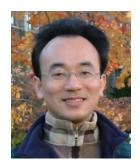
Tamkang University

Big Data Mining

巨量資料探勘

大數據、AI人工智慧與深度學習 (Big Data, Artificial Intelligence and Deep Learning)

1062DM02 MI4 (M2244) (2995) Wed, 9, 10 (16:10-18:00) (B206)



<u>Min-Yuh Day</u> <u>戴敏育</u> Assistant Professor 專任助理教授

Dept. of Information Management, Tamkang University

淡江大學 資訊管理學系

http://mail. tku.edu.tw/myday/ 2018-03-14

課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics)

- 1 2018/02/28 和平紀念日(放假一天) (Peace Memorial Day) (Day off)
- 2 2018/03/07 巨量資料探勘課程介紹 (Course Orientation for Big Data Mining)
- 3 2018/03/14 大數據、AI人工智慧與深度學習 (Big Data, Artificial Intelligence and Deep Learning)
- 4 2018/03/21 關連分析 (Association Analysis)
- 5 2018/03/28 分類與預測 (Classification and Prediction)
- 6 2018/04/04 兒童節(放假一天)(Children's Day) (Day off)
- 7 2018/04/11 分群分析 (Cluster Analysis)
- 8 2018/04/18 個案分析與實作一(SAS EM 分群分析): Case Study 1 (Cluster Analysis - K-Means using SAS EM)

課程大綱 (Syllabus)

週次(Week) 日期(Date) 內容(Subject/Topics)

- 9 2018/04/25 期中報告 (Midterm Project Presentation)
- 10 2018/05/02 期中考試週
- 11 2018/05/09 個案分析與實作二 (SAS EM 關連分析): Case Study 2 (Association Analysis using SAS EM)
- 12 2018/05/16 個案分析與實作三 (SAS EM 決策樹、模型評估): Case Study 3 (Decision Tree, Model Evaluation using SAS EM)
- 13 2018/05/23 個案分析與實作四 (SAS EM 迴歸分析、類神經網路): Case Study 4 (Regression Analysis,

Artificial Neural Network using SAS EM)

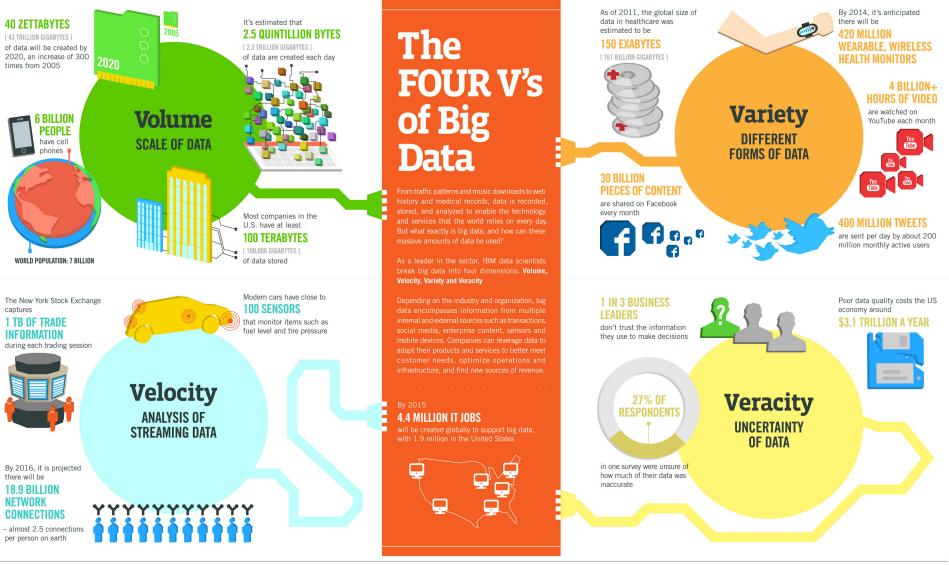
- 14 2018/05/30 期末報告 (Final Project Presentation)
- 15 2018/06/06 畢業考試週

Big Data

Deep Learning

Big Data Analytics and **Data Mining**

Big Data 4 V



Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

TRM

Deep Learning

Artificial Intelligence **(AI)**

Definition of

Artificial Intelligence (A.I.)

Artificial Intelligence

"... the SCIENCE and engineering of making intelligent machines" (John McCarthy, 1955)

Artificial Intelligence

"... technology that thinks and acts like humans"

12

Artificial Intelligence

"... intelligence exhibited by machines or software"

13

4 Approaches of Al

4 Approaches of Al

Thinking Humanly	Thinking Rationally
"The exciting new effort to make comput- ers think machines with minds, in the full and literal sense." (Haugeland, 1985)	"The study of mental faculties through the use of computational models." (Charniak and McDermott, 1985)
"[The automation of] activities that we associate with human thinking, activities such as decision-making, problem solv- ing, learning" (Bellman, 1978)	"The study of the computations that make it possible to perceive, reason, and act." (Winston, 1992)
Acting Humanly	Acting Rationally
"The art of creating machines that per- form functions that require intelligence when performed by people." (Kurzweil, 1990)	"Computational Intelligence is the study of the design of intelligent agents." (Poole et al., 1998)
"The study of how to make computers do things at which, at the moment, people are better." (Rich and Knight, 1991)	"AI is concerned with intelligent be- havior in artifacts." (Nilsson, 1998)

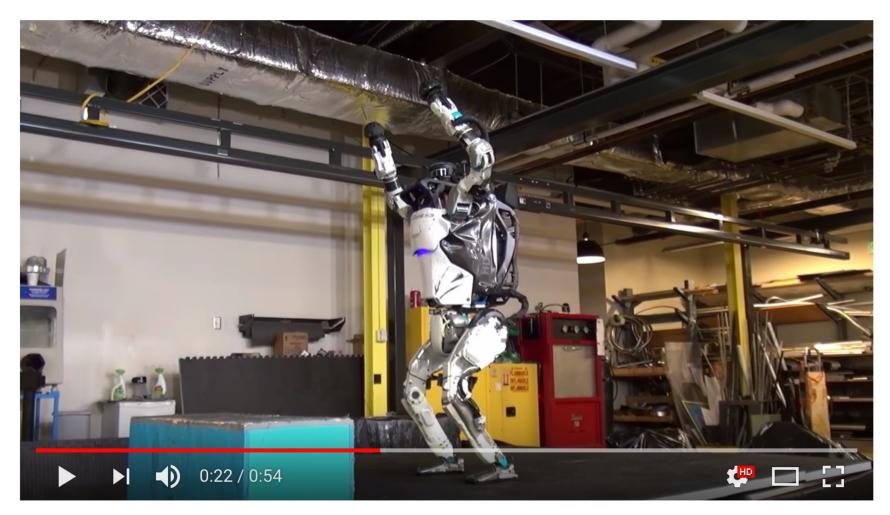
4 Approaches of Al

2.	3.
Thinking Humanly:	Thinking Rationally:
The Cognitive	The "Laws of Thought"
Modeling Approach	Approach
1.	4.
Acting Humanly:	Acting Rationally:
The Turing Test	The Rational Agent
Approach (1950)	Approach

Al Acting Humanly: The Turing Test Approach (Alan Turing, 1950)

- Natural Language Processing (NLP)
- Knowledge Representation
- Automated Reasoning
- Machine Learning (ML)
- Computer Vision
- Robotics

Boston Dynamics: Atlas



#13 ON TRENDING What's new, Atlas?

https://www.youtube.com/watch?v=fRj34o4hN4I

Humanoid Robot: Sophia

https://www.youtube.com/watch?v=S5t6K9iwcdw

Artificial Intelligence (A.I.) Timeline

A.I. TIMELINE

1961

UNIMATE

1950

TURING TEST Computer scientist Alan Turing proposes a intelligence' is coined test for machine intelligence. If a machine can trick humans into thinking it is human, then it has intelligence

1955 A.I. BORN

Term 'artificial First industrial robot, Unimate, goes to work by computer scientist, at GM replacing John McCarthy to describe "the science assembly line and engineering of making intelligent machines"

ODD

and clean homes

1964

Pioneering chatbot developed by Joseph Weizenbaum at MIT with humans

1966 **A.I.**

WINTER

playing computer from Many false starts and dead-ends leave A.I. out champion Garry Kasparov

1998

Cynthia Breazeal at MIT introduces KISmet, an IBM defeats world chess emotionally intelligent robot insofar as it detects and responds to people's feelings

🔅 AlphaGo

1999

AIBO

Sony launches first consumer robot pet dog autonomous robotic AiBO (Al robot) with skills and personality that develop over time

2002

Apple integrates Siri, an intelligent virtual vacuum cleaner from assistant with a voice iRobot learns to navigate interface, into the iPhone 4S

2011

WATSON

IBM's question answering computer Watson wins first place on popular \$1M prize television guiz show

2014

The 'first electronic

Shakey is a general-

that reasons about

its own actions

person' from Stanford,

purpose mobile robot

Eugene Goostman, a chatbot passes the Turing Test with a third of judges believing Eugene is human

2014

Amazon launches Alexa, Microsoft's chatbot Tay an intelligent virtual assistant with a voice interface that completes inflammatory and shopping tasks

2016

1997

DEEP BLUE

Deep Blue, a chess-

goes roque on social media making offensive racist

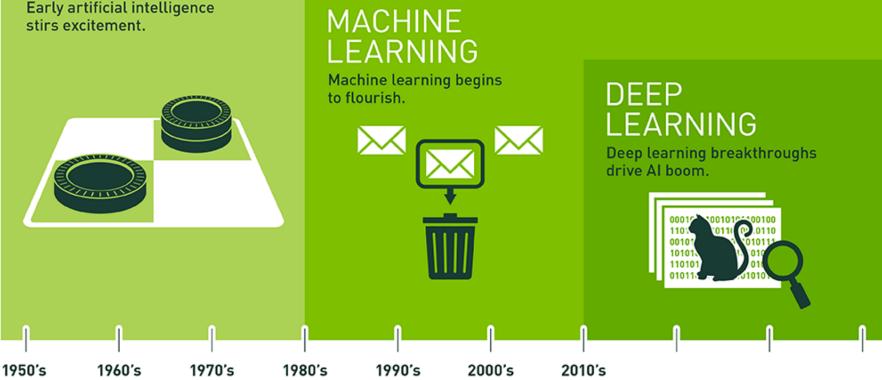
2017 **ALPHAGO** Google's A.I. AlphaGo

beats world champion Ke Jie in the complex board game of Go, notable for its vast number (2¹⁷⁰) of possible positions

Artificial Intelligence Machine Learning & Deep Learning

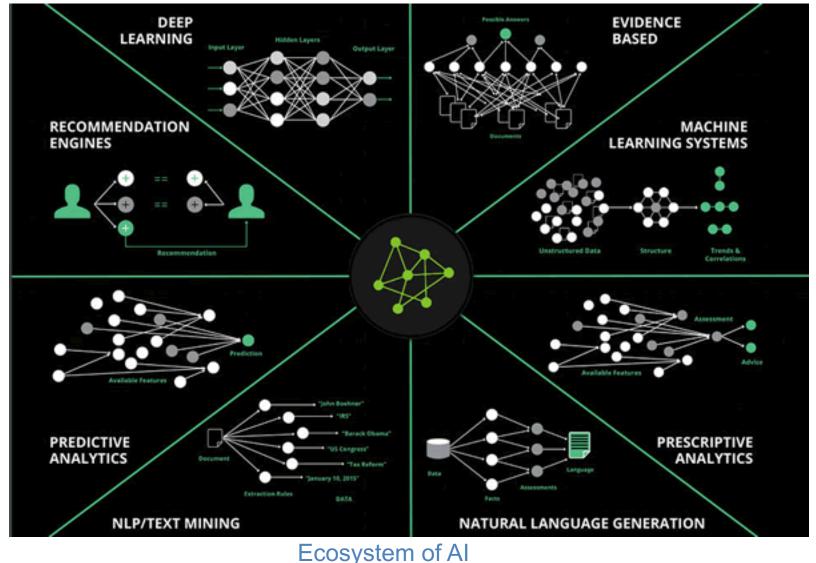
ARTIFICIAL INTELLIGENCE

Early artificial intelligence



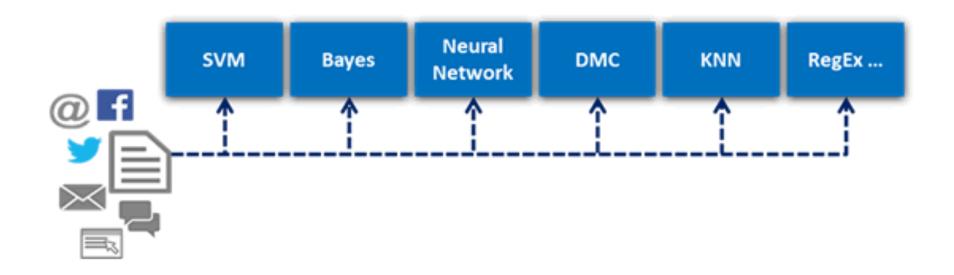
Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

Artificial Intelligence (AI) is many things

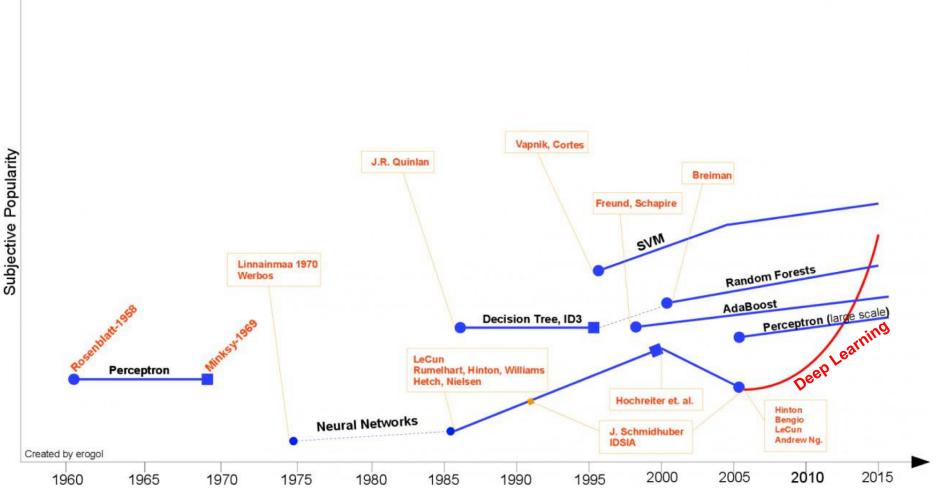


Source: https://www.i-scoop.eu/artificial-intelligence-cognitive-computing/

Artificial Intelligence (AI) Intelligent Document Recognition algorithms

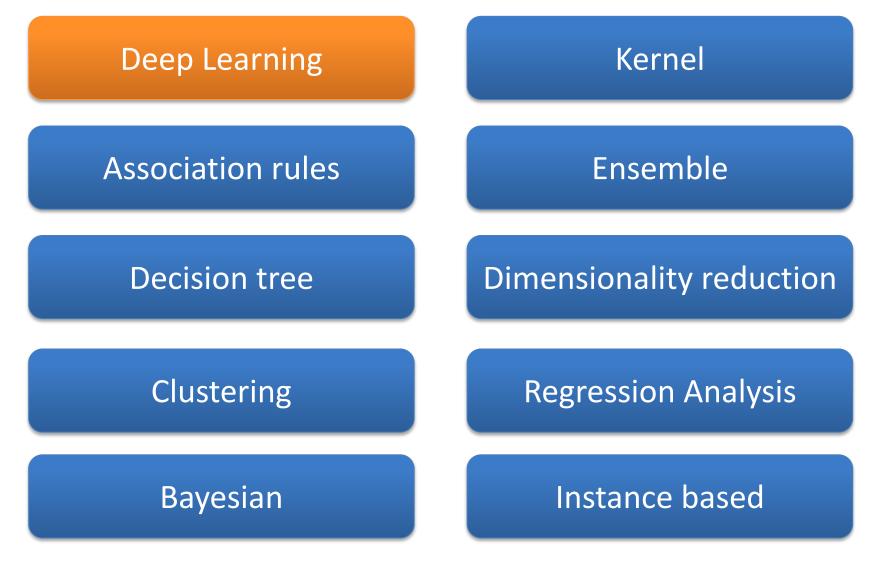


Deep Learning Evolution



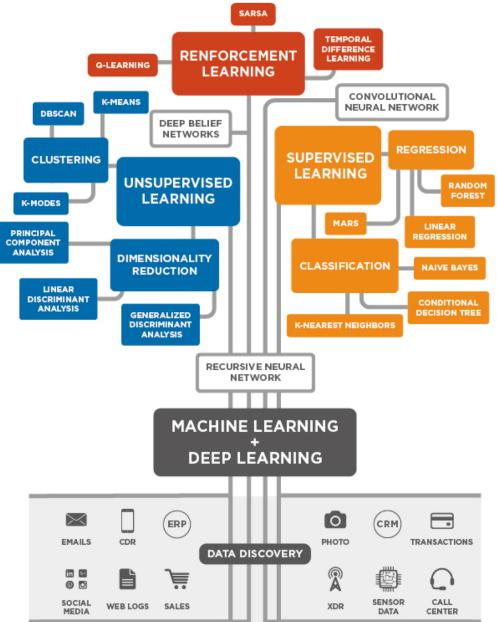
Source: http://www.erogol.com/brief-history-machine-learning/

Machine Learning Models



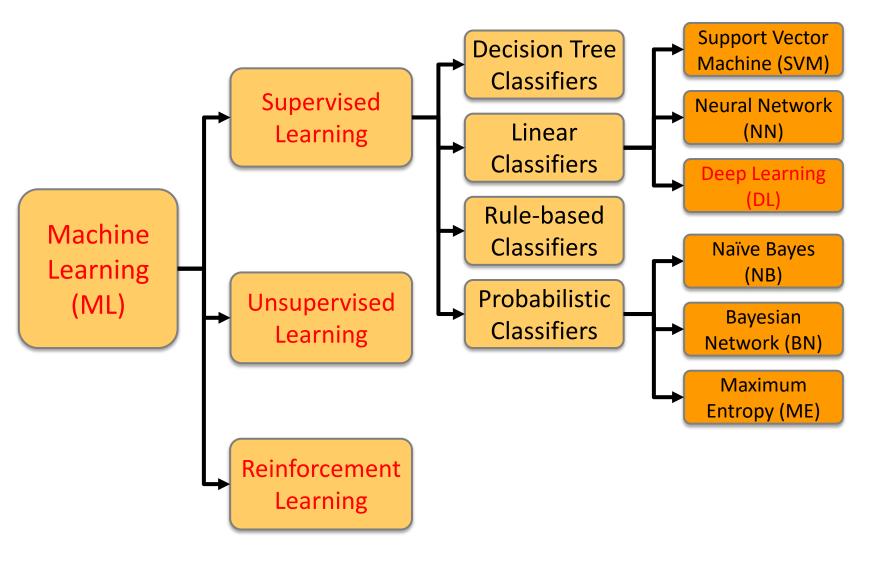
Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing

3 Machine Learning Algorithms

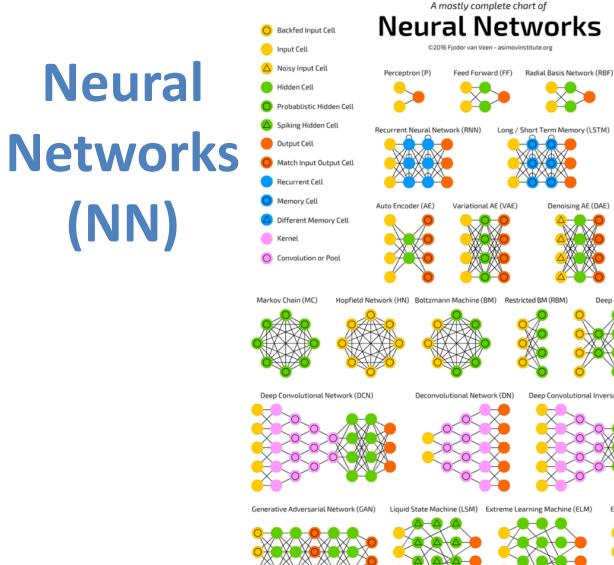


Source: Enrico Galimberti, http://blogs.teradata.com/data-points/tree-machine-learning-algorithms/

Machine Learning (ML) / Deep Learning (DL)



Source: Jesus Serrano-Guerrero, Jose A. Olivas, Francisco P. Romero, and Enrique Herrera-Viedma (2015), "Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.



Deep Residual Network (DRN)

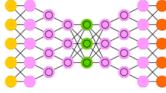
Deep Belief Network (DBN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Network (DCIGN)

Long / Short Term Memory (LSTM) Gated Recurrent Unit (GRU)

Denoising AE (DAE)

Deep Feed Forward (DFF)

Sparse AE (SAE)

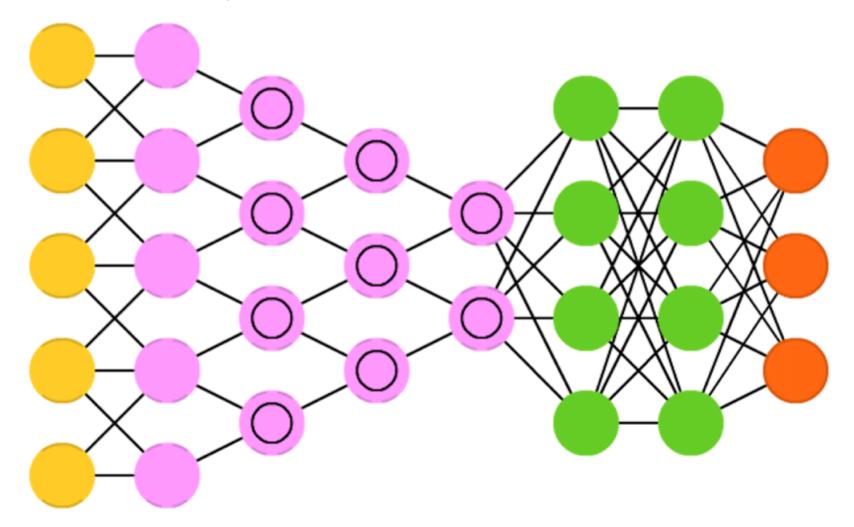


Echo State Network (ESN)

Source: http://www.asimovinstitute.org/neural-network-zoo/

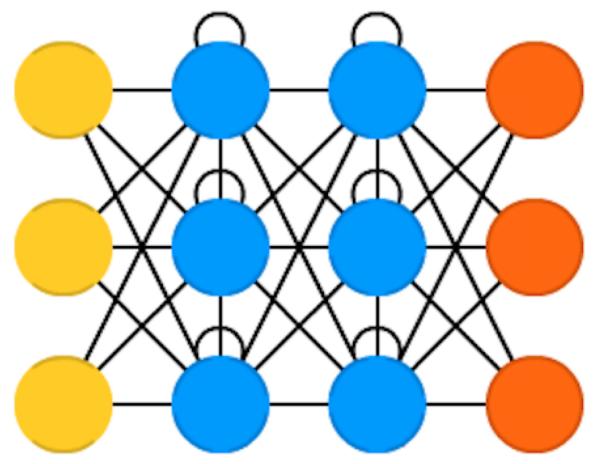
Convolutional Neural Networks

(CNN or Deep Convolutional Neural Networks, DCNN)

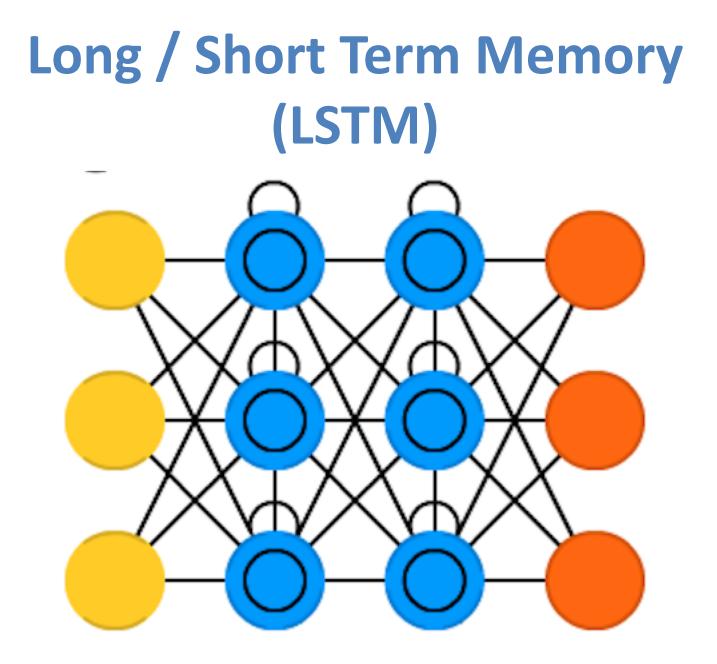


LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324. Source: http://www.asimovinstitute.org/neural-network-zoo/

Recurrent Neural Networks (RNN)



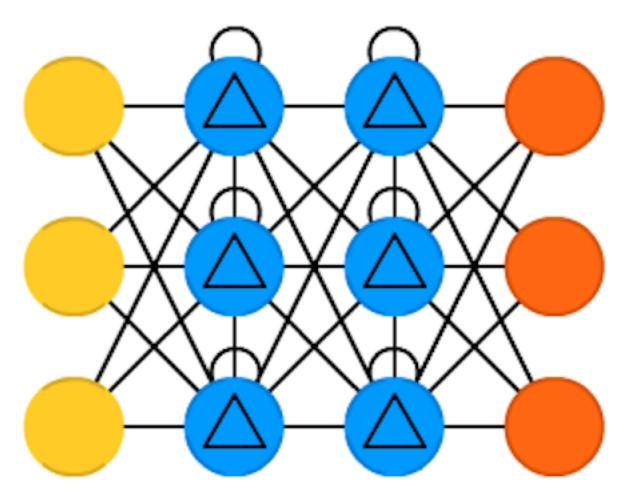
Elman, Jeffrey L. "Finding structure in time." Cognitive science 14.2 (1990): 179-211 Source: http://www.asimovinstitute.org/neural-network-zoo/



Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997): 1735-1780.

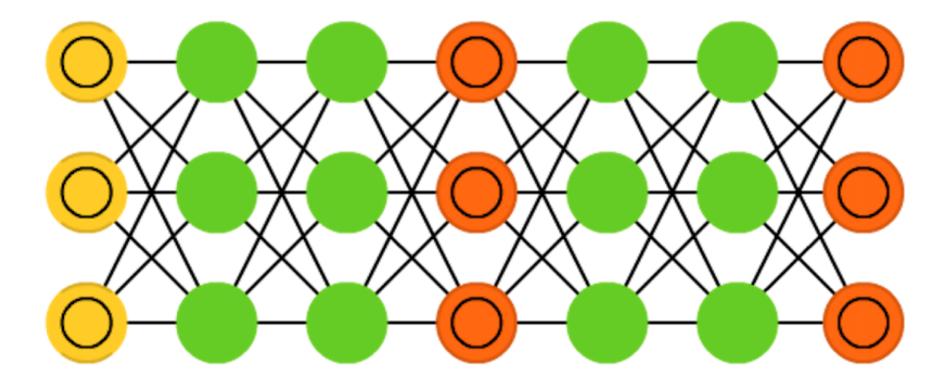
Source: http://www.asimovinstitute.org/neural-network-zoo/

Gated Recurrent Units (GRU)



Chung, Junyoung, et al. "Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv preprint arXiv:1412.3555 (2014). Source: http://www.asimovinstitute.org/neural-network-zoo/

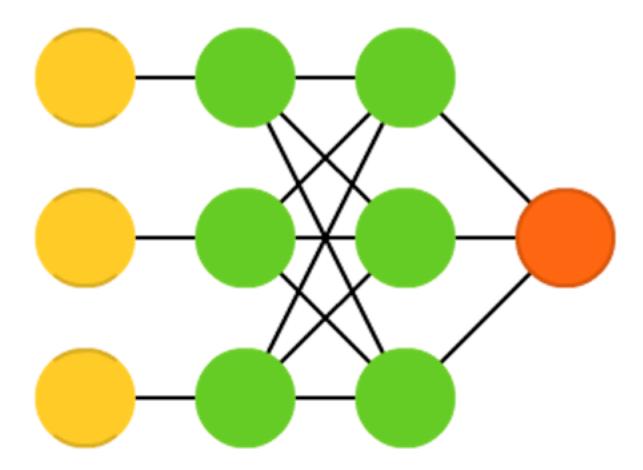
Generative Adversarial Networks (GAN)



Goodfellow, Ian, et al. "Generative adversarial nets." Advances in Neural Information Processing Systems. 2014.

Source: http://www.asimovinstitute.org/neural-network-zoo/

Support Vector Machines (SVM)

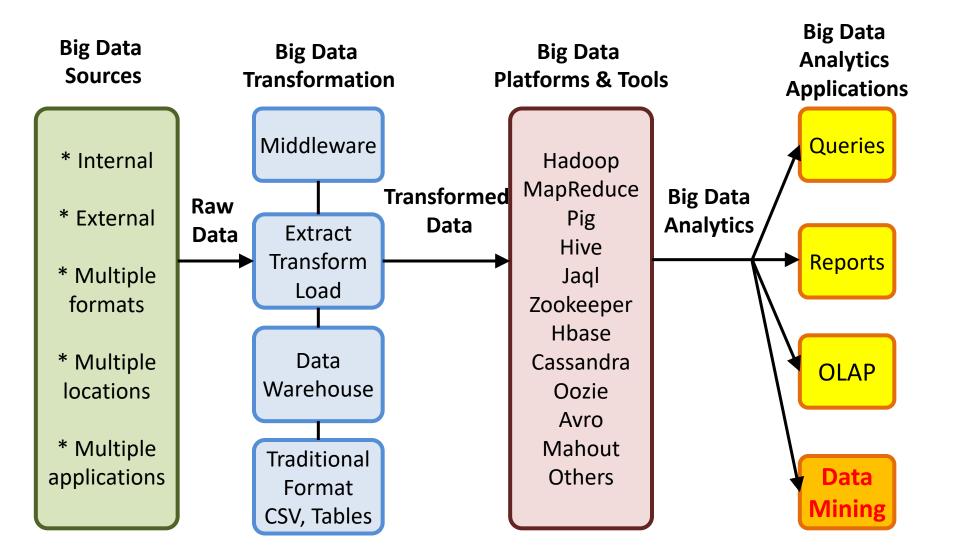


Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." Machine learning 20.3 (1995): 273-297.

Source: http://www.asimovinstitute.org/neural-network-zoo/

Architectures of Big Data Analytics

Architecture of Big Data Analytics

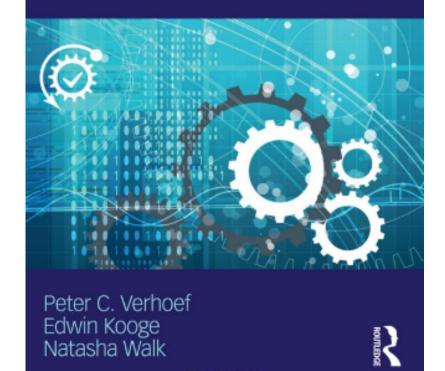


Architecture of Big Data Analytics

Creating Value with Big Data Analytics: Making Smarter Marketing Decisions, Peter C. Verhoef and Edwin Kooge, Routledge, 2016

Creating Value with Big Data Analytics

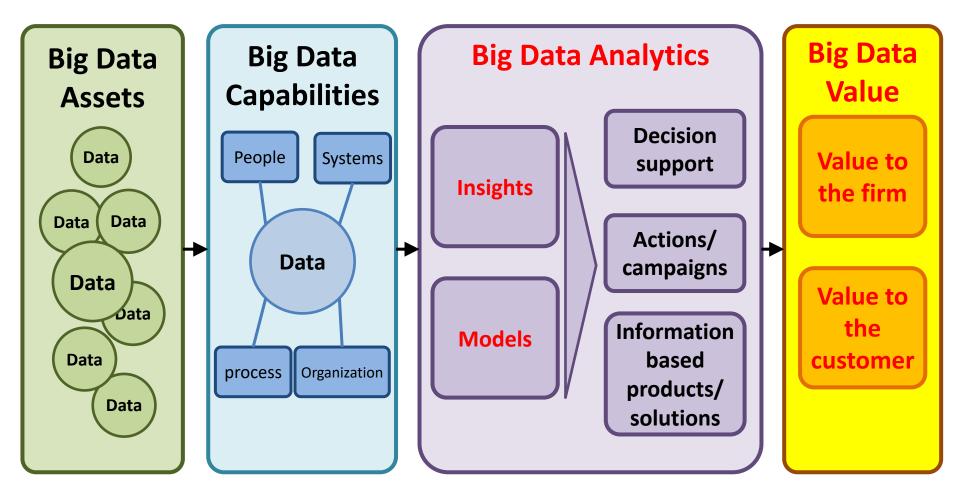
Making smarter marketing decisions



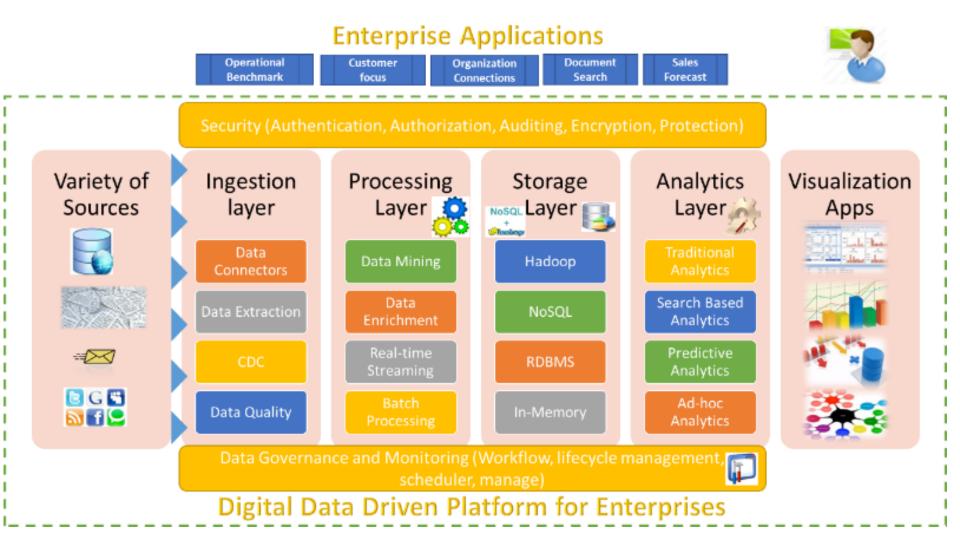
Source: https://www.amazon.com/Creating-Value-Big-Data-Analytics/dp/1138837970

Big Data Value Creation Model

Creating Value with Big Data Analytics: Making Smarter Marketing Decisions

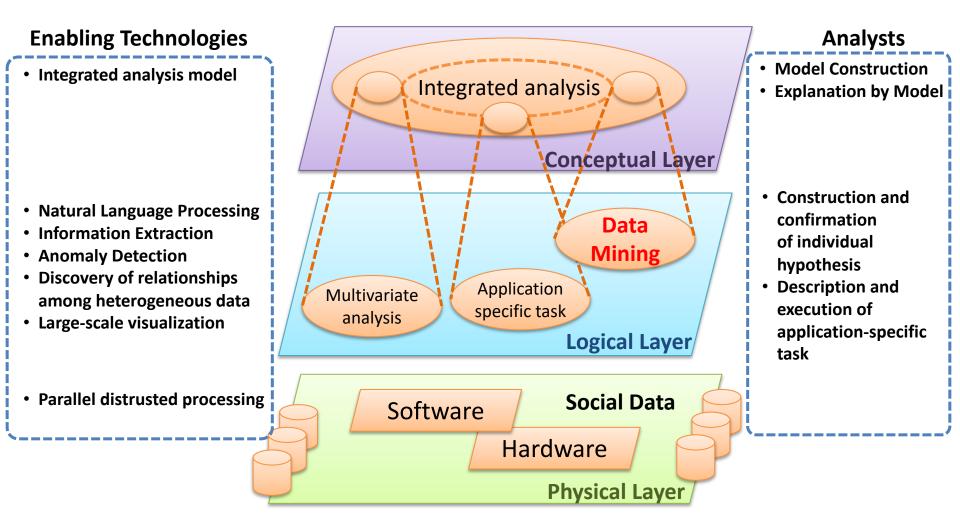


Digital Data Platform for Enterprises Big Data Analytics

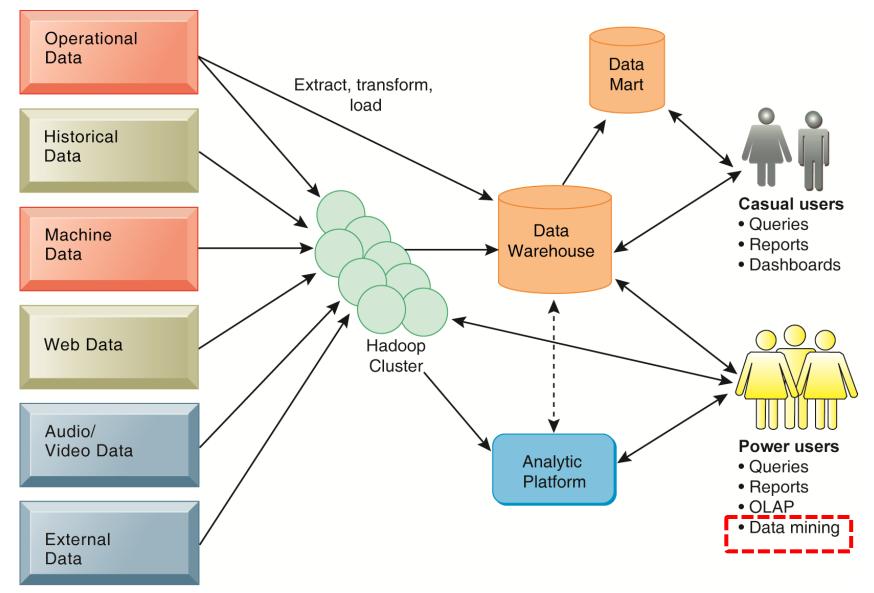


Architecture for Social Big Data Mining

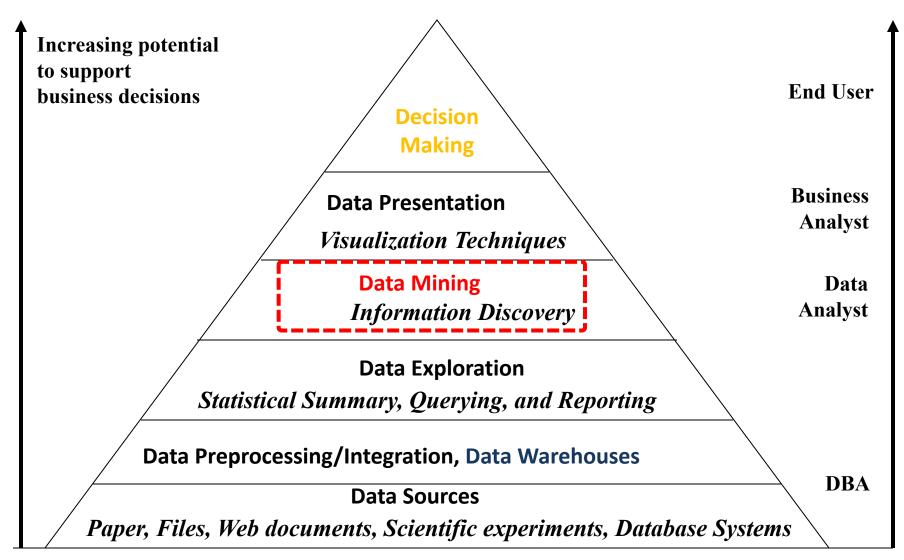
(Hiroshi Ishikawa, 2015)



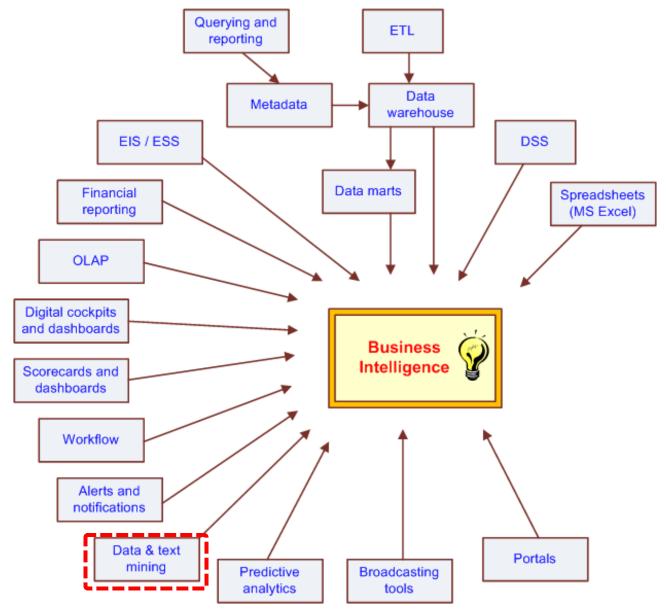
Business Intelligence (BI) Infrastructure



Data Warehouse Data Mining and Business Intelligence

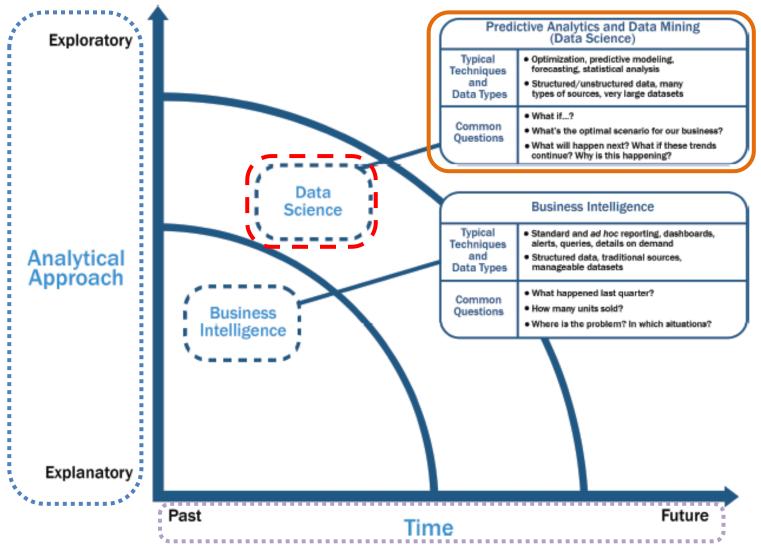


The Evolution of BI Capabilities

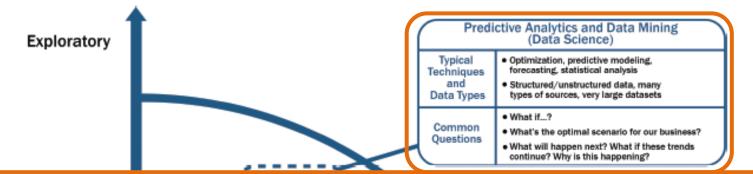


Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

Data Science and Business Intelligence



Data Science and Business Intelligence



Predictive Analytics and Data Mining (Data Science)

Time

Future

Past

Predictive Analytics and Data Mining (Data Science)

Structured/unstructured data, many types of sources, very large datasets

Optimization, predictive modeling, forecasting statistical analysis

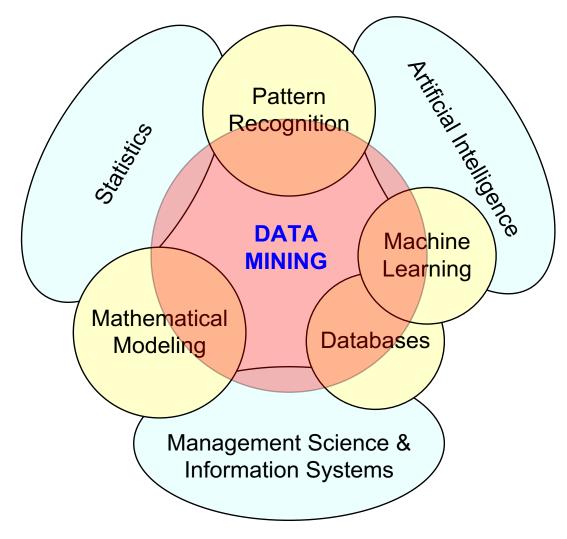
What if...?

What's the optimal scenario for our business? What will happen next? What if these trends countinue? Why is this happening?

Data Mining

Machine Learning

Data Mining at the Intersection of Many Disciplines



Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

Data Mining

Advanced Data Analysis

Evolution of Database System Technology

Evolution of Database System Technology

Data Collection and Database Creation (1960s and earlier) • Primitive file processing **Database Management Systems** (1970s-early 1980s) • Hierarchical and network database systems • Relational database systems • Query languages: SQL, etc.

- Transactions, concurrency control and recovery
 - On-line transaction processing (OLTP)

Advanced Database Systems

(mid-1980s-present)

• Advanced data models: extended relational, object-relational,

etc.

 Advanced applications: spatial, temporal, multimedia, active, stream and sensor, scientific and engineering, knowledge-based

- XML-based database systems
- Integration with information retrieval
 - Data and information integration

Advanced Data Analysis:

(late 1980s-present)

• Data warehouse and OLAP

• Data mining and knowledge discovery:

generalization, classification, association, clustering

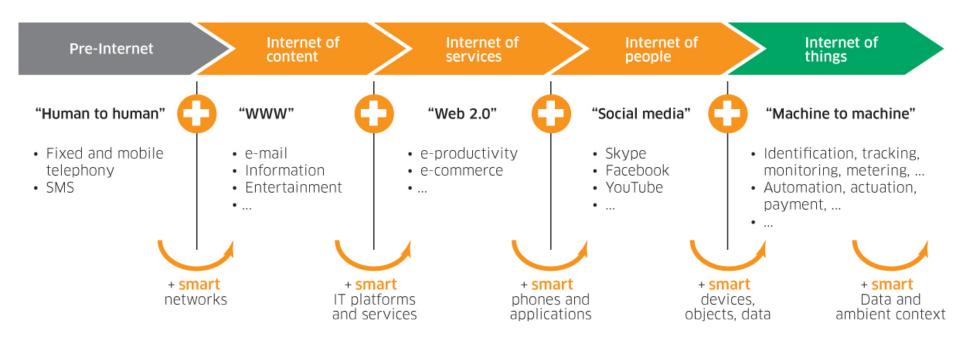
- Advanced data mining applications: stream data mining, bio-data mining, time-series analysis, text mining,
 Web mining, intrusion detection, etc.
 - Data mining applications
 - Data mining and society

New Generation of Information Systems (present-future)

Big Data Analysis

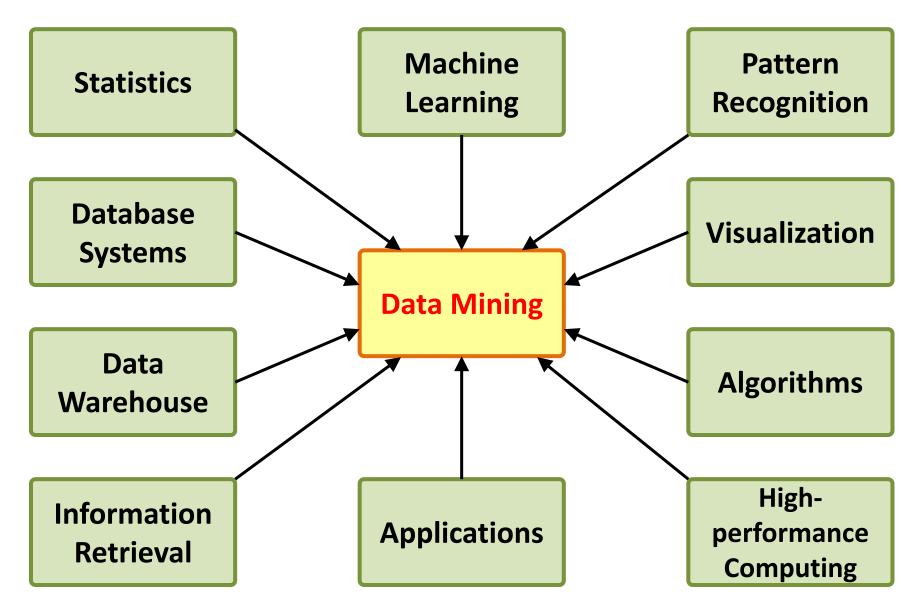
• Too Big, too Unstructured, too many different source to be manageable through traditional databases

Internet Evolution Internet of People (IoP): Social Media Internet of Things (IoT): Machine to Machine

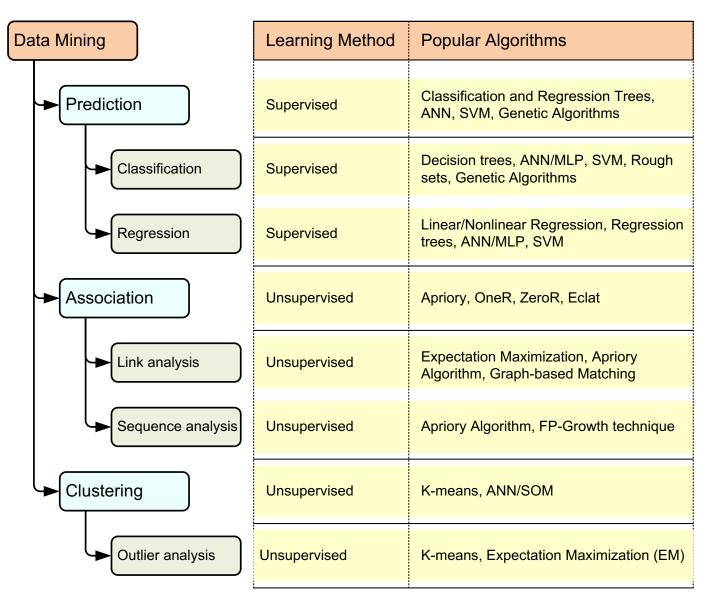


Source: Marc Jadoul (2015), The IoT: The next step in internet evolution, March 11, 2015 http://www2.alcatel-lucent.com/techzine/iot-internet-of-things-next-step-evolution/

Data Mining Technologies

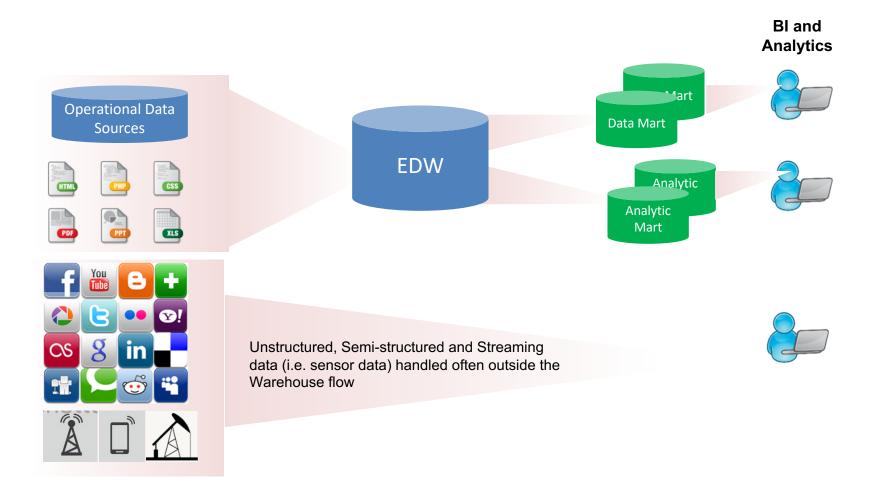


A Taxonomy for Data Mining Tasks

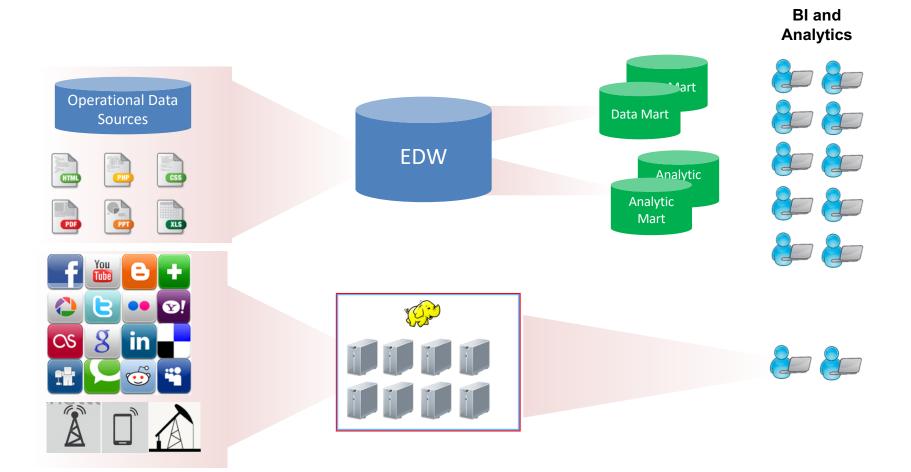


Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

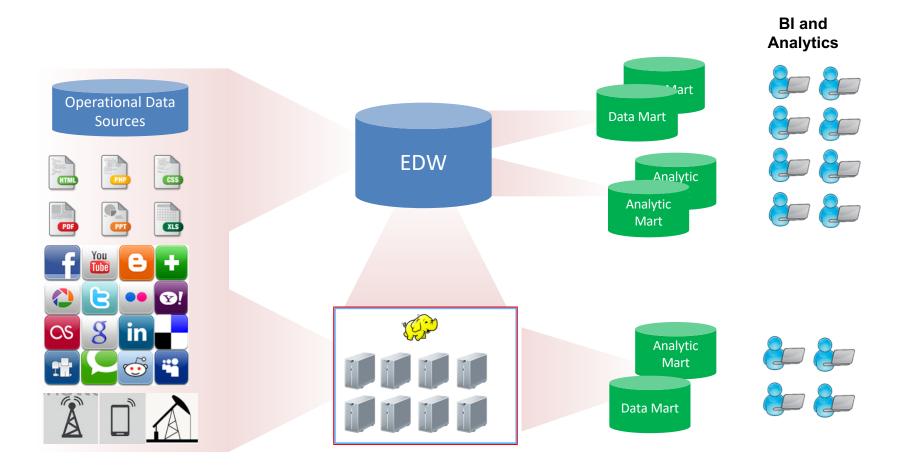
Traditional Analytics



Hadoop as a "new data" Store



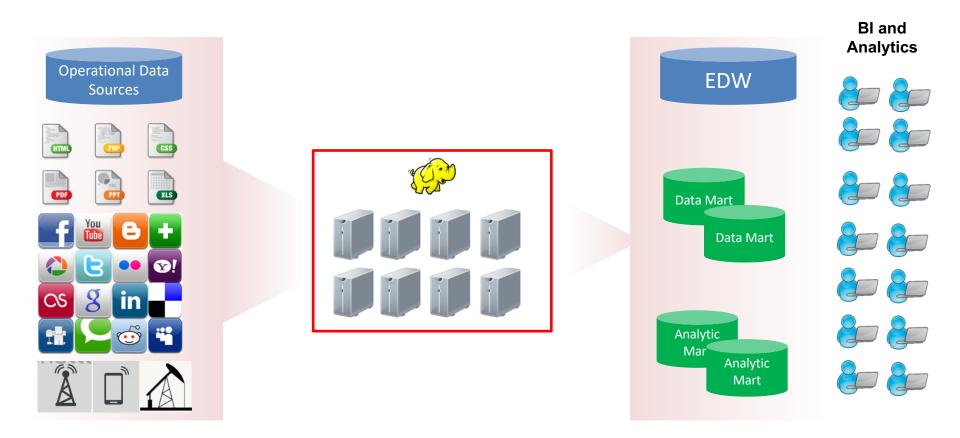
Hadoop as an additional input to the EDW



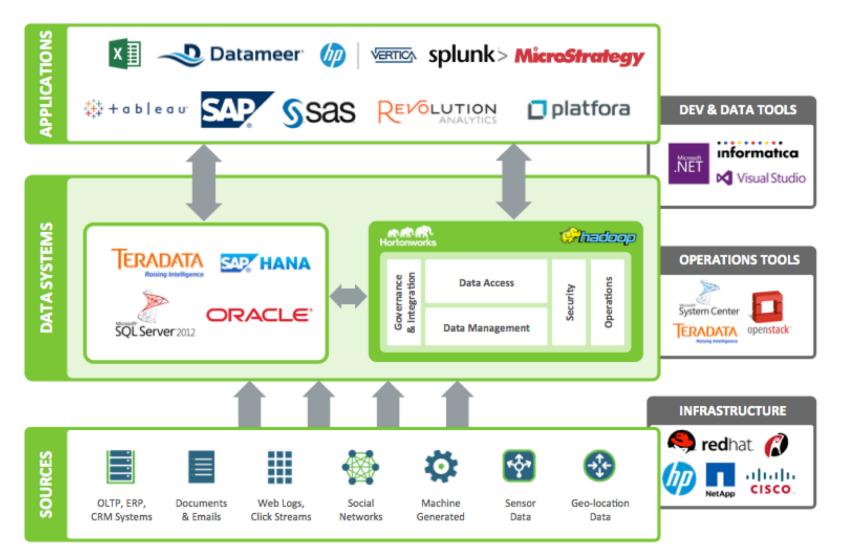
Source: Deepak Ramanathan (2014), SAS Modernization architectures - Big Data Analytics

Hadoop Data Platform As a "staging Layer" as part of a "data Lake"

- Downstream stores could be Hadoop, data appliances or an RDBMS

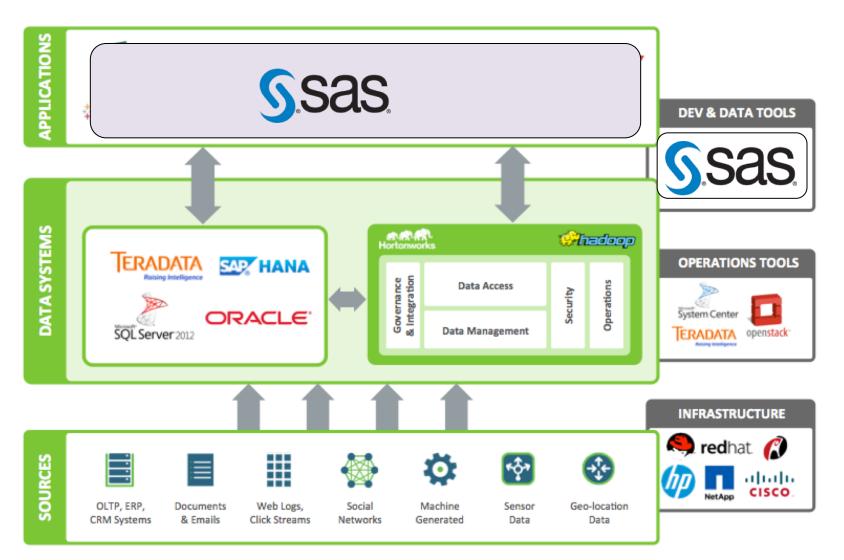


SAS Big data Strategy - SAS areas



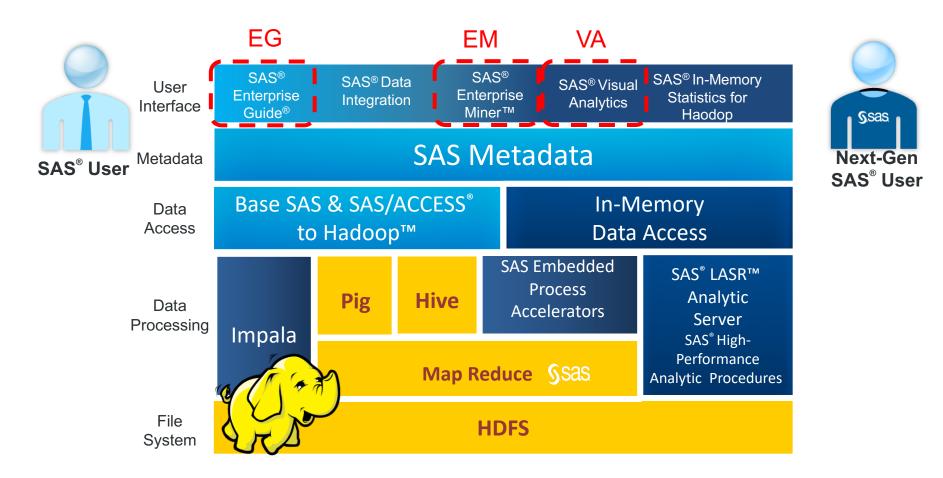
Source: Deepak Ramanathan (2014), SAS Modernization architectures - Big Data Analytics

SAS Big data Strategy - SAS areas



Source: Deepak Ramanathan (2014), SAS Modernization architectures - Big Data Analytics

SAS[®] Within the HADOOP ECOSYSTEM



SAS enables the entire lifecycle around HADOOP

SAS enableS the entire lifecycle around HADOOP

Done using either the Data Preparation, Data Exploration or Build Model Tools SAS Visual Analytics **Decision Manager** PROBLEM SAS Visual Analytics DATA PREPARATION SAS Visual Statistics SAS In-Memory Statistics for Hadoop SAS Scoring Accelerator for Hadoop SAS Code Accelerator for Hadoop Done using either the Data Preparation, Data Exploration or Build Model Tools **Decision Manager** SAS High Performance Analytics Offerings supported by relevant clients like SAS Enterprise Miner, SAS/STAT etc.

Big Data, **Big Analytics: Emerging Business Intelligence** and Analytic Trends for Today's Businesses

Big Data, Prediction

VS.

Explanation

Source: Agarwal, R., & Dhar, V. (2014). Editorial—Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research. Information Systems Research, 25(3), 443-448.

Big Data: The Management Revolution

Business Intelligence and Enterprise Analytics

- Predictive analytics
- Data mining
- Business analytics
- Web analytics
- **Big-data** analytics

Three Types of Business Analytics

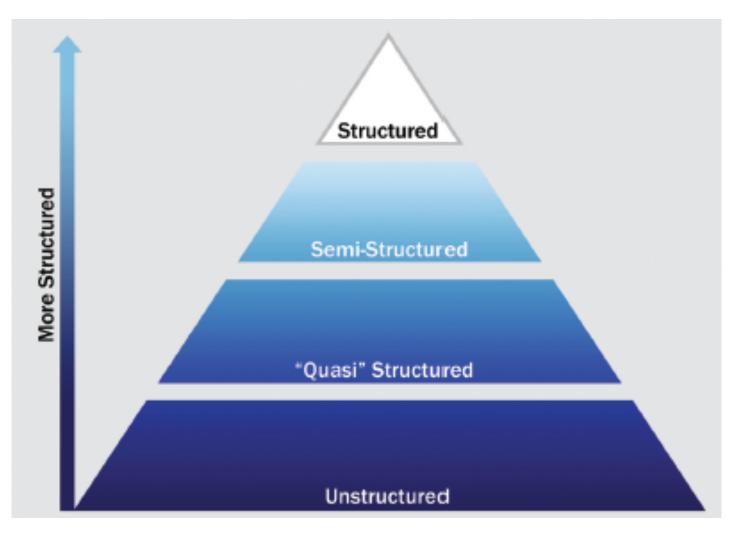
- Prescriptive Analytics
- Predictive Analytics
- Descriptive Analytics

Three Types of Business Analytics

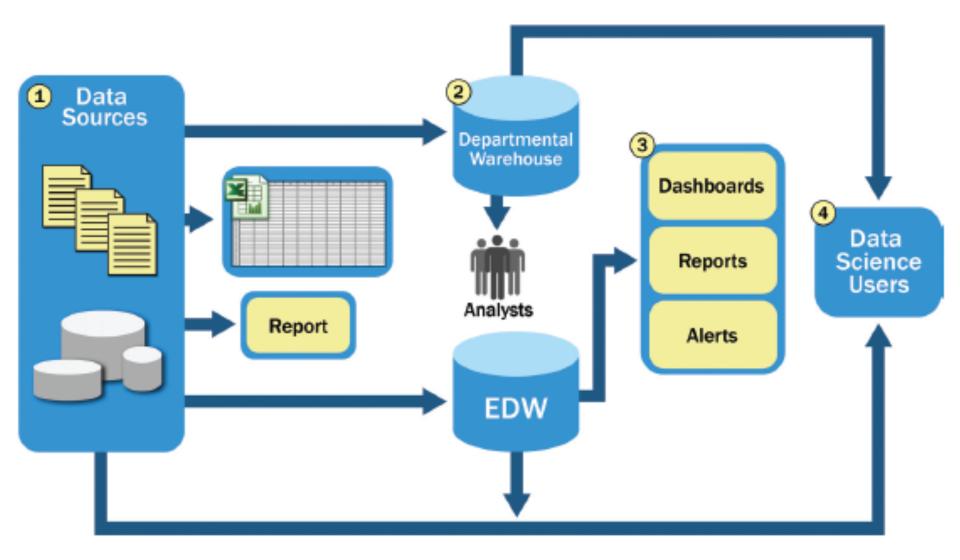
Optimization	"What's the best that can happen?"	
Randomized Testing	"What if we try this?"	Analytics
Predictive Modeling / Forecasting	"What will happen next?"	Predictive - Analytics
Statistical Modeling	"Why is this happening?"	Analytico
Alerts	"What actions are needed?"	
Query / Drill Down	"What exactly is the problem?"	Descriptive Analytics
Ad hoc Reports / Scorecards	"How many, how often, where?"	
Standard Report	"What happened?"	

Big Data

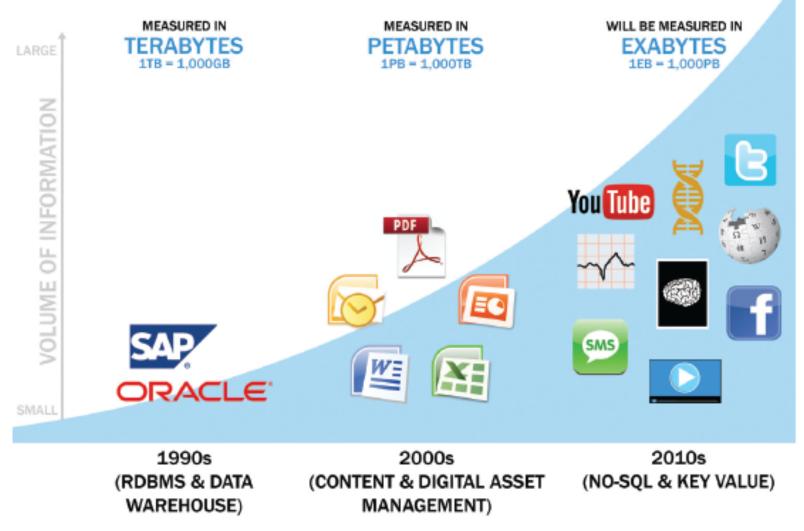
Big Data Growth is increasingly unstructured



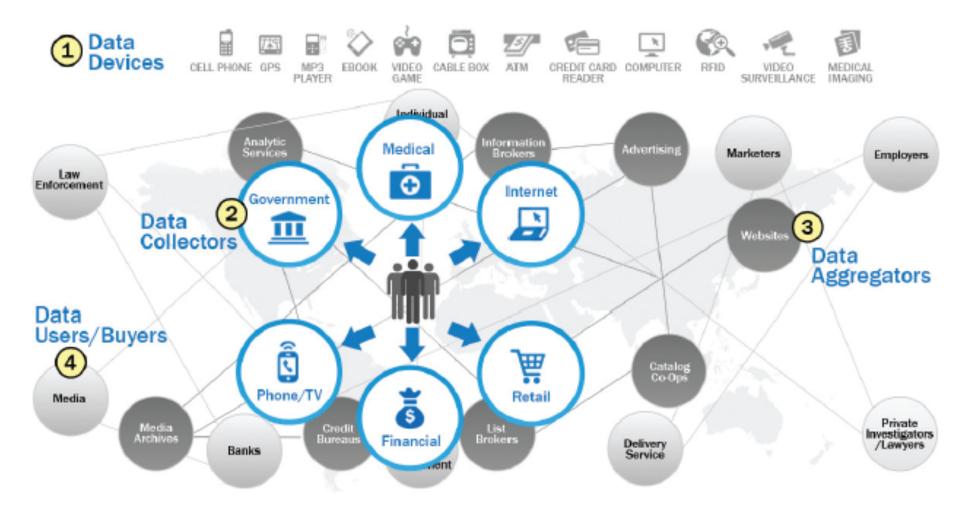
Typical Analytic Architecture



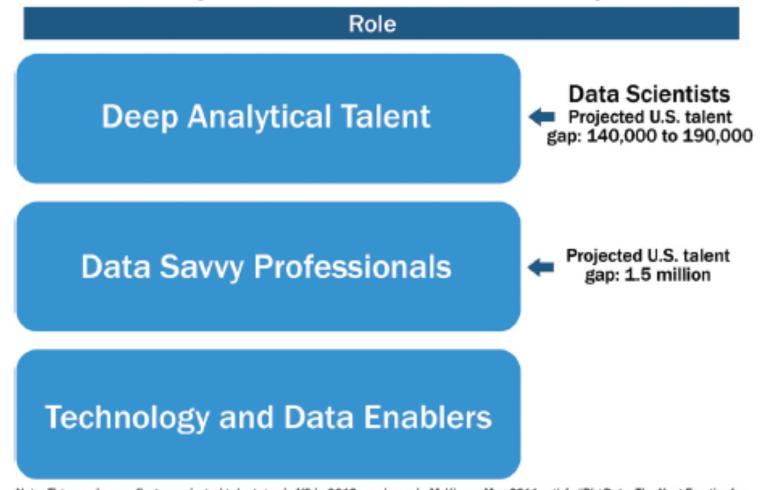
Data Evolution and the Rise of Big Data Sources



Emerging Big Data Ecosystem



Key Roles for the New Big Data Ecosystem



Note: Figures above reflect a projected talent gap in US in 2018, as shown in McKinsey May 2011 article "Big Data: The Next Frontier for Innovation, Competition, and Productivity"

Profile of a Data Scientist

Quantitative

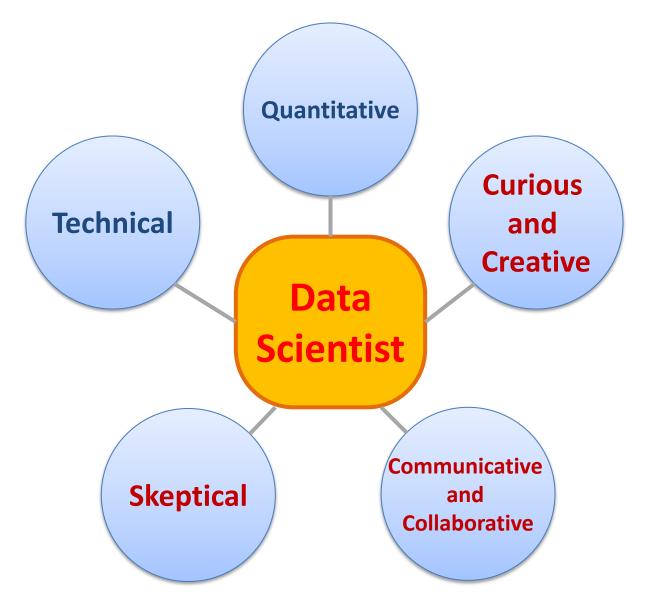
-mathematics or statistics

Technical

software engineering,
 machine learning,
 and programming skills

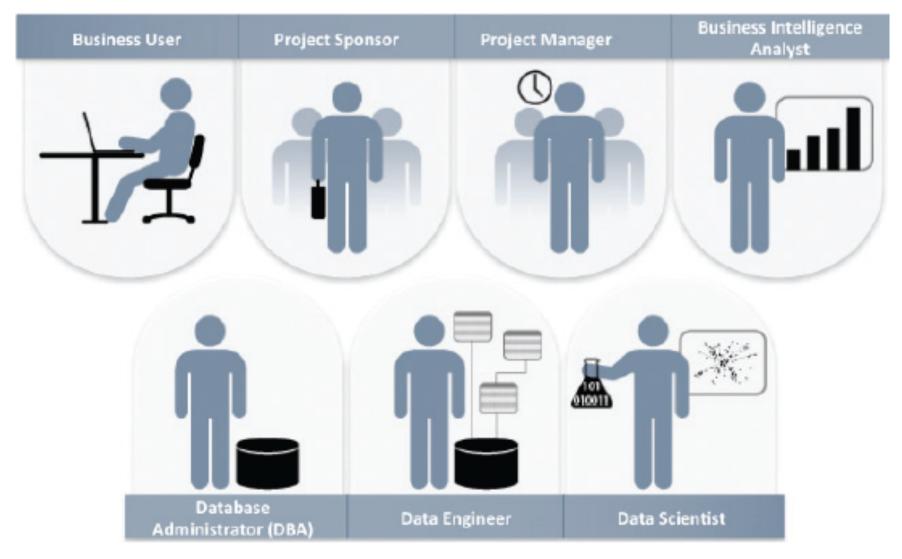
- Skeptical mind-set and critical thinking
- Curious and creative
- Communicative and collaborative

Data Scientist Profile

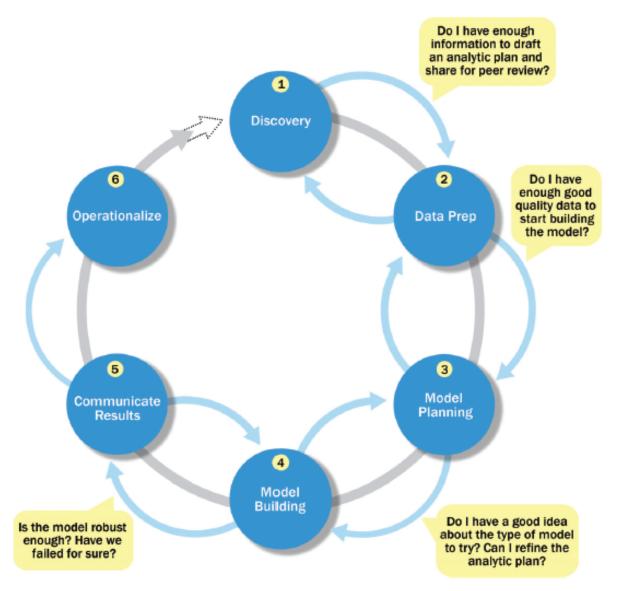


Big Data Analytics Lifecycle

Key Roles for a Successful Analytics Project



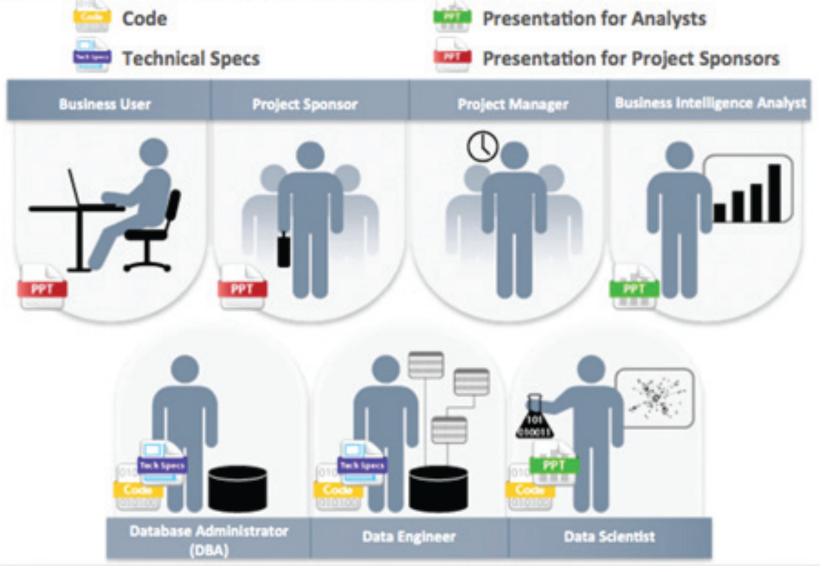
Overview of Data Analytics Lifecycle



Overview of Data Analytics Lifecycle

- 1. Discovery
- 2. Data preparation
- 3. Model planning
- 4. Model building
- 5. Communicate results
- 6. Operationalize

Key Outputs from a Successful Analytics Project



Source: EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015

Data Mining Process

Data Mining Process

- A manifestation of best practices
- A systematic way to conduct DM projects
- Different groups has different versions
- Most common standard processes:
 - CRISP-DM
 - (Cross-Industry Standard Process for Data Mining)
 - SEMMA
 - (Sample, Explore, Modify, Model, and Assess)
 - KDD

(Knowledge Discovery in Databases)

Data Mining Process (SOP of DM) What main methodology are you using for your analytics, data mining, or data science projects ?

Data Mining Process

43% 42%
27.5%
8.5% 13%
8% 4%
7.5% 7.3%
3.5% 5.3%
2% 4.7%
0%

Source: http://www.kdnuggets.com/polls/2014/analytics-data-mining-data-science-methodology.html

Data Mining: Core Analytics Process

The KDD Process for Extracting Useful Knowledge from Volumes of Data

Source: Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD Process for Extracting Useful Knowledge from Volumes of Data. Communications of the ACM, 39(11), 27-34.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD Process for **Extracting Useful Knowledge** from Volumes of Data. Communications of the ACM, 39(11), 27-34.

Knowledge Discovery in Databases creates the context for developing the tools needed to control the flood of data facing organizations that depend on ever-growing databases of business, manufacturing, scientific, and personal information.

The KDD Process for Extracting Useful Knowledge from Volumes of Data

As we march into the age of digital information, the problem of data overload looms ominously ahead. Our ability to analyze and Gregory Piatetsky-Shapiro, understand massive datasets lags far behind our ability to gather and store the data. A new gen-

the rapidly growing volumes of data. data warehouses. These techniques and tools are the Current hardware and database techdata mining

eration of computational techniques and many more applications generate and tools is required to support the streams of digital records archived in extraction of useful knowledge from huge databases, sometimes in so-called

Usama Fayyad,

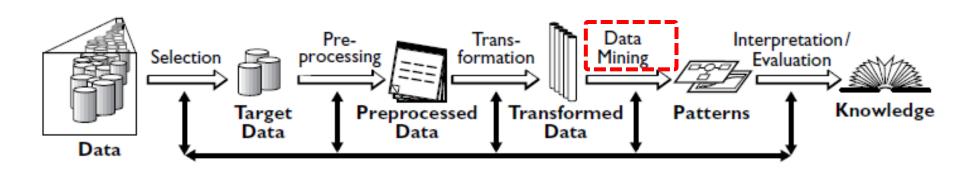
and Padhraic Smyth

subject of the emerging field of knowl- nology allow efficient and inexpensive edge discovery in databases (KDD) and reliable data storage and access. However er, whether the context is business Large databases of digital informa- medicine, science, or government, the tion are ubiquitous. Data from the datasets themselves (in raw form) are of neighborhood store's checkout regis- liule direct value. What is of value is the ter, your bank's credit card authoriza- knowledge that can be inferred from tion device, records in your doctor's the data and put to use. For example, office, patterns in your telephone calls, the marketing database of a consumer

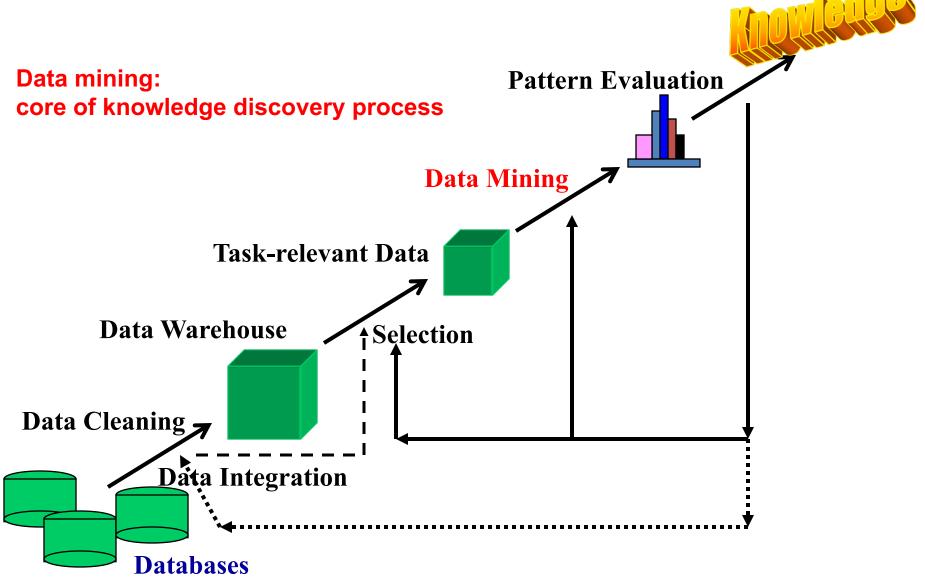
Data Mining

Knowledge Discovery in Databases (KDD) Process

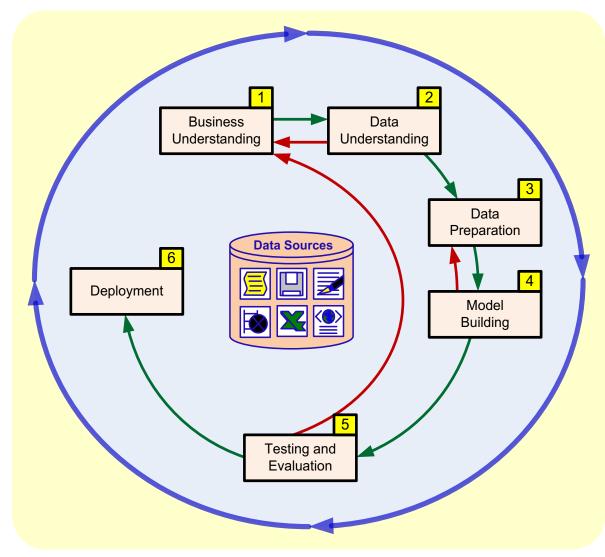
(Fayyad et al., 1996)



Knowledge Discovery (KDD) Process



Data Mining Process: CRISP-DM

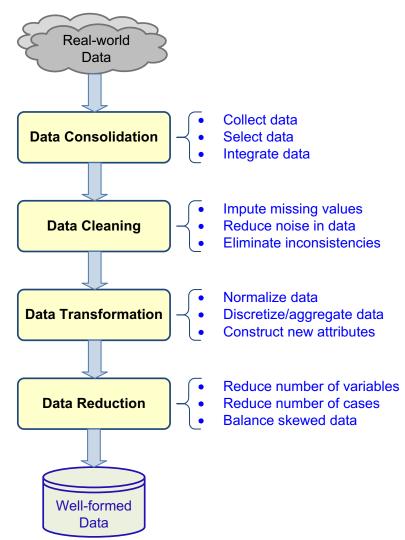


Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

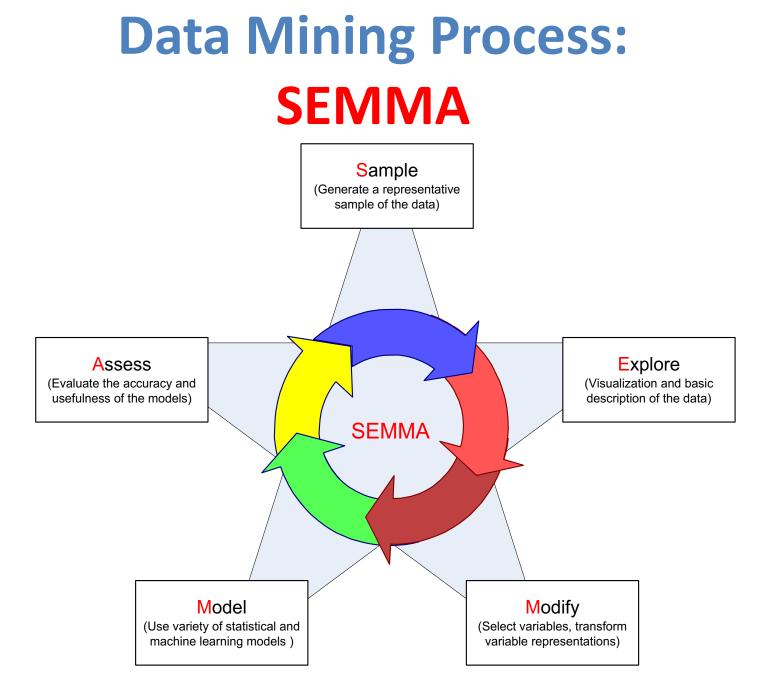
Data Mining Process: CRISP-DM

- **Step 1:** Business Understanding
- Step 2: Data Understanding
- Step 3: Data Preparation (!)
- Step 4: Model Building
- **Step 5:** Testing and Evaluation
- Step 6: Deployment
- The process is highly repetitive and experimental (DM: art versus science?)

Data Preparation – A Critical DM Task



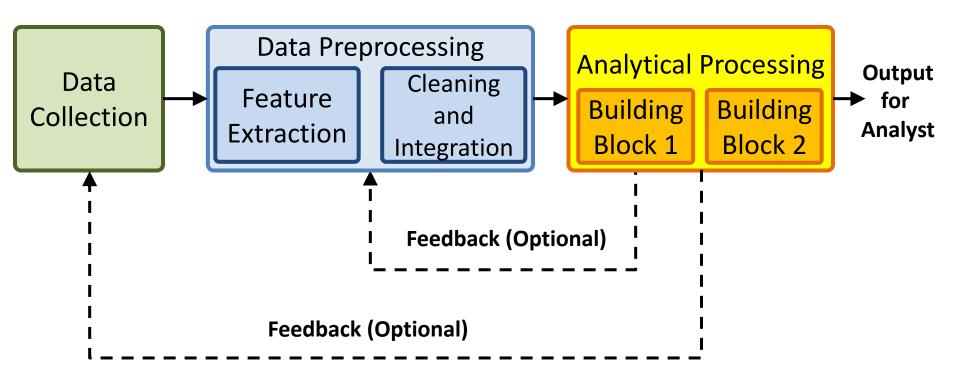
Source: Turban et al. (2011), Decision Support and Business Intelligence Systems



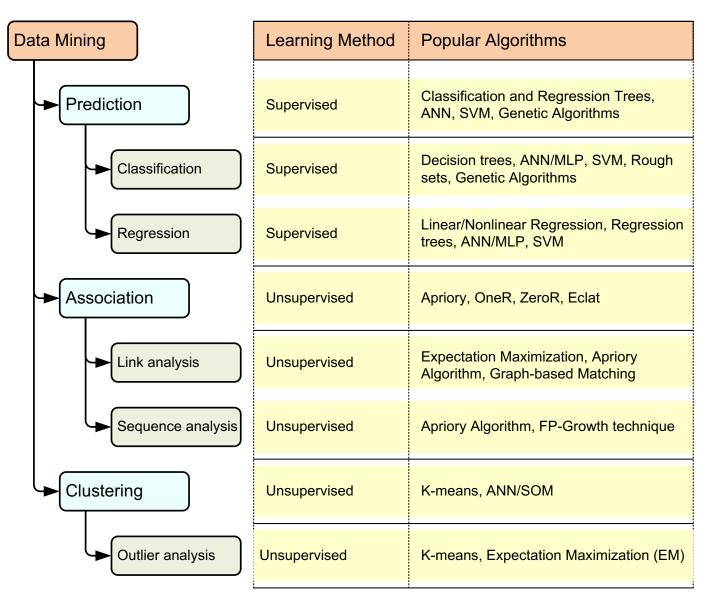
Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

Data Mining Processing Pipeline

(Charu Aggarwal, 2015)

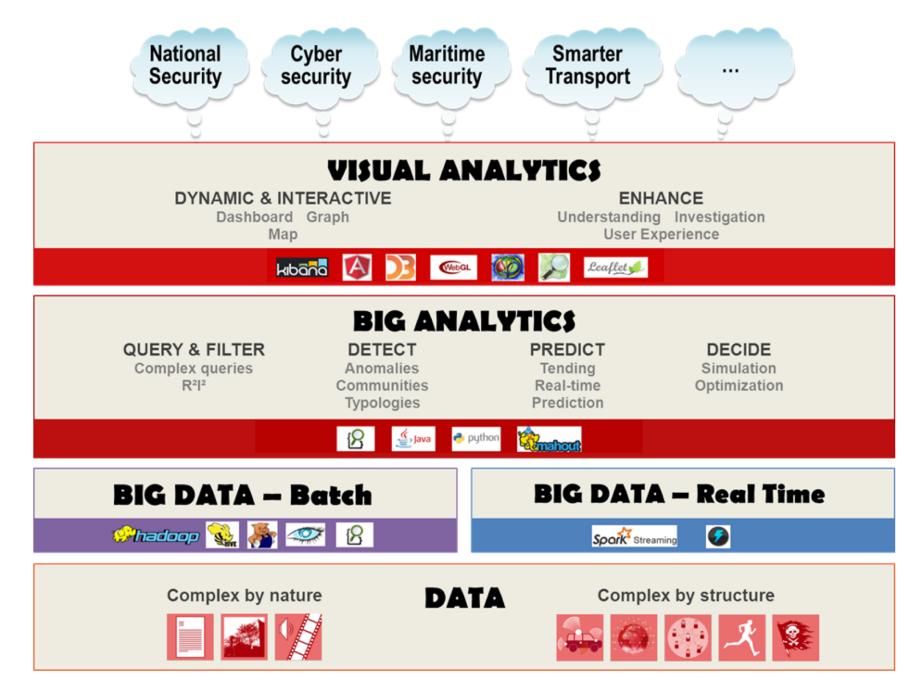


A Taxonomy for Data Mining Tasks



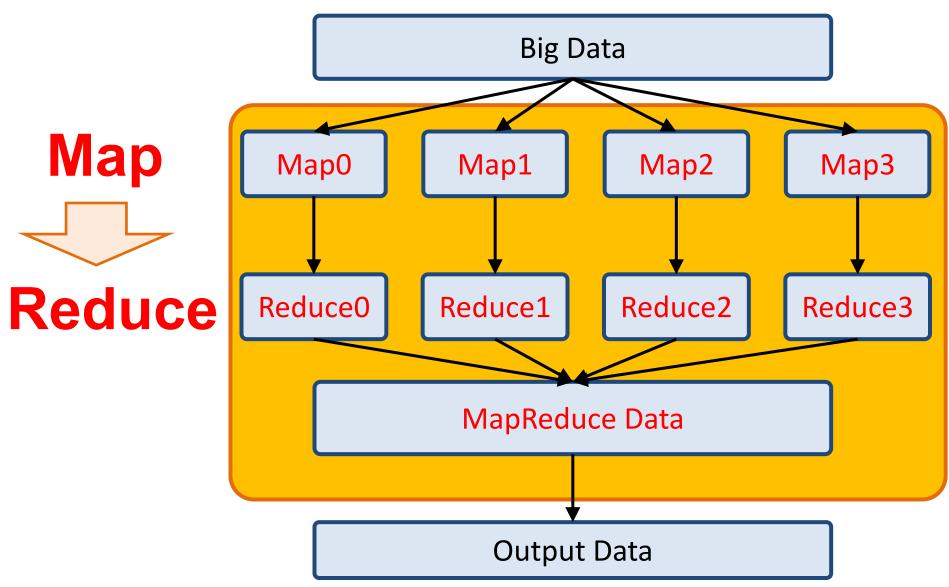
Source: Turban et al. (2011), Decision Support and Business Intelligence Systems

Fundamental Big Data: MapReduce Paradigm, **Hadoop and Spark** Ecosystem



MapReduce Paradigm

MapReduce Paradigm



MapReduce Word Count

Input

Dog Love Cat Bird Love Bird Dog Bird Cat

MapReduce Word Count

Input

Dog Love Cat

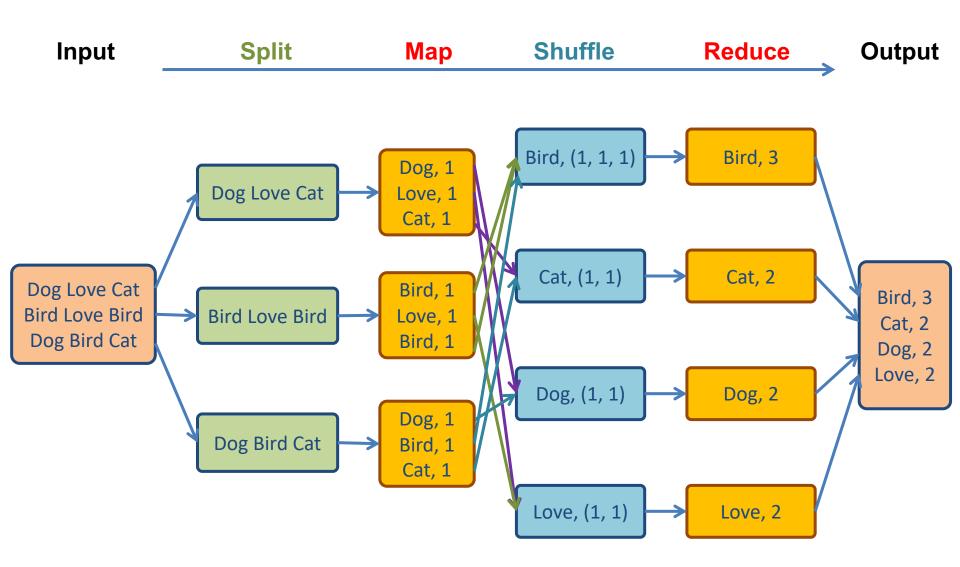
Bird Love Bird

Dog Bird Cat

Bird, 3 Cat, 2 Dog, 2 Love, 2

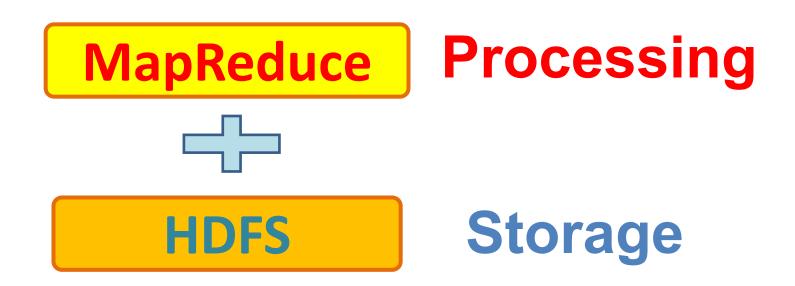
Output

MapReduce Word Count



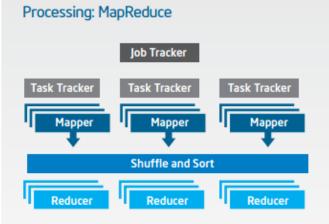
Hadoop Ecosystem

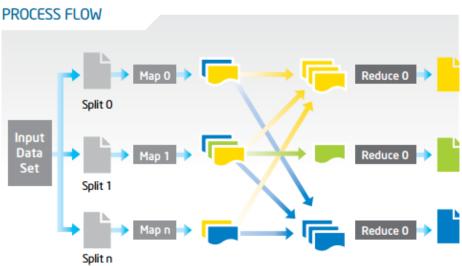
The Apache[™] Hadoop[®] project develops open-source software for reliable, scalable, distributed computing.



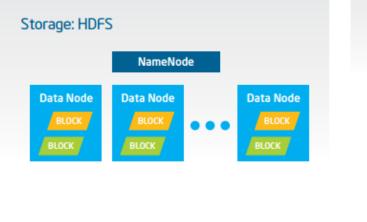
Big Data with Hadoop Architecture

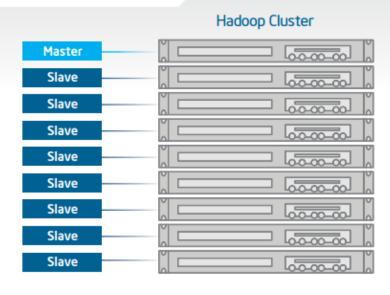
LOGICAL ARCHITECTURE





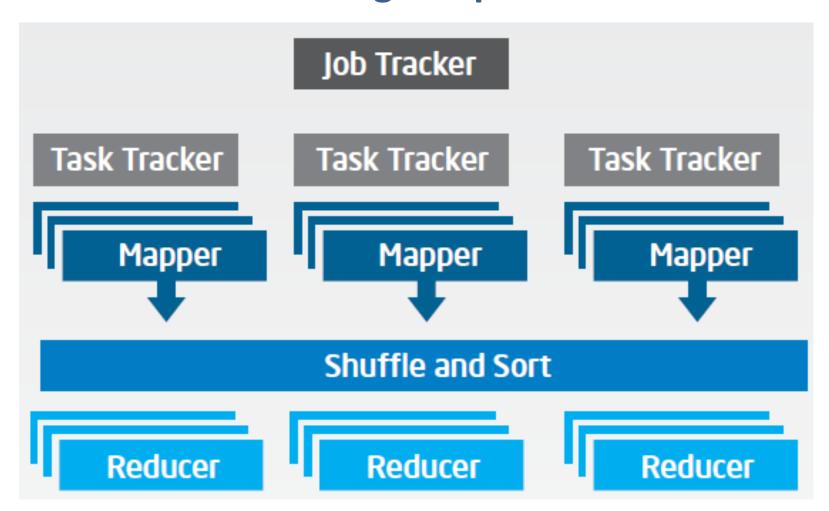
PHYSICAL ARCHITECTURE





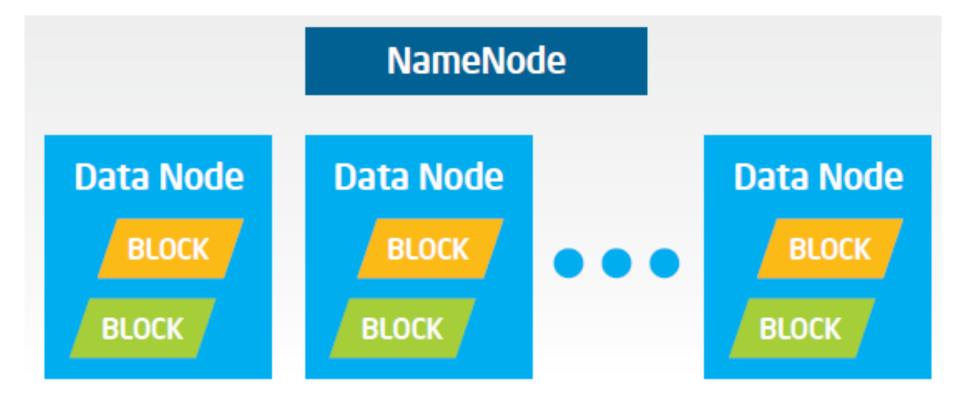
Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Big Data with Hadoop Architecture Logical Architecture Processing: MapReduce



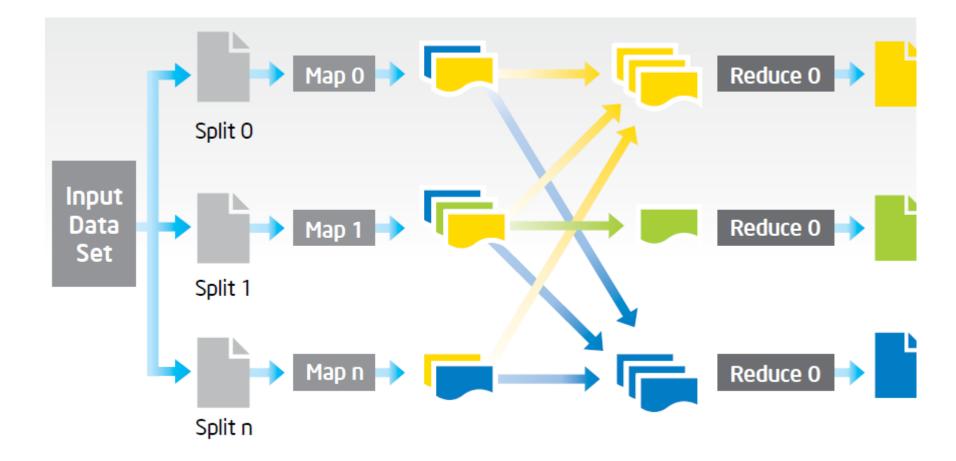
Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Big Data with Hadoop Architecture Logical Architecture Storage: HDFS

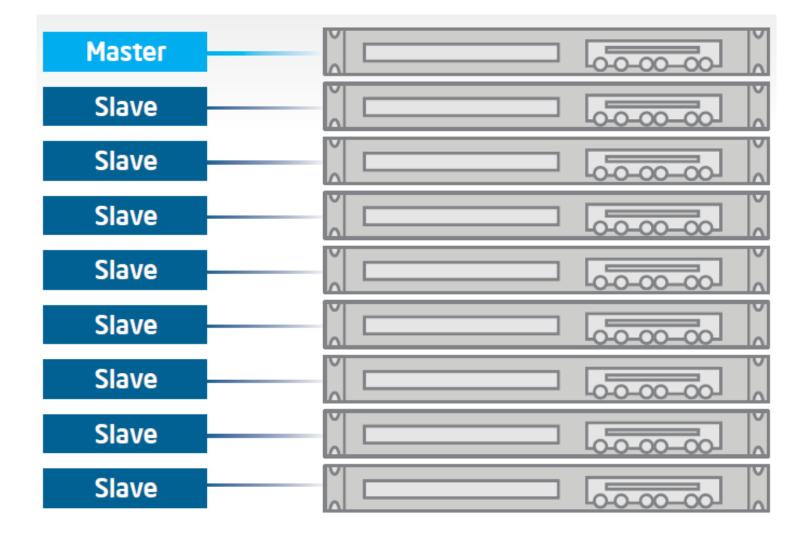


Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Big Data with Hadoop Architecture Process Flow

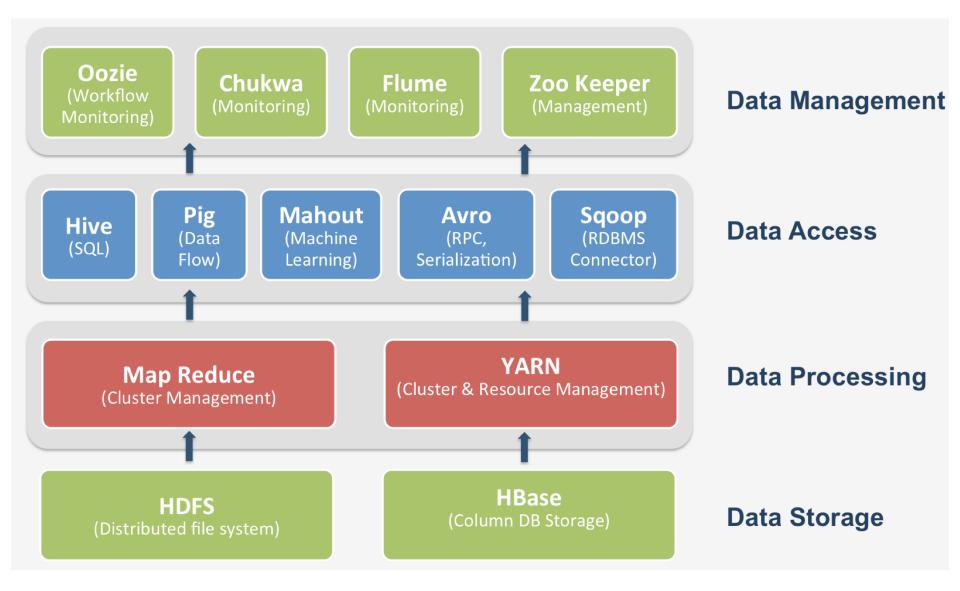


Big Data with Hadoop Architecture Hadoop Cluster



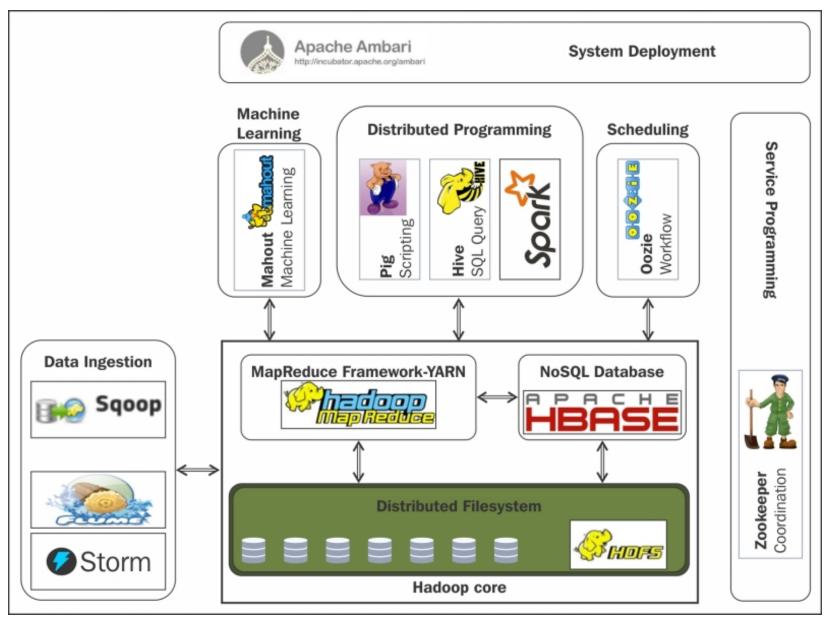
Source: https://software.intel.com/sites/default/files/article/402274/etl-big-data-with-hadoop.pdf

Hadoop Ecosystem

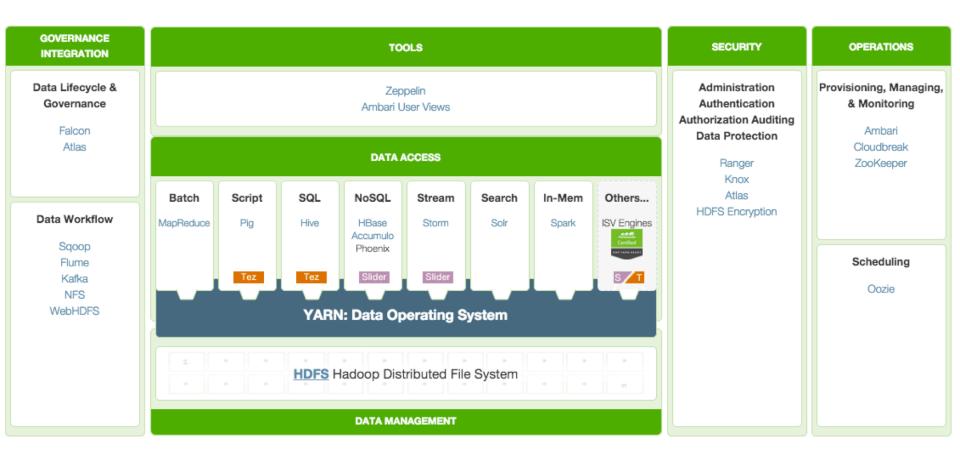


Source: https://savvycomsoftware.com/what-you-need-to-know-about-hadoop-and-its-ecosystem/

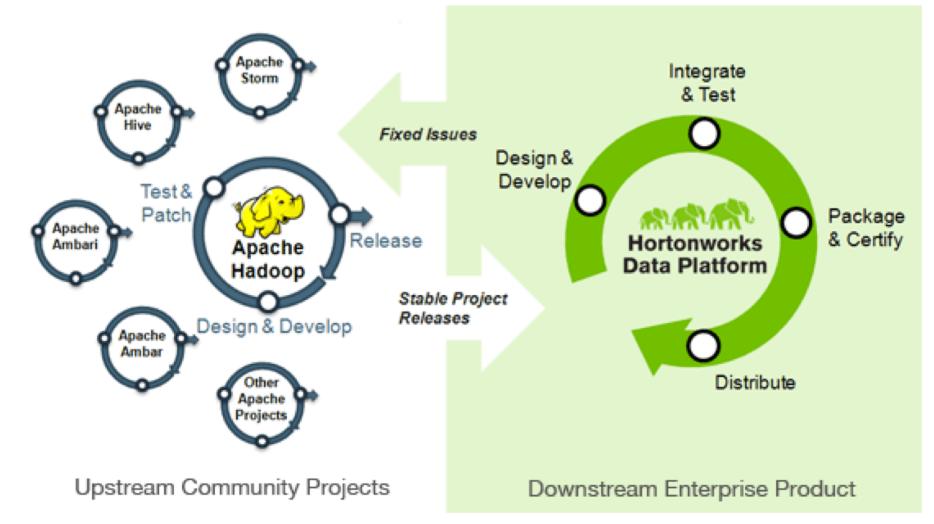
Hadoop Ecosystem



HDP (Hortonworks Data Platform) A Complete Enterprise Hadoop Data Platform



Apache Hadoop Hortonworks Data Platform



Hadoop and Data Analytics Tools



Hadoop 1 \rightarrow Hadoop 2

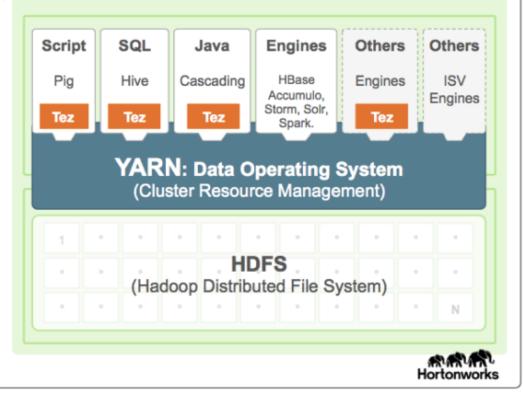
Hadoop 1

- Silos & Largely batch
- Single Processing engine

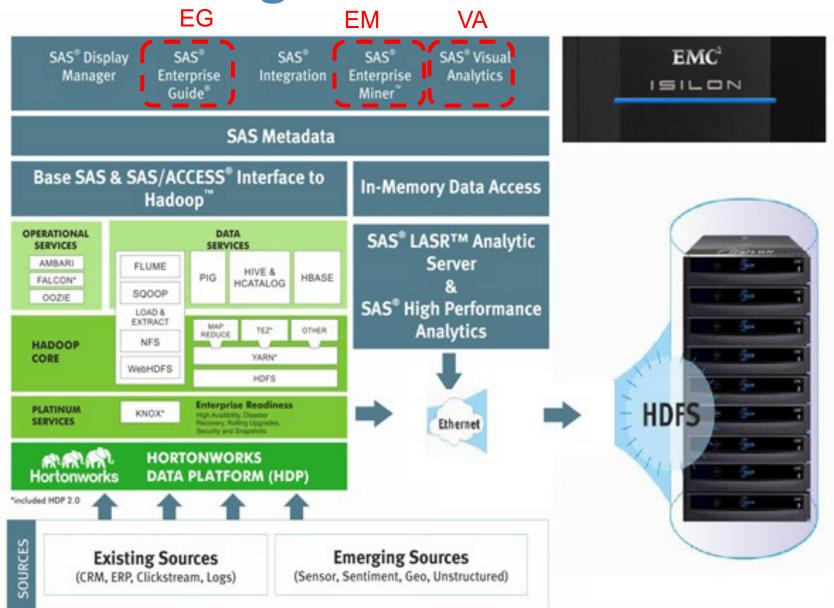
Script	SQL	Real-time	Others
Pig	Hive	HBase	Storm, Solr, etc.
MapReduce (Cluster Resource Management & Data Processing)			
1	•	•	• •
HDFS			
(Hadoop Distributed File System)			

Hadoop 2 w/

- Multiple Engines, Single Data Set
- · Batch, Interactive & Real-Time

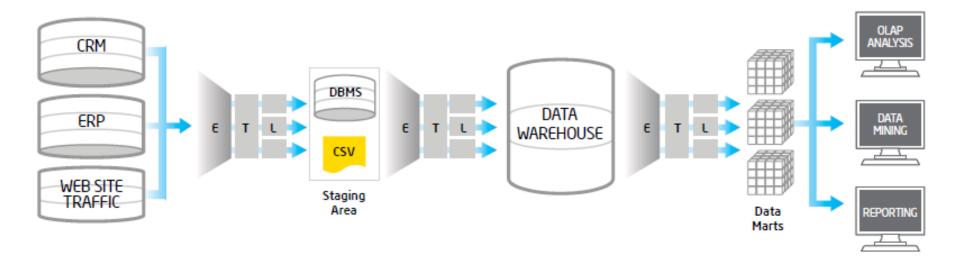


Big Data Solution

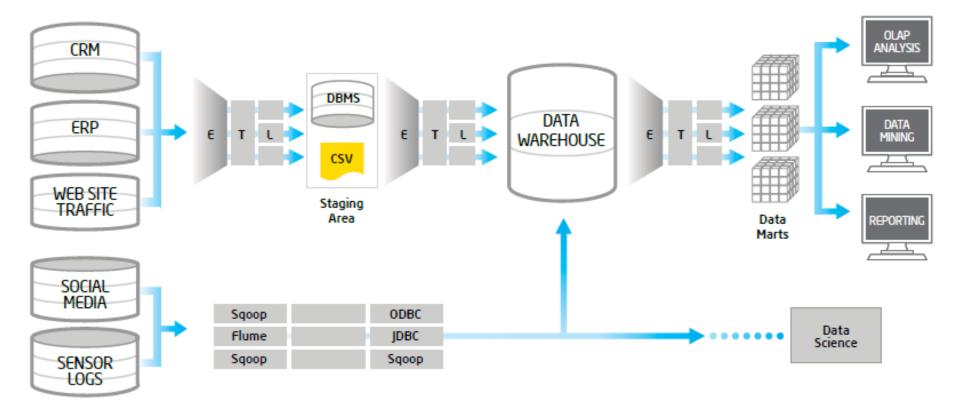


Source: http://www.newera-technologies.com/big-data-solution.html

Traditional ETL Architecture



Offload ETL with Hadoop (Big Data Architecture)

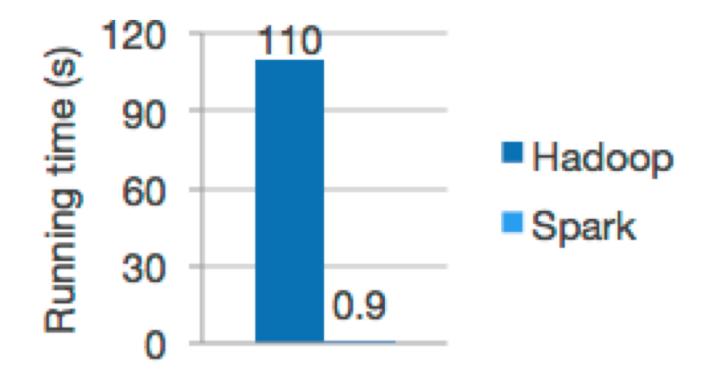


Spark Ecosystem

Lightning-fast cluster computing

Apache Spark is a fast and general engine for large-scale data processing.

Logistic regression in Hadoop and Spark



Run programs up to 100x faster than Hadoop MapReduce in memory, or 10x faster on disk.

Ease of Use

• Write applications quickly in Java, Scala, Python, R.

Word count in Spark's Python API

text_file = spark.textFile("hdfs://...")

text_file.flatMap(lambda line: line.split())
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a+b)

Spark and Hadoop

Spark Ecosystem

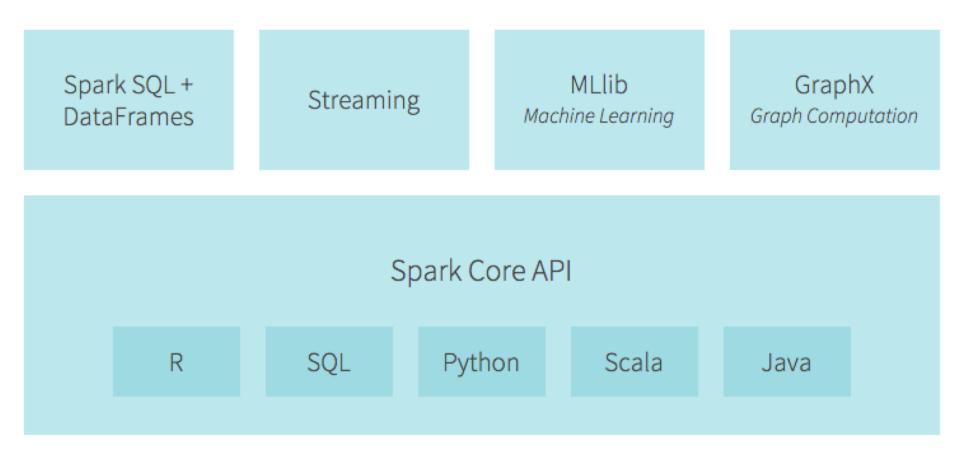
Spark Spark SQL Streaming

MLlib (machine learning)

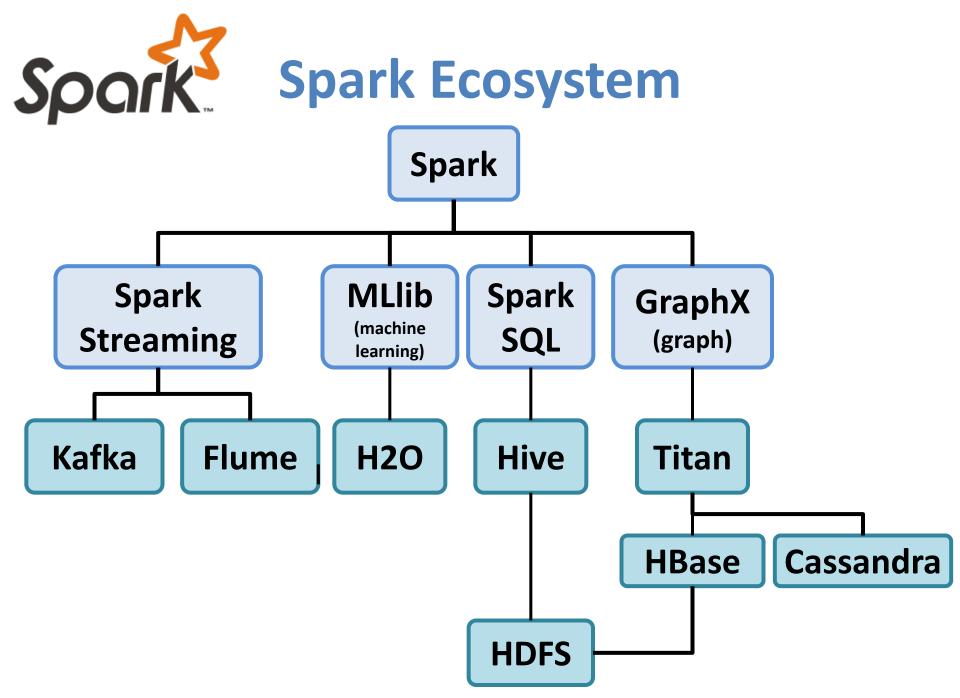
GraphX (graph)

Apache Spark

Spark Ecosystem



Source: https://databricks.com/spark/about



SMACK Stack

• Spark

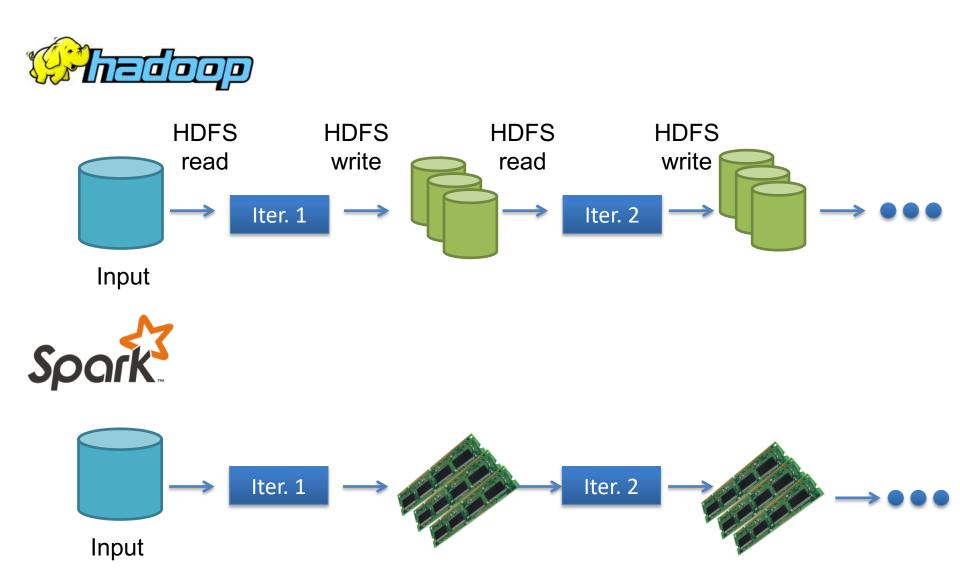
- fast and general engine for distributed, large-scale data processing
- Mesos

- cluster resource management system that provides efficient resource isolation and sharing across distributed applications
- Akka

 a toolkit and runtime for building highly concurrent, distributed, and resilient message-driven applications on the JVM

- Cassandra
 - distributed, highly available database designed to handle large amounts of data across multiple datacenters
- Kafka
 - a high-throughput, low-latency distributed messaging system designed for handling real-time data feeds

Hadoop vs. Spark



Summary

- Big Data
- Artificial Intelligence
- Deep Learning
- Architectures of Big Data Analytics
- Data Mining Process
- Fundamental Big Data: MapReduce Paradigm, Hadoop and Spark Ecosystem

References

- EMC Education Services (2015), Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley
- Stuart Russell and Peter Norvig (2016), Artificial Intelligence: A Modern Approach, 3rd Edition, Pearson International
- Peter C. Verhoef and Edwin Kooge (2016), Creating Value with Big Data Analytics: Making Smarter Marketing Decisions, Routledge
- Shiva Achari (2015), Hadoop Essentials Tackling the Challenges of Big Data with Hadoop, Packt Publishing
- Mike Frampton (2015), Mastering Apache Spark, Packt Publishing
- Deepak Ramanathan (2014), SAS Modernization architectures - Big Data Analytics, http://www.slideshare.net/deepakramanathan/sas-modernization-architectures-big-data-analytics