Tamkang University

淡江大學

Social Computing and Big Data Analytics

社群運算與大數據分析

Social Media Marketing Analytics (社群媒體行銷分析)

1052SCBDA08 MIS MBA (M2226) (8606) Wed, 8,9, (15:10-17:00) (L206)

<u>Min-Yuh Day</u> <u>戴敏育</u> Assistant Professor 專任助理教授

 Dept. of Information Management,
 Tamkang University

 淡江大學 資訊管理學系

http://mail.tku.edu.tw/myday/

2017-04-12

- 2017/02/15 Course Orientation for Social Computing and Big Data Analytics (社群運算與大數據分析課程介紹)
- 2 2017/02/22 Data Science and Big Data Analytics:
 Discovering, Analyzing, Visualizing and Presenting Data
 (資料科學與大數據分析:
 探索、分析、視覺化與呈現資料)
- 3 2017/03/01 Fundamental Big Data: MapReduce Paradigm, Hadoop and Spark Ecosystem (大數據基礎: MapReduce典範、 Hadoop與Spark生態系統)

- 4 2017/03/08 Big Data Processing Platforms with SMACK:
 Spark, Mesos, Akka, Cassandra and Kafka
 (大數據處理平台SMACK:
 Spark, Mesos, Akka, Cassandra, Kafka)
- 5 2017/03/15 Big Data Analytics with Numpy in Python (Python Numpy 大數據分析)
- 6 2017/03/22 Finance Big Data Analytics with Pandas in Python (Python Pandas 財務大數據分析)
- 7 2017/03/29 Text Mining Techniques and Natural Language Processing (文字探勘分析技術與自然語言處理)
- 8 2017/04/05 Off-campus study (教學行政觀摩日)

- 9 2017/04/12 Social Media Marketing Analytics (社群媒體行銷分析)
- 10 2017/04/19 期中報告 (Midterm Project Report)
- 11 2017/04/26 Deep Learning with Theano and Keras in Python (Python Theano 和 Keras 深度學習)
- 12 2017/05/03 Deep Learning with Google TensorFlow (Google TensorFlow 深度學習)
- 13 2017/05/10 Sentiment Analysis on Social Media with Deep Learning (深度學習社群媒體情感分析)

- 14 2017/05/17 Social Network Analysis (社會網絡分析)
- 15 2017/05/24 Measurements of Social Network (社會網絡量測)
- 16 2017/05/31 Tools of Social Network Analysis (社會網絡分析工具)
- 17 2017/06/07 Final Project Presentation I (期末報告 I)
- 18 2017/06/14 Final Project Presentation II (期末報告 II)

Social Media Marketing Analytics

Digital Marketing Analytics: Making Sense of Consumer Data in a Digital World, Chuck Hemann and Ken Burbary, Que. 2013

Consumer Psychology and **Behavior** on **Social Media**

Marketing

"Meeting needs profitably"

How consumers think, feel, and act

Source: Philip Kotler & Kevin Lane Keller, Marketing Management, 14th ed., Pearson, 2012

Analyzing Consumer Markets

- The aim of marketing is to meet and satisfy target customers' needs and wants better than competitors.
- Marketers must have a thorough understanding of how consumers think, feel, and act and offer clear value to each and every target consumer.

Value

the sum of the tangible and intangible benefits and costs

Value

Customer Perceived Value

Source: Philip Kotler & Kevin Lane Keller, Marketing Management, 14th ed., Pearson, 2012

Model of Consumer Behavior

Building **Customer Value,** Satisfaction, and Loyalty

Customer Perceived Value, Customer Satisfaction, and Loyalty

Social Media Marketing Analytics

Social Media Listening

Search Analytics

Content Analytics

Engagement Analytics

The Convergence of Paid, Owned & Earned Media

Source: "The Converged Media Imperative: How Brands Will Combine Paid, Owned and Earned Media", Altimeter Group, July 19, 2012)

http://www.altimetergroup.com/2012/07/the-converged-media-imperative/

Converged Media Top 11 Success Criteria

Social Listening / Analysis of Crowd

C: Production

Source: "The Converged Media Imperative: How Brands Will Combine Paid, Owned and Earned Media", Altimeter Group, July 19, 2012)

http://www.altimetergroup.com/2012/07/the-converged-media-imperative/

Content Tool Stack Hierarchy

Figure 3 Content Tool Stack Hierarchy

Source: Altimeter Group

Source: Rebecca Lieb, "Content marketing in 2015 -- research, not predictions", December 16, 2014 http://www.imediaconnection.com/content/37909.asp

Competitive Intelligence

• Gather competitive intelligence data

Google Alexa Compete

- Which audience segments are competitors reaching that you are not?
- What keywords are successful for your competitors?
- What sources are driving traffic to your competitors' websites?

Competitive Intelligence

- Facebook competitive analysis
- Facebook content analysis
- YouTube competitive analysis
- YouTube channel analysis
- Twitter profile analysis

Web Analytics (Clickstream)

- Content Analytics
- Mobile Analytics

Mobile Analytics

- Where is my mobile traffic coming from?
- What content are mobile users most interested in?
- How is my mobile app being used? What's working? What isn't?
- Which mobile platforms work best with my site?
- How does mobile user's engagement with my site compare to traditional web users' engagement?

Identifying a Social Media Listening Tool

- Data Capture
- Spam Prevention
- Integration with Other Data Sources
- Cost
- Mobile Capability
- API Access
- Consistent User Interface
- Workflow Functionality
- Historical Data

Search Analytics

- Free Tools for Collecting Insights Through
 - Search Data
 - Google Trends
 - YouTube Trends
 - The Google AdWords Keyword Tool
 - Yahoo! Clues
- Paid Tools for Collecting Insights Through Search Data
- The BrightEdge SEO Platform

Owned Social Metrics

- Facebook page
- Twitter account
- YouTube channel

Own Social Media Metrics: Facebook

- Total likes
- Reach
 - Organic
 - Paid reach
 - Viral reach
- Engaged users
- People taking about this (PTAT)
- Likes, comments, and shares by post

Own Social Media Metrics: Twitter

- Followers
- Retweets
- Replies
- Clicks and click-through rate (CTR)
- Impressions

Own Social Media Metrics: YouTube

- Views
- Subscribers
- Likes/dislikes
- Comments
- Favorites
- Sharing

Own Social Media Metrics: SlideShare

- Followers
- Views
- Comments
- Shares

Own Social Media Metrics: Pinterest

- Followers
- Number of boards
- Number of pins
- Likes
- Repins
- Comments

Own Social Media Metrics: Google+

- Number of people who have an account circled
- +1s
- Comments

Earned Social Media Metrics

- Earned conversations
- In-network conversations
Earned Social Media Metrics: Earned conversations

- Share of voice
- Share of conversation
- Sentiment
- Message resonance
- Overall conversation volume

Source: http://www.elvtd.com/elevation/p/beings-of-resonance

37

Demystifying Web Data

- Visits
- Unique page views
- Bounce rate
- Pages per visit
- Traffic sources
- Conversion

Searching for the Right Metrics

Paid Searches

- Impressions
- Clicks
- Click-through rate (CTR)
- Cost per click (CPC)
- Impression share
- Sales or revenue per click
- Average position

Organic Searches

- Known and unknown keywords
- Known and unknown branded keywords
- Total visits
- Total conversions from known keywords
- Average search position

Aligning Digital and Traditional Analytics

- Primary Research
 - Brand reputation
 - Message resonance
 - Executive reputation
 - Advertising performance
- Traditional Media Monitoring
- Traditional CRM Data

Social Media Listening Evolution

Location of conversations

Sentiment

Key message penetration

Key influencers

Source: Chuck Hemann and Ken Burbary, Digital Marketing Analytics: Making Sense of Consumer Data in a Digital World, Que. 2013

Social Media

::

- "I bought an iPhone a few days ago.
- It was such a nice phone.
- The touch screen was really cool.
- The voice quality was clear too.
- However, my mother was mad with me as I did not tell her before I bought it.
- She also thought the phone was too expensive, and wanted me to return it to the shop. ... "

Example of Opinion: review segment on iPhone

- "(1) I bought an <u>iPhone</u> a few days ago.
- (2) It was such a **nice** phone.
- (3) The touch screen was really cool.
- (4) The voice quality was clear too.

- (5) However, my mother was mad with me as I did not tell her before I bought it.
- (6) She also thought the phone was too **expensive**, and wanted me to return it to the shop. ... " -Negative

Opinion

How consumers think, feel, and act

Source: Philip Kotler & Kevin Lane Keller, Marketing Management, 14th ed., Pearson, 2012

Maslow's Hierarchy of Needs

Maslow's Hierarchy of Needs

Source: http://sixstoriesup.com/social-psyche-what-makes-us-go-social/

Social Media Hierarchy of Needs

Social Media Hierarchy of Needs - by John Antonios

Social Media Hierarchy of Needs

Odaveduarte

The Social Feedback Cycle Consumer Behavior on Social Media

The New Customer Influence Path

Source: Evans et al. (2010), Social Media Marketing: The Next Generation of Business Engagement

Architectures of Sentiment Analytics

Bing Liu (2015), Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, Cambridge University Press

Mining Opinions, Sentiments, and Emotions

http://www.amazon.com/Sentiment-Analysis-Opinions-Sentiments-Emotions/dp/1107017890

Sentiment Analysis and Opinion Mining

- Computational study of \bullet opinions, sentiments, subjectivity, evaluations, attitudes, appraisal, affects, views, emotions,
 - ets., expressed in text.
 - Reviews, blogs, discussions, news, comments, feedback, or any other documents

65

Research Area of Opinion Mining

- Many names and tasks with difference objective and models
 - Sentiment analysis
 - Opinion mining
 - Sentiment mining
 - Subjectivity analysis
 - Affect analysis
 - Emotion detection
 - Opinion spam detection

Sentiment Analysis

- Sentiment
 - A thought, view, or attitude, especially one based mainly on emotion instead of reason
- Sentiment Analysis
 - opinion mining
 - use of natural language processing (NLP) and computational techniques to automate the extraction or classification of sentiment from typically unstructured text

Applications of Sentiment Analysis

- Consumer information
 - Product reviews
- Marketing
 - Consumer attitudes
 - Trends
- Politics
 - Politicians want to know voters' views
 - Voters want to know policitians' stances and who else supports them
- Social
 - Find like-minded individuals or communities

Sentiment detection

- How to interpret features for sentiment detection?
 - Bag of words (IR)
 - Annotated lexicons (WordNet, SentiWordNet)
 - Syntactic patterns
- Which features to use?
 - Words (unigrams)
 - Phrases/n-grams
 - Sentences

Problem statement of Opinion Mining

- Two aspects of abstraction
 - Opinion definition
 - What is an opinion?
 - What is the structured definition of opinion?
 - Opinion summarization
 - Opinion are subjective
 - An opinion from a single person (unless a VIP) is often not sufficient for action
 - We need opinions from many people, and thus opinion summarization.

What is an opinion?

- Id: Abc123 on 5-1-2008 "I bought an iPhone a few days ago. It is such a nice phone. The touch screen is really cool. The voice quality is clear too. It is much better than my old Blackberry, which was a terrible phone and so difficult to type with its tiny keys. However, my mother was mad with me as I did not tell her before I bought the phone. She also thought the phone was too expensive, ..."
- One can look at this review/blog at the
 - Document level
 - Is this review + or -?
 - Sentence level
 - Is each sentence + or -?
 - Entity and feature/aspect level

Entity and aspect/feature level

- Id: Abc123 on 5-1-2008 "I bought an iPhone a few days ago. It is such a nice phone. The touch screen is really cool. The voice quality is clear too. It is much better than my old Blackberry, which was a terrible phone and so difficult to type with its tiny keys. However, my mother was mad with me as I did not tell her before I bought the phone. She also thought the phone was too expensive, ..."
- What do we see?
 - Opinion targets: entities and their features/aspects
 - Sentiments: positive and negative
 - Opinion holders: persons who hold the opinions
 - Time: when opinion are expressed
Two main types of opinions

- Regular opinions: Sentiment/Opinion expressions on some target entities
 - Direct opinions: sentiment expressions on one object:
 - "The touch screen is really cool."
 - "The picture quality of this camera is great"
 - Indirect opinions: comparisons, relations expressing similarities or differences (objective or subjective) of more than one object
 - "phone X is cheaper than phone Y." (objective)
 - "phone X is better than phone Y." (subjective)
- Comparative opinions: comparisons of more than one entity.
 - "iPhone is better than Blackberry."

Subjective and Objective

• Objective

- An objective sentence expresses some factual information about the world.
- "I returned the phone yesterday."
- Objective sentences can implicitly indicate opinions
 - "The earphone broke in two days."
- Subjective
 - A subjective sentence expresses some personal feelings or beliefs.
 - "The voice on my phone was not so clear"
 - Not every subjective sentence contains an opinion
 - "I wanted a phone with good voice quality"
- Subjective analysis

Source: Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," Springer, 2nd Edition, 74

Sentiment Analysis vs. Subjectivity Analysis

A (regular) opinion

- Opinion (a restricted definition)
 - An opinion (regular opinion) is simply a positive or negative sentiment, view, attitude, emotion, or appraisal about an entity or an aspect of the entity from an opinion holder.
- Sentiment orientation of an opinion
 - Positive, negative, or neutral (no opinion)
 - Also called:
 - Opinion orientation
 - Semantic orientation
 - Sentiment polarity

Entity and aspect

- Definition of Entity:
 - An *entity e* is a product, person, event, organization, or topic.
 - e is represented as
 - A hierarchy of components, sub-components.
 - Each node represents a components and is associated with a set of attributes of the components
- An opinion can be expressed on any node or attribute of the node
- Aspects(features)
 - represent both components and attribute

Opinion Definition

- An opinion is a quintuple
 (e_j, a_{jk}, so_{ijk}, h_i, t_l)
 where
 - $-e_j$ is a target entity.
 - $-a_{jk}$ is an aspect/feature of the entity e_j .
 - *so_{ijkl}* is the sentiment value of the opinion from the opinion holder on feature of entity at time.
 so_{ijkl} is +ve, -ve, or neu, or more granular ratings
 - $-h_i$ is an opinion holder.
 - $-t_1$ is the time when the opinion is expressed.
- (*e_j*, *a_{jk}*) is also called opinion target

Source: Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," Springer, 2nd Edition,

78

Terminologies

- Entity: object
- Aspect: feature, attribute, facet
- Opinion holder: opinion source

• Topic: entity, aspect

• Product features, political issues

Subjectivity and Emotion

• Sentence subjectivity

 An objective sentence presents some factual information, while a subjective sentence expresses some personal feelings, views, emotions, or beliefs.

- Emotion
 - Emotions are people's subjective feelings and thoughts.

Classification Based on Supervised Learning

- Sentiment classification
 - Supervised learning Problem
 - Three classes
 - Positive
 - Negative
 - Neutral

Opinion words in Sentiment classification

- topic-based classification
 - topic-related words are important
 - e.g., politics, sciences, sports
- Sentiment classification
 - topic-related words are unimportant
 - opinion words (also called sentiment words)
 - that indicate positive or negative opinions are important,

e.g., great, excellent, amazing, horrible, bad, worst

Features in Opinion Mining

- Terms and their frequency
 - TF-IDF
- Part of speech (POS)
 - Adjectives
- Opinion words and phrases
 - beautiful, wonderful, good, and amazing are positive opinion words
 - bad, poor, and terrible are negative opinion words.
 - opinion phrases and idioms,
 e.g., cost someone an arm and a leg
- Rules of opinions
- Negations
- Syntactic dependency

Source: Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," Springer, 2nd Edition, 83

Sentiment Analysis Architecture

Sentiment Classification Based on Emoticons

Lexicon-Based Model

Sentiment Analysis

Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

Sentiment Classification Techniques

Source: Jesus Serrano-Guerrero, Jose A. Olivas, Francisco P. Romero, and Enrique Herrera-Viedma (2015), "Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.

A Brief Summary of Sentiment Analysis Methods

Study	Analysis	Sentiment Identification	Sentiment Aggr	Nature of		
	Task	Method Level		Method Level		Measure
Hu and Li, 2011	Polarity	ML (Probabilistic model)	L (Probabilistic model) Snippet			Valence
Li and Wu, 2010	Polarity	Lexicon/Rule Phrase Sum		Snippet	Valence	
Thelwall et al., 2010	Polarity	Lexicon/Rule Sentence Max & Min		Max & Min	Snippet	Range
Boiy and Moens, 2009	Both	ML (Cascade ensemble)	Sentence			Valence
Chung 2009	Polarity	Lexicon Phrase Average		Sentence	Valence	
Wilson, Wiebe, and Hoffmann, 2009	Both	ML (SVM, AdaBoost, Rule, etc.) Phrase			Valence	
Zhang et al., 2009	Polarity	Lexicon/Rule Sentence Weighted average		Snippet	Valence	
Abbasi, Chen, and Salem, 2008	Polarity	ML (GA + feature selection)	Snippet			Valence
Subrahmanian and Reforgiato, 2008	Polarity	Lexicon/Rule	Phrase	Rule	Snippet	Valence
Tan and Zhang 2008	Polarity	ML (SVM, Winnow, NB, etc.)	Snippet			Valence
Airoldi, Bai, and Padman, 2007	Polarity	ML (Markov Blanket)	Snippet			Valence
Das and Chen, 2007	Polarity	ML (Bayesian, Discriminate, etc.)	Snippet Average		Daily	Valence
Liu et al., 2007	Polarity	ML (PLSA)	Snippet			Valence
Kennedy and Inkpen, 2006	Polarity	Lexicon/Rule, ML (SVM)	Phrase	Count	Snippet	Valence
Mishne 2006	Polarity	Lexicon	Phrase	Average	Snippet	Valence
Liu et al., 2005	Polarity	Lexicon/Rule	Phrase	Distribution	Object	Range
Mishne 2005	Polarity	ML (SVM)	Snippet			Valence
Popescu and Etzioni 2005	Polarity	Lexicon/Rule	Phrase			Valence
Efron 2004	Polarity	ML (SVN, NB)	Snippet			Valence
Wilson, Wiebe, and Hwa, 2004	Both	ML (SVM, AdaBoost, Rule, etc.)	Sentence			Valence
Nigam and Hurst 2004	Polarity	Lexicon/Rule	Chunk	Rule	Sentence	Valence
Dave, Lawrence, and Pennock, 2003	Polarity	ML (SVM, Rainbow, etc.)	Snippet			Valence
Nasukawa and Yi 2003	Polarity	Lexicon/Rule	Phrase	Rule	Sentence	Valence
Yi et al., 2003	Polarity	Lexicon/Rule	Phrase	Rule	Sentence	Valence
Yu and Hatzivassiloglou 2003	Both	ML (NB) + Lexicon/Rule	Phrase	Average	Sentence	Valence
Pang, Lee, and Vaithyanathan 2002	Polarity	ML (SVM, MaxEnt, NB)	Snippet			Valence
Subasic and Huettner 2001	Polarity	Lexicon/Fuzzy logic	Phrase	Average	Snippet	Valence
Turney 2001	Polarity	Lexicon/Rule	Phrase	Average	Snippet	Valence

(Both = Subjectivity and Polarity; ML= Machine Learning; Lexicon/Rule= Lexicon enhanced by linguistic rules)

Source: Zhang, Z., Li, X., and Chen, Y. (2012), "Deciphering word-of-mouth in social media: Text-based metrics of consumer reviews," ACM Trans. Manage. Inf. Syst. (3:1) 2012, pp 1-23.,

Word-of-Mouth (WOM)

 "This book is the best written documentary thus far, yet sadly, there is no soft cover edition."

 "This book is the best written documentary thus far, yet sadly, there is no soft cover edition."

	Word	POS
This	This	DT
book	book	NN
is	is	VBZ
the	the	DT
best	best	JJS
written	written	VBN
documentary	documentary	NN
thus	thus	RB
far	far	RB
,	,	,
yet	yet	RB
sadly	sadly	RB
,	,	,
there	there	EX
is	is	VBZ
no	no	DT
soft	soft	JJ
cover	cover	NN
edition	edition	NN
	•	•

Conversion of text representation

Word Vector			P	olarity Score Vector	l III	Microstate Sequence	e	
(WV)		pscor	e nscore	(PSV)		(MS)		
This		0	0	Neutral (0)		0		
book		0	0	Neutral (0)		0		
is		0	0	Neutral (0)		0		Probability
the		0	0	Neutral (0)		0		Distribution
best		0.75	0	Positive (0.75)		1		(P)
written		0	0	Neutral (0)		0		
documentary		0	0	Neutral (0)		0		
thus		0.375	0	Positive (0.375)		1		P("1")=3/17
far	SentiWordNet	0.375	0	Positive (0.375)	Microstate	1	Probability	
,	Lookup /				Mapping		Mapping /	P("-1")=3/1/
yet		0	0.125	Negative (0.125)		-1		P("0")=11/17
sadly		0.25	0.5	Negative (0.25)		-1		
,					Ť		, ,	
there		0	0	Neutral (0)		0		
is		0	0	Neutral (0)		0		
no		0	0.75	Negative (0.75)		-1		
soft		0	0	Neutral (0)		0		
cover		0	0	Neutral (0)		0		
edition		0	0	Neutral (0)		0		

Source: Zhang, Z., Li, X., and Chen, Y. (2012), "Deciphering word-of-mouth in social media: Text-based metrics of consumer reviews," ACM Trans. Manage. Inf. Syst. (3:1) 2012, pp 1-23.,

Example of SentiWordNet

- POSIDPosScoreNegScoreSynsetTermsGlossa002177280.750beautiful#1delighting the senses orexciting intellectual or emotional admiration; "a beautiful child";
"beautiful country"; "a beautiful painting"; "a beautiful theory"; "a
beautiful party"
- a 00227507 0.75 0 best#1 (superlative of `good') having the most positive qualities; "the best film of the year"; "the best solution"; "the best time for planting"; "wore his best suit"
- r 00042614 0 0.625 unhappily#2 sadly#1 in an unfortunate way; "sadly he died before he could see his grandchild"
- r 00093270 0 0.875 woefully#1 sadly#3 lamentably#1 deplorably#1 in an unfortunate or deplorable manner; "he was sadly neglected"; "it was woefully inadequate"
- r 00404501 0 0.25 sadly#2 with sadness; in a sad manner; "`She died last night,' he said sadly"

The car is very old but it is rather not expensive.

The car is very old but it is rather not expensive.

The car is very old but it is rather not expensive.

The car is very old but it is rather not expensive. The car is very old but it is rather not expensive.

Evaluation of Text Mining and Sentiment Analysis

- Evaluation of Information Retrieval
- Evaluation of Classification Model (Prediction)
 - -Accuracy
 - -Precision
 - Recall
 - -F-score

Deep Learning for

Sentiment Analytics

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng and Christopher Potts Stanford University, Stanford, CA 94305, USA

richard@socher.org,{aperelyg,jcchuang,ang}@cs.stanford.edu {jeaneis,manning,cgpotts}@stanford.edu

Abstract

Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation resources and more powerful models of composition. To remedy this, we introduce a Sentiment Treebank. It includes fine grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences and presents new challenges for sentiment compositionality. To address them, we introduce the Recursive Neural Tensor Network. When trained on the new treebank, this model out-

Figure 1: Example of the Recursive Neural Tensor Network accurately predicting 5 sentiment classes, very negative to very positive (--, -, 0, +, ++), at every node of a parse tree and capturing the negation and its scope in this sentence.

Recursive Neural Tensor Network (RNTN)

Recursive Neural Network (RNN) models for sentiment

Recursive Neural Tensor Network (RNTN)

Roger Dodger is one of the most compelling variations on this theme.

Roger Dodger is one of the least compelling variations on this theme.
RNTN for Sentiment Analysis

Roger Dodger is one of the most compelling variations on this theme.

Source: Richard Socher et al. (2013) "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank", EMNLP 2013

RNTN for Sentiment Analysis

Roger Dodger is one of the least compelling variations on this theme.

Source: Richard Socher et al. (2013) "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank", EMNLP 2013

Accuracy for fine grained (5-class) and binary predictions at the sentence level (root) and for all nodes

Mode1	Fine-grained		Positiv	Positive/Negative	
	All	Root	All	Root	
NB	67.2	41.0	82.6	81.8	
SVM	64.3	40.7	84.6	79.4	
BiNB	71.0	41.9	82.7	83.1	
VecAvg	73.3	32.7	85.1	80.1	
RNN	79.0	43.2	86.1	82.4	
MV-RNN	78.7	44.4	86.8	82.9	
RNTN	80.7	45.7	87.6	85.4	

Accuracy of negation detection

Model	Accuracy			
	Negated Positive	Negated Negative		
biNB	19.0	27.3		
RNN	33.3	45.5		
MV-RNN	52.4	54.6		
RNTN	71.4	81.8		

Long Short-Term Memory (LSTM)

Source: https://cs224d.stanford.edu/reports/HongJames.pdf

Deep Learning for Sentiment Analysis CNN RNTN LSTM

Model	Fine (5-class)	Binary
DCNN (Blunsom, et al. 2014)	0.485	0.868
RNTN (Socher, et al. 2013)	0.457	0.854
CNN-non-static (Kim, 2014)	0.480	0.872
CNN-multi-channel (Kim, 2014)	0.474	0.881
DRNN w. pretrained word-embeddings (Irsoy and Cardie, 2014)	0.498	0.866
Paragraph Vector (Le and Mikolov. 2014)	0.487	0.878
Dependency Tree-LSTM (Tai, et al, 2015)	0.484	0.857
Constituency Tree-LSTM (Tai, et al, 2015)	0.439	0.820
Constituency Tree-LSTM (Glove vectors) (Tai, et al, 2015)	0.510	0.880
Paragraph Vector	0.391	0.798
LSTM	0.456	0.843
Deep Recursive-NN	0.469	0.847

Performance Comparison of Sentiment Analysis Methods

	Method	Data Set	Acc.	Author
Machine Learning	SVM	Movie reviews	86.40%	Pang, Lee[23]
	CoTraining SVM	Twitter	82.52%	Liu[14]
	Deep learning	Stanford Sentimen t Treebank	80.70%	Richard[18]
Lexical based	Corpus	Product reviews	74.00%	Turkey
	Dictionary	Amazon' s Mechani cal Turk		Taboada[20]
Cross-	Ensemble	Amazon	81.00%	Wan,X[16]
lingual	Co-Train	Amazon, ITI68	81.30%	Wan,X.[16]
	EWGA	IMDb movie review	>90%	Abbasi,A.
	CLMM	MPQA,N TCIR,ISI	83.02%	Mengi
Cross-	Active Learning	Book, DVD,	80% (avg)	Li, S
domain	Thesaurus SFA	Electroni cs, Kitchen		Bollegala[22] Pan S J[15]

Vishal Kharde and Sheetal Sonawane (2016), "Sentiment Analysis of Twitter Data: A Survey of Techniques," International Journal of Computer Applications, Vol 139, No. 11, 2016. pp.5-15

Resources of Opinion Mining

Datasets of Opinion Mining

- Blog06
 - 25GB TREC test collection
 - <u>http://ir.dcs.gla.ac.uk/test collections/access to data.html</u>
- Cornell movie-review datasets
 - <u>http://www.cs.cornell.edu/people/pabo/movie-review-data/</u>
- Customer review datasets
 - <u>http://www.cs.uic.edu/~liub/FBS/CustomerReviewData.zip</u>
- Multiple-aspect restaurant reviews
 - <u>http://people.csail.mit.edu/bsnyder/naacl07</u>
- NTCIR multilingual corpus
 - NTCIR Multilingual Opinion-Analysis Task (MOAT)

Lexical Resources of Opinion Mining

- SentiWordnet
 - <u>http://sentiwordnet.isti.cnr.it/</u>
- General Inquirer
 - <u>http://www.wjh.harvard.edu/~inquirer/</u>
- OpinionFinder's Subjectivity Lexicon
 - <u>http://www.cs.pitt.edu/mpqa/</u>
- NTU Sentiment Dictionary (NTUSD)
 - http://nlg18.csie.ntu.edu.tw:8080/opinion/
- Hownet Sentiment
 - <u>http://www.keenage.com/html/c_bulletin_2007.htm</u>

Sentiment Analysis Dictionary

- NTUSD: SD\NTUSD.rar
- HOWNET: SD\HOWNET.rar
- SentiWordNet: SD\SentiWordNet3.rar
- TYCCL Antonym Negation: SD\TYCCL\TYCCL.rar
- DLUTSD : SD\DLUTSD.zip
- IMTKU iCosmeSD: SD\iCosmeSD2014.rar
- IMTKU iMFinanceSD: SD\iMFinanceSD.zip
- IMTKU Antonym: SD\IMTKUAntonym.txt

Example of SentiWordNet

- POSIDPosScoreNegScoreSynsetTermsGlossa002177280.750beautiful#1delighting the senses orexciting intellectual or emotional admiration; "a beautiful child";
"beautiful country"; "a beautiful painting"; "a beautiful theory"; "a
beautiful party"
- a 00227507 0.75 0 best#1 (superlative of `good') having the most positive qualities; "the best film of the year"; "the best solution"; "the best time for planting"; "wore his best suit"
- r 00042614 0 0.625 unhappily#2 sadly#1 in an unfortunate way; "sadly he died before he could see his grandchild"
- r 00093270 0 0.875 woefully#1 sadly#3 lamentably#1 deplorably#1 in an unfortunate or deplorable manner; "he was sadly neglected"; "it was woefully inadequate"
- r 00404501 0 0.25 sadly#2 with sadness; in a sad manner; "`She died last night,' he said sadly"

《知網》情感分析用詞語集(betak)

- "中英文情感分析用詞語集"
 包含詞語約 17887
- "中文情感分析用詞語集"
 - 包含詞語約 9193
- "英文情感分析用詞語集"

- 包含詞語 8945

中文正面情感詞語	836
中文負面情感詞語	1254
中文正面評價詞語	3730
中文負面評價詞語	3116
中文程度級別詞語	219
中文主張詞語	38
Total	9193

- •"正面情感"詞語
 - -如:

愛,讚賞,快樂,感同身受,好奇, 喝彩,魂牽夢縈,嘉許...

- •"負面情感"詞語
 - -如:

哀傷,半信半疑,鄙視,不滿意,不是滋味兒,後悔,大失所望...

- •"正面評價"詞語
 - -如:

不可或缺,部優,才高八斗,沉魚落雁, 催人奮進,動聽,對勁兒...

- •"負面評價"詞語
 - -如:

醜,苦,超標,華而不實,荒涼,混濁, 畸輕畸重,價高,空洞無物...

- "程度級別" 詞語
 - -1. "極其|extreme/最|most"
 - •非常,極,極度,無以倫比,最為
 - -2. "很|very"
 - 多麼,分外,格外,著實

•"主張"詞語

. . .

- -1. {perception | 感知}
 - 感覺,覺得,預感
- 2. {regard | 認為}
 - 認為,以為,主張

Fake Review **Opinion Spam** Detection

Opinion Spam Detection

- Opinion Spam Detection: Detecting Fake Reviews and Reviewers
 - Spam Review
 - Fake Review
 - Bogus Review
 - Deceptive review
 - Opinion Spammer
 - Review Spammer
 - Fake Reviewer
 - Shill (Stooge or Plant)

Opinion Spamming

- Opinion Spamming
 - "illegal" activities
 - e.g., writing fake reviews, also called shilling
 - try to mislead readers or automated opinion mining and sentiment analysis systems by giving undeserving positive opinions to some target entities in order to promote the entities and/or by giving false negative opinions to some other entities in order to damage their reputations.

Forms of Opinion spam

- fake reviews (also called bogus reviews)
- fake comments
- fake blogs
- fake social network postings
- deceptions
- deceptive messages

Fake Review Detection

- Methods
 - supervised learning
 - pattern discovery
 - graph-based methods
 - relational modeling
- Signals
 - Review content
 - Reviewer abnormal behaviors
 - Product related features
 - Relationships

Professional Fake Review Writing Services (some Reputation Management companies)

- Post positive reviews
- Sponsored reviews
- Pay per post
- Need someone to write positive reviews about our company (budget: \$250-\$750 USD)
- Fake review writer
- Product review writer for hire
- Hire a content writer
- Fake Amazon book reviews (hiring book reviewers)
- People are just having fun (not serious)

Source: http://www.sponsoredreviews.com/

Deceptive Review Spam Detection Techniques

- Supervised learning techniques
 - labeled data
- Unsupervised learning techniques
 - unlabeled data
- Semi-supervised learning techniques

– minimum labeled data

Comparison of deceptive review spam detection techniques based on labeled data

Authors	Key concept	Features	Learner	Result
Jindal and Liu (2008)	Text duplication	Review, reviewer and product centric	Logistic regression	78 %(accuracy)
Lai et al. (2010)	Text similarity	Review text	SVM	81 %(precision)
Algur et al. (2010)	Product feature similarity	Product features	Cosine similarity	43.6 %(precision)
Ott et al. (2011)	Content similarity	LIWC + Bigram	SVM	89.6(accuracy)
Ott et al. (2013)	Content review(Taking negative reviews only)	n-gram	SVM	86 %(accuracy)
Mukherjee et al. (2013)	Content similarity	Behavioral+ Bigrams	SVM	86.1 %(accuracy)
Shojaee et al. (2013)	Stylometric	Lexical and syntactical	SVM	84 %(F-score)
Long et al. (2014)	Ontology	Ontological features	Conditional filtering	75 %(precision)
Rout et al. (2017)	Content similarity	Sentiment Score,	SVM	88.71 %(accuracy)
Rout et al. (2017)	and sentiment	Lingustic features	Naive Bayes	91.9 %(accuracy)
Rout et al. (2017)	polarity	and unigram	Decision Tree	92.11 %(accuracy)

Source: Rout, Jitendra Kumar, Smriti Singh, Sanjay Kumar Jena, and Sambit Bakshi.

"Deceptive review detection using labeled and unlabeled data." Multimedia Tools and Applications (2017): 1-25.

Comparison of deceptive review spam detection techniques based on unlabeled data

Author	Key concept	Dataset	Features	Approach
Wu et al. (2010)	Distortion used to separate out true positives from false positives.	Irish tripAdvisor Data	Proportion of positive singletons (PPS) and concentration of positive singletons(CPS)	Clustering
Raymond et al. (2011)	Semantic content overlapping among reviews	Amazon review dataset	cosine similarity measure	Clustering
Mukherjee et al. (2013)	Difference in behavioral distributions of spammers and non- spammers	Amazon review dataset	Author features, Review features	Unsupervised clustering in bayesian setting
Akoglu et al. (2013)	Network effect among reviewer and products	Software marketplace (SWM) dataset	Honesty and goodness of products, Review scores	Graph clustering (Cross- Association Clustering)
Rout et al. (2017)	Difference in behavioral patterns of reviews	Amazon cell phone reviews dataset	Review data, Reviewer data and product information	Clustering

Source: Rout, Jitendra Kumar, Smriti Singh, Sanjay Kumar Jena, and Sambit Bakshi.

"Deceptive review detection using labeled and unlabeled data." *Multimedia Tools and Applications* (2017): 1-25.

Comparison of deceptive review spam detection techniques based on minimum labeled data

Author	Key concept	Dataset	Approach	Features	Result
Li et al. (2011)	Review spammer consistently writes spam	Product reviews obtained from Epinions	Co-training algorithm	Review related features (Content, sentiment, product, data features) and reviewer related features (Profile and Behavioral Features)	0.631 (F-Score)
Fusilier et al. (2013)	Learning from positive example and set of unlabeled data	Ott's hotel review dataset	PU-learning	n-gram	0.84 (F-score)
Ren et al. (2014)	Based on some truthful reviews and a lot of unlabeled reviews to build an accurate classifier	Ott's hotel review dataset	Mixing population and individual property PU learning(MPIPUL)	Similarity weights	83.91 % (Accuracy)

Source: Rout, Jitendra Kumar, Smriti Singh, Sanjay Kumar Jena, and Sambit Bakshi.

"Deceptive review detection using labeled and unlabeled data." Multimedia Tools and Applications (2017): 1-25.

References

- Chuck Hemann and Ken Burbary (2013), Digital Marketing Analytics: Making Sense of Consumer Data in a Digital World, Que.
- Bing Liu (2015), Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, Cambridge University Press
- Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," 2nd Edition, Springer.

http://www.cs.uic.edu/~liub/WebMiningBook.html

- Bing Liu (2013), Opinion Spam Detection: Detecting Fake Reviews and Reviewers, http://www.cs.uic.edu/~liub/FBS/fake-reviews.html
- Bo Pang and Lillian Lee (2008), "Opinion mining and sentiment analysis," Foundations and Trends in Information Retrieval 2(1-2), pp. 1–135, 2008.
- Wiltrud Kessler (2012), Introduction to Sentiment Analysis, <u>http://www.ims.uni-</u> <u>stuttgart.de/~kesslewd/lehre/sentimentanalysis12s/introduction_sentimentanalysis.pdf</u>
- Z. Zhang, X. Li, and Y. Chen (2012), "Deciphering word-of-mouth in social media: Textbased metrics of consumer reviews," ACM Trans. Manage. Inf. Syst. (3:1) 2012, pp 1-23.
- Efraim Turban, Ramesh Sharda, Dursun Delen (2011), Decision Support and Business Intelligence Systems, Ninth Edition, 2011, Pearson.
- Guandong Xu, Yanchun Zhang, Lin Li (2011), Web Mining and Social Networking: Techniques and Applications, 2011, Springer

References

- Cambria, Erik, Soujanya Poria, Rajiv Bajpai, and Björn Schuller. "SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives." In the 26th International Conference on Computational Linguistics (COLING), Osaka. 2016.
- Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher Potts (2013), "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank," In Proceedings of the conference on empirical methods in natural language processing (EMNLP), vol. 1631, p. 1642 http://nlp.stanford.edu/~socherr/EMNLP2013 RNTN.pdf
- Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.
- Vishal Kharde and Sheetal Sonawane (2016), "Sentiment Analysis of Twitter Data: A Survey of Techniques," International Journal of Computer Applications, vol 139, no. 11, 2016. pp.5-15.
- Jesus Serrano-Guerrero, Jose A. Olivas, Francisco P. Romero, and Enrique Herrera-Viedma (2015), "Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.
- Steven Struhl (2015), Practical Text Analytics: Interpreting Text and Unstructured Data for Business Intelligence (Marketing Science), Kogan Page
- Jitendra Kumar Rout, Smriti Singh, Sanjay Kumar Jena, and Sambit Bakshi (2017), "Deceptive review detection using labeled and unlabeled data." Multimedia Tools and Applications (2017): 1-25.