlow, CNTK

• PyTorch
  – An open source deep learning platform that provides a seamless path from research prototyping to production deployment.

• CNTK
  – Computational Network Toolkit by Microsoft Research

Source: http://deeplearning.net/software_links/
tf.keras

Keras:
High-level API for TensorFlow
Keras: The Python Deep Learning library

You have just found Keras.

Keras is a high-level neural networks API, written in Python and capable of running on top of TensorFlow, CNTK, or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

Use Keras if you need a deep learning library that:

- Allows for easy and fast prototyping (through user friendliness, modularity, and extensibility).
- Supports both convolutional networks and recurrent networks, as well as combinations of the two.
- Runs seamlessly on CPU and GPU.

Read the documentation at Keras.io.

Keras is compatible with: Python 2.7-3.6.

http://keras.io/
FROM RESEARCH TO PRODUCTION

An open source deep learning platform that provides a seamless path from research prototyping to production deployment.

http://pytorch.org/
Keras
Keras

- Keras is a high-level neural networks API
- Written in Python and capable of running on top of TensorFlow, CNTK, or Theano.
- It was developed with a focus on enabling fast experimentation.
- Being able to go from idea to result with the least possible delay is key to doing good research.

Source: https://keras.io/
Google TensorFlow

TensorFlow is an Open Source Software Library for Machine Intelligence

About TensorFlow

TensorFlow™ is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

https://www.tensorflow.org/
TensorFlow Playground

Tinker With a **Neural Network** Right Here in Your Browser.
Don’t Worry, You Can’t Break It. We Promise.

<table>
<thead>
<tr>
<th>Iterations</th>
<th>Learning rate</th>
<th>Activation</th>
<th>Regularization</th>
<th>Regularization rate</th>
<th>Problem type</th>
</tr>
</thead>
<tbody>
<tr>
<td>000,582</td>
<td>0.03</td>
<td>Tanh</td>
<td>None</td>
<td>0</td>
<td>Classification</td>
</tr>
</tbody>
</table>

**DATA**
Which dataset do you want to use?

- [ ] Iris data
- [ ] MNIST

**INPUT**
Which properties do you want to feed in?

- [ ] X_1
- [ ] X_2
- [ ] X_1^2
- [ ] X_2^2
- [ ] X_1*X_2

**HIDDEN LAYERS**
3 layers:
- 4 neurons
- 2 neurons
- 2 neurons

**OUTPUT**
Test loss 0.000
Training loss 0.000

The outputs are mixed with varying weights, shown by the thickness of the lines.

This is the output from one neuron. Hover to see it larger.

TensorFlow is an Open Source Software Library for Machine Intelligence

https://www.tensorflow.org/
numerical computation using data flow graphs

https://www.tensorflow.org/
Tensor

• 3
  – # a rank 0 tensor; this is a scalar with shape []
• [1., 2., 3.]
  – # a rank 1 tensor; this is a vector with shape [3]
• [[1., 2., 3.], [4., 5., 6.]]
  – # a rank 2 tensor; a matrix with shape [2, 3]
• [[[1., 2., 3.]], [[7., 8., 9.]]]
  – # a rank 3 tensor with shape [2, 1, 3]

https://www.tensorflow.org/
Scalar

Vector

Matrix

Tensor
Nodes:
mathematical operations

edges:
multidimensional data arrays (tensors)
communicated between nodes
Computation is a Dataflow Graph

Graph of **Nodes**, also called **Operations** or **ops**.

- **bias**
- **weights**
- **examples**
- **labels**

**Source:** Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
Computation is a Dataflow Graph

Edges are N-dimensional arrays: **Tensors**

- Bias
- Weights
- Inputs
- Targets
- MatMul
- Add
- Relu
- Xent

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
Logistic Regression as Dataflow Graph

Edges are N-dimensional arrays: Tensors

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
Computation is a Dataflow Graph

with state

‘Biases’ is a variable

Some ops compute gradients

-= updates biases

Source: Jeff Dean (2016), Large-Scale Deep Learning For Building Intelligent Computer Systems, WSDM 2016
Data Flow Graph

Source: https://www.tensorflow.org/
Data Flow Graph

Source: https://www.tensorflow.org/
Data Flow Graph
TensorFlow
TensorBoard

https://www.tensorflow.org/tensorboard/index.html#graphs
Getting Started With TensorFlow

This guide gets you started programming in TensorFlow. Before using this guide, install TensorFlow. To get the most out of this guide, you should know the following:

- How to program in Python.
- At least a little bit about arrays.
- Ideally, something about machine learning. However, if you know little or nothing about machine learning, then this is still the first guide you should read.

TensorFlow provides multiple APIs. The lowest level API—TensorFlow Core—provides you with complete programming control. We recommend TensorFlow Core for machine learning researchers and others who require fine levels of control over their models. The higher level APIs are built on top of TensorFlow Core. These higher level APIs are typically easier to learn and use than TensorFlow Core. In addition, the higher level APIs make repetitive tasks easier and more consistent between different users. A high-level API like tf.estimator helps you manage data sets, estimators, training and inference.

This guide begins with a tutorial on TensorFlow Core. Later, we demonstrate how to implement the same model in tf.estimator. Knowing TensorFlow Core principles will give you a great mental model of how things are working internally when you use the more compact higher level API.

Source: https://www.tensorflow.org/get_started/get_started
Try your first TensorFlow

$ python

```python
>>> import tensorflow as tf
>>> hello = tf.constant('Hello, TensorFlow!')
>>> sess = tf.Session()
>>> sess.run(hello)
'Hello, TensorFlow!'
>>> a = tf.constant(10)
>>> b = tf.constant(32)
>>> sess.run(a+b)
42
```
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
sess.run(hello)

b'Hello, TensorFlow!'
```
import tensorflow as tf
sess = tf.Session()
a = tf.constant(10)
b = tf.constant(32)
sess.run(a+b)
```
**Linear Regression Model**

```python
import tensorflow as tf

Model parameters
W = tf.Variable([.3], dtype=tf.float32)
b = tf.Variable([-3], dtype=tf.float32)
Model input and output
x = tf.placeholder(tf.float32)
linear_model = W*x + b
y = tf.placeholder(tf.float32)

loss
loss = tf.reduce_sum(tf.square(linear_model - y)) # sum of the squares
optimizer
optimizer = tf.train.GradientDescentOptimizer(0.01)
train = optimizer.minimize(loss)

training data
x_train = [1, 2, 3, 4]
y_train = [0, -1, -2, -3]
training loop
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init) # reset values to wrong
for i in range(1000):
 sess.run(train, {x: x_train, y: y_train})

evaluate training accuracy
curr_W, curr_b, curr_loss = sess.run([W, b, loss], {x: x_train, y: y_train})
print("W: %s b: %s loss: %s"%(curr_W, curr_b, curr_loss))

W: [-0.9999969] b: [0.99999082] loss: 5.69997e-11
```

Source: [https://www.tensorflow.org/get_started/get_started](https://www.tensorflow.org/get_started/get_started)
```python
import numpy as np
import tensorflow as tf

feature_columns = [tf.feature_column.numeric_column("x", shape=[1])]

estimator = tf.estimator.LinearRegressor(feature_columns=feature_columns)

x_train = np.array([1., 2., 3., 4.])
y_train = np.array([0., -1., -2., -3.])
x_eval = np.array([2., 5., 8., 1.])
y_eval = np.array([-1.01, -4.1, -7, 0.])

input_fn = tf.estimator.inputs.numpy_input_fn(
 {'x': x_train}, y_train, batch_size=4, num_epochs=None, shuffle=True)
train_input_fn = tf.estimator.inputs.numpy_input_fn(
 {'x': x_train}, y_train, batch_size=4, num_epochs=1000, shuffle=False)
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
 {'x': x_eval}, y_eval, batch_size=4, num_epochs=1000, shuffle=False)

estimator.train(input_fn=input_fn, steps=1000)

train_metrics = estimator.evaluate(input_fn=train_input_fn)
eval_metrics = estimator.evaluate(input_fn=eval_input_fn)
print("train metrics: %r" % train_metrics)
print("eval metrics: %r" % eval_metrics)
```

train metrics: {'average_loss': 2.7210228e-07, 'loss': 1.0884091e-06, 'global_step': 1000}
eval metrics: {'average_loss': 0.0025725411, 'loss': 0.010290165, 'global_step': 1000}
Deep Learning for Financial Time Series Forecasting
Deep Learning for Financial Market Prediction

Stock Market Prediction

Stock Price Prediction

Time Series Prediction
Time Series Data

df['Adj Close'].plot(legend=True, figsize=(12, 8), title='AAPL', label='Adj Close')

<matplotlib.axes._subplots.AxesSubplot at 0x1150bac88>
Time Series Data

\[ [100, 110, 120, 130, 140, 150] \]
Long Short Term Memory (LSTM) for Time Series Forecasting
### Time Series Data

\[
[10, 20, 30, 40, 50, 60, 70, 80, 90]
\]

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>[10 20 30]</td>
<td>40</td>
</tr>
<tr>
<td>[20 30 40]</td>
<td>50</td>
</tr>
<tr>
<td>[30 40 50]</td>
<td>60</td>
</tr>
<tr>
<td>[40 50 60]</td>
<td>70</td>
</tr>
<tr>
<td>[50 60 70]</td>
<td>80</td>
</tr>
<tr>
<td>[60 70 80]</td>
<td>90</td>
</tr>
</tbody>
</table>
Deep Learning for Financial Time Series Forecasting

https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/

```
univariate data preparation
from numpy import array
split a univariate sequence into samples
def split_sequence(sequence, n_steps):
 X, y = list(), list()
 for i in range(len(sequence)):
 # find the end of this pattern
 end_ix = i + n_steps
 # check if we are beyond the sequence
 if end_ix > len(sequence)-1:
 break
 # gather input and output parts of the pattern
 seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
 X.append(seq_x)
 y.append(seq_y)
 return array(X), array(y)
define input sequence
raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]
choose a number of time steps
n_steps = 3
split into samples
X, y = split_sequence(raw_seq, n_steps)
summarize the data
for i in range(len(X)):
 print(X[i], y[i])
```

Source: https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
Deep Learning for Financial Time Series Forecasting

https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/

LSTM for Time Series Forecasting

```python
univariate lstm example
from numpy import array
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
import matplotlib.pyplot as plt
%matplotlib inline

define dataset
X = array([[100, 110, 120], [110, 120, 130], [120, 130, 140], [130, 140, 150], [140, 150, 160]])
y = array([130, 140, 150, 160, 170])
reshape from [samples, timesteps] into [samples, timesteps, features]
X = X.reshape((X.shape[0], X.shape[1], 1))

define model
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(3, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')

fit model
history = model.fit(X, y, epochs=2000, verbose=0)
demonstrate prediction
x_input = array([150, 160, 170])
x_input = x_input.reshape((1, 3, 1))
yhat = model.predict(x_input, verbose=0)
print('yhat', yhat)
print(model.summary())
list all data in history
print(history.history.keys())
summarize history for loss
print('loss:', history.history['loss'][-1])
print('val_loss:', history.history['val_loss'][-1])
plt.plot(history.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

yhat [[181.34615]]
```

Source: https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
Deep Learning for Financial Time Series Forecasting

https://colab.research.google.com/drive/1aEK0eSev8Q-Y0nNY32geFk7CB8pVgSQM

```python
univariate lstm example
from numpy import array
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
import matplotlib.pyplot as plt
split a univariate sequence into samples
def split_sequence(sequence, n_steps):
 X, y = list(), list()
 for i in range(len(sequence)):
 # find the end of this pattern
 end_ix = i + n_steps
 # check if we are beyond the sequence
 if end_ix > len(sequence)-1:
 break
 # gather input and output parts of the pattern
 seq_x, seq_y = sequence[i:end_ix], sequence[end_ix]
 X.append(seq_x)
 y.append(seq_y)
 return array(X), array(y)
define input sequence
raw_seq = [10, 20, 30, 40, 50, 60, 70, 80, 90]
choose a number of time steps
n_steps = 3
split into samples
X, y = split_sequence(raw_seq, n_steps)
reshape from [samples, timesteps] into [samples, timesteps, features]
n_features = 1
X = X.reshape((X.shape[0], X.shape[1], n_features))
define model
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(n_steps, n_features)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
fit model
history = model.fit(X, y, epochs=500, verbose=0)
demonstrate prediction
x_input = array([70, 80, 90])
x_input = x_input.reshape((1, n_steps, n_features))
yhat = model.predict(x_input, verbose=0)
print(yhat)
print('yhat', yhat)
print(model.summary())
```

Source: https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
Deep Learning for Financial Time Series Forecasting

https://colab.research.google.com/drive/1aEK0eSev8Q-Y0nNY32geFk7CB8pVgSQM

Using TensorFlow backend.

[[102.31296]]
yhat [[102.31296]]

<table>
<thead>
<tr>
<th>Layer (type)</th>
<th>Output Shape</th>
<th>Param #</th>
</tr>
</thead>
<tbody>
<tr>
<td>lstm_1 (LSTM)</td>
<td>(None, 50)</td>
<td>10400</td>
</tr>
<tr>
<td>dense_1 (Dense)</td>
<td>(None, 1)</td>
<td>51</td>
</tr>
</tbody>
</table>

Total params: 10,451
Trainable params: 10,451
Non-trainable params: 0

None
dict_keys(['loss'])
loss: 0.000000
loss: 1.2578432517784677e-07

Source: https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
Deep Learning for Financial Time Series Forecasting

https://colab.research.google.com/drive/1aEK0eSev8Q-Y0nNY32geFk7CB8pVgSQM

Source: https://github.com/yash-1337/AAPL_LSTM_Stock_Predictor/blob/master/AAPL_daily_LSTM_stock_predictor.ipynb
The Quant Finance PyData Stack

- PyThalesians
- Zipline
- DX Analytics
- PyAlgoTrade
- QuantLib
- StatsModels
- NetworkX
- scikits-image
- PyMC
- SciPy
- NumPy
- SymPy
- IPython
- Jupyter

Jake VanderPlas

Source: http://nbviewer.jupyter.org/format/slides/github/quantopian/pyfolio/blob/master/pyfolio/examples/overview_slides.ipynb#5
AI + VDI
POC
AI + VDI POS

TensorFlow Models

• M1: Basic Classification (Image Classification) (65 Seconds)

• M2: Basic Text Classification (Text Classification) (46 Seconds)

• M3: Basic Regression (Predict House Prices) (43 Seconds)

• M4: Pix2Pix Eager (Option) (7-8 Hours)

• M5. NMT with Attention (Option) (20-30 minutes)
Basic Classification

Fashion MNIST Image Classification

https://colab.research.google.com/drive/19PJOJi1vn1kjcutlzNHjRSLbeVl4kd5z

Train your first neural network: basic classification

This guide trains a neural network model to classify images of clothing, like sneakers and shirts. It's okay if you don't understand all the details, this is a fast-paced overview of a complete TensorFlow program with the details explained as we go.

This guide uses tf.keras, a high-level API to build and train models in TensorFlow.
Text Classification

IMDB Movie Reviews

https://colab.research.google.com/drive/1x16h1GhHsLrLYtPCvCHaoO1W-i_gror

Copyright 2018 The TensorFlow Authors.

Licensed under the Apache License, Version 2.0 (the "License");
MIT License

Text classification with movie reviews

Download the IMDB dataset
Explore the data
Convert the integers back to words
Prepare the data
Build the model
Hidden units
Loss function and optimizer
Create a validation set
Train the model
Evaluate the model

This notebook classifies movie reviews as positive or negative using the text of the review. This is an example of binary—or two-class—classification, an important and widely applicable kind of machine learning problem.

We'll use the IMDB dataset that contains the text of 50,000 movie reviews from the Internet Movie Database. These are split into 25,000 reviews for training and 25,000 reviews for testing. The training and testing sets are balanced, meaning they contain an equal number of positive and negative reviews.

This notebook uses tf.keras, a high-level API to build and train models in TensorFlow. For a more advanced text classification tutorial using tf.keras, see the MLCC Text Classification Guide.

```python
memory footprint support libraries/code
!ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
!pip install gputil
!pip install putil
!pip install humanize
!import putil
!import humanize
!import os
!import GPUtil as GPU
10 GPU = GPU.getNumGPUs()
11 gpu = GPU[0]
12 def printm():
13 return gpuPromise(on completion)
```
Basic Regression
Predict House Prices

https://colab.research.google.com/drive/1v4c8ZHTnRtgd2_25K_AURjR6SCVBRdj

Copyright 2018 The TensorFlow Authors.

Predict house prices: regression

The Boston Housing Prices dataset

Examples and features

Labels

Normalize features

Create the model

Train the model

Predict

Conclusion

Copyright 2018 The TensorFlow Authors.

2 cells hidden

Predict house prices: regression

In a regression problem, we aim to predict the output of a continuous value, like a price or a probability. Contrast this with a classification problem, where we aim to predict a discrete label (for example, where a picture contains an apple or an orange).

This notebook builds a model to predict the median price of homes in a Boston suburb during the mid-1970s. To do this, we'll provide the model with some data points about the suburb, such as the crime rate and the local property tax rate.

This example uses the \texttt{tf.keras} API, see this guide for details.

```python
memory footprint support libraries/code
!ln -sf /opt/bin/nvidia-smi /usr/bin/nvidia-smi
!pip install gputil
!pip install psutil
!pip install humanize
import psutil
import humanize
import os
import GPUtil as GPU
GPUs = GPU.getGPUs()
gpu = GPUs[0]
def printm():
 process = psutil.Process(os.getpid())
 print("Gen RAM Free: " + humanize.naturalsize(psutil.virtual_memory().available), " | Proc size: ", " | Total {3:0f}MB".format(gpu.memory_info().r
```
AI+VDI POC
ISAC+TKU Test

• AI+VDI POC Folder (3+1 ipynb) (v3.0.20181120)
  – https://drive.google.com/open?id=1qH0emktbEmUz-ot8eFxIkGwJvXIrjtc

• run3models.ipynb
  – https://colab.research.google.com/drive/1HQ1GrIqQUUPCct7_AVgoMwMrh0UqMm0f
Summary

• Deep Learning for Financial Time Series Forecasting with TensorFlow
  – Deep Learning
  – Financial Time Series Forecasting
  – TensorFlow
References

  https://github.com/wesm/pydata-book
• Avinash Jain (2017), Introduction To Python Programming, Udemy,
  https://www.udemy.com/pythonforbeginnersintro/
• Yves Hilpisch (2014), Python for Finance: Analyze Big Financial Data, O'Reilly
• Michael Heydt (2015), Mastering Pandas for Finance, Packt Publishing
• Michael Heydt (2015), Learning Pandas - Python Data Discovery and Analysis Made Easy, Packt Publishing
• James Ma Weiming (2015), Mastering Python for Finance, Packt Publishing
• Fabio Nelli (2015), Python Data Analytics: Data Analysis and Science using PANDAs, matplotlib and the Python Programming Language, Apress
• Jason Brownlee (2018), How to Develop LSTM Models for Time Series Forecasting,
  https://machinelearningmastery.com/how-to-develop-lstm-models-for-time-series-forecasting/
• Deep Learning Basics: Neural Networks Demystified,
  https://www.youtube.com/watch?v=aircAruvnKk
• Deep Learning SIMPLIFIED,
  https://www.youtube.com/watch?v=PLjH1vIseyvgod9wWiYDumYl8hOxixNu
• 3Blue1Brown (2017), But what *is* a Neural Network? | Chapter 1, deep learning,
  https://www.youtube.com/watch?v=allcAruvnKk
• 3Blue1Brown (2017), Gradient descent, how neural networks learn | Chapter 2, deep learning,
  https://www.youtube.com/watch?v=allcAruvnKk
• 3Blue1Brown (2017), What is backpropagation really doing? | Chapter 3, deep learning,
  https://www.youtube.com/watch?v=allcAruvnKk
• TensorFlow: https://www.tensorflow.org/
• Keras: http://keras.io/
• Udacity, Deep Learning,
  https://www.youtube.com/playlist?list=PLAxTw4SYaPn_OWPFT9ulXLuQrImzHfOV
• http://p.migdal.pl/2017/04/30/teaching-deep-learning.html
• https://github.com/leriomaggio/deep-learning-keras-tensorflow