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* Social Network Analysis (SNA)
— Degree Centrality
— Betweenness Centrality
— Closeness Centrality

* Applications of SNA



Jennifer Golbeck (2013), Analyzing the Social Web, Morgan Kaufmann

Analyzmg the
Social'Web

Jennifer Golbeck

Source: http://www.amazon.com/Analyzing-Social-Web-Jennifer-Golbeck/dp/0124055311




Social Network Analysis

Source: http://www.fmsasg.com/SocialNetworkAnalysis/




Social Network Analysis

* A social network is a social structure of
people, related (directly or indirectly) to each
other through a common relation or interest

* Social network analysis (SNA) is the study of
social networks to understand their structure
and behavior

Source: (c) Jaideep Srivastava, srivasta@cs.umn.edu, Data Mining for Social Network Analysis



Social Network Analysis

* Using Social Network Analysis, you can get
answers to questions like:

— How highly connected is an entity within a network?
— What is an entity's overall importance in a network?
— How central is an entity within a network?

— How does information flow within a network?

http://www.fmsasqg.com/SocialNetworkAnalysis/




Social Network Analysis

Social network is the study of social entities (people in an
organization, called actors), and their interactions and
relationships.

The interactions and relationships can be represented
with a network or graph,

— each vertex (or node) represents an actor and

— each link represents a relationship.

From the network, we can study the properties of its
structure, and the role, position and prestige of each
social actor.

We can also find various kinds of sub-graphs, e.g.,
communities formed by groups of actors.
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Social Network and the Web

e Social network analysis is useful for the Web because the
Web is essentially a virtual society, and thus a virtual social
network,

— Each page: a social actor and
— each hyperlink: a relationship.

* Many results from social network can be adapted and
extended for use in the Web context.

* Two types of social network analysis,

— Centrality
— Prestige

closely related to hyperlink analysis and search on the Web



Degree

Source: https://www.youtube.com/watch?v=89mxOdwPfxA
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Degree

Source: https://www.youtube.com/watch?v=89mxOdwPfxA
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Density

Source: https://www.youtube.com/watch?v=89mxOdwPfxA
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Density
Edges (Links): 5

Total Possible Edges: 10
Density: 5/10 = 0.5

Source: https://www.youtube.com/watch?v=89mxOdwPfxA
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Nodes (n): 10

Edges (Links): 13

Total Possible Edges: (n * (n-1)) /2=(10*9)/ 2 =45
Density: 13/45 = 0.29
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Which Node is Most Important?




Centrality

* |[mportant or prominent actors are those that
are linked or involved with other actors
extensively.

* A person with extensive contacts (links) or
communications with many other people in
the organization is considered more important
than a person with relatively fewer contacts.

* The links can also be called ties.
A central actor is one involved in many ties.



Social Network Analysis (SNA)

* Degree Centrality
* Betweenness Centrality
* Closeness Centrality



Social Network Analysis:
Degree Centrality

()Moderate degrees
@) High degrees

Alice has the highest degree centrality, which means that she is quite active in
the network. However, she is not necessarily the most powerful person because
she is only directly connected within one degree to people in her cliqgue—she
has to go through Rafael to get to other cliques.

Source: http://www.fmsasg.com/SocialNetworkAnalysis/

19



Social Network Analysis: ___
Degree Centrality

* Degree centrality is simply the number of direct relationships that
an entity has.

* An entity with high degree centrality:
— |s generally an active player in the network.
— |s often a connector or hub in the network.

— s not necessarily the most connected entity in the network (an
entity may have a large number of relationships, the majority of

which point to low-level entities).
— May be in an advantaged position in the network.

— May have alternative avenues to satisfy organizational needs,
and consequently may be less dependent on other individuals.

— Can often be identified as third parties or deal makers.

http://www.fmsasqg.com/SocialNetworkAnalysis/ 20




Social Network Analysis:
Degree Centrality
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Social Network Analysis:
Degree Centrality
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Social Network Analysis:
Betweenness Centrality

{ )Moderate betweeness
‘ngh betweeness

Rafael has the highest betweenness because he is between Alice and Aldo, who are
between other entities. Alice and Aldo have a slightly lower betweenness because
they are essentially only between their own cliques. Therefore, although Alice has a
higher degree centrality, Rafael has more importance in the network in certain

respects.
Source: http://www.fmsasg.com/SocialNetworkAnalysis/
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Social Network Analysis:

Betweenness Centrality

Betweenness centrality identifies an entity's position within a
network in terms of its ability to make connections to other
pairs or groups in a network.

An entity with a high betweenness centrality generally:
— Holds a favored or powerful position in the network.

— Represents a single point of failure—take the single
betweenness spanner out of a network and you sever ties
between cliques.

— Has a greater amount of influence over what happensin a
network.

http://www.fmsasqg.com/SocialNetworkAnalysis/
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Social Network Analysis:
Closeness Centrality

Mary Bob Stefan

Frederica Jim
{ )Moderate doseness
@ High closeness

Rafael has the highest closeness centrality because he can reach more entities
through shorter paths. As such, Rafael's placement allows him to connect to entities
in his own clique, and to entities that span cliques.

Source: http://www.fmsasg.com/SocialNetworkAnalysis/
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Social Network Analysis: ;.
Closeness Centrality |

* Closeness centrality measures how quickly an entity can access
more entities in a network.

* An entity with a high closeness centrality generally:
— Has quick access to other entities in a network.
— Has a short path to other entities.
— Is close to other entities.
— Has high visibility as to what is happening in the network.

http://www.fmsasqg.com/SocialNetworkAnalysis/
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Social Network Analysis:
Closeness Centrality

C-2A:
C->B:
C->D:
C->E:
C->F:
C->G:
C->H:
C->1I:
C->1J:

WWNRNRRRR

Total=15

C: Closeness Centrality = 15/9 = 1.67
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Social Network Analysis:
Closeness Centrality

G2A:
G—>B:
G->C:
G->D:
G>E:
G2>F:
G2>H:
G>1:
GC>J:

NNVNPEFERERERENEDNDN

Total=14
G: Closeness Centrality = 14/9 = 1.56
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Social Network Analysis:
Closeness Centrality

H>A:
H->B:
H->C:
H->D:
H->E:
H>F:
H->G:
H->1:
H—>]:

R P RERENDNDNDN OWW

Total=17
H: Closeness Centrality = 17/9 = 1.89
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Social Network Analysis:
Closeness Centrality

G: Closeness Centrality = 14/9 = 1.56 0
C: Closeness Centrality = 15/9 = 1.67 Q
H: Closeness Centrality = 17/9 = 1.89 €
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Social Network Analysis:
Eigenvalue

{ I)Moderate eigen value
@ High eigen value

Alice and Rafael are closer to other highly close entities in the network. Bob and
Frederica are also highly close, but to a lesser value.

Source: http://www.fmsasg.com/SocialNetworkAnalysis/
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Social Network Analysis: sz,
Eigenvalue -

* Eigenvalue measures how close an entity is to other highly close
entities within a network. In other words, Eigenvalue identifies
the most central entities in terms of the global or overall

makeup of the network.
* A high Eigenvalue generally:
— Indicates an actor that is more central to the main pattern of
distances among all entities.

— |s a reasonable measure of one aspect of centrality in terms
of positional advantage.

http://www.fmsasqg.com/SocialNetworkAnalysis/ 32




Social Network Analysis:
Hub and Authority

Hubs are entities that point to a relatively large number of authorities. They are
essentially the mutually reinforcing analogues to authorities. Authorities point to high
hubs. Hubs point to high authorities. You cannot have one without the other.

Source: http://www.fmsasg.com/SocialNetworkAnalysis/
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Social Network Analysis: =
Hub and Authority o

Entities that many other entities point to are called Authorities.
In Sentinel Visualizer, relationships are directional—they point
from one entity to another.

If an entity has a high number of relationships pointing to it, it
has a high authority value, and generally:

— Is a knowledge or organizational authority within a domain.
— Acts as definitive source of information.

http://www.fmsasqg.com/SocialNetworkAnalysis/
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Social Network Analysis

| Network Metrics

Nyra T | Degroe Betwserness | Closeness Sgervale Hb fthenty
Abdalloh A-Halobi Perscr 2 0 0654367256537 0000 0 0
fbuMusssbal-Zagxw  Person [ 0.934827847206 | 0.869451687127_ 07023 g5 0.107%
A Qeeds Terronsi Orgaraz . 85 1 0.582427735564 . 00916 03 Q0I5
Lyman K-Zswebit Perscn 14 0045784508783 0716120032258 © 0 00m
Enaam Ansot Persce ' 0031133325314 . 0,656304723727. 0000} 0 0
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Source: http://www.fmsasg.com/SocialNetworkAnalysis/ 35



Application of SNA

Social Network Analysis
of
Research Collaboration
N
Information Reuse and Integration

36
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Example of SNA Data Source

home | browse | search | about

computer science bibliography Pa

IRI 2010: Las Vegas, NV, USA

@ Proceedings of the IEEE International Conference on Information Reuse and Integration, IRI 2010, 4-6 August 2010, Las Vegas, Nevada, USA.
IEEE Systems, Man, and Cybernetics Society 2010

Reda Alhajj, James B. D. Joshi, Mei-Ling Shyu: Message from Program Co-Chairs. 1
Stuart Harvey Rubin, Shu-Ching Chen: Forward. 1
Lotfi A. Zadeh: Precisiation of meaning - toward computation with natural language. 1-4

Reda Alhajj, Shu-Ching Chen, Gongzhu Hu, James B. D. Joshi, Gordon K. Lee, Stuart Harvey Rubin, Mei-Ling Shyu, Lotfi A. Zadeh: Panel title: Critical
need for funding of basic and applied research in large-scale computing. 1

Automation, Integration and Reuse across Various Apps
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Laszl6 Istvan Etesi, André Csillaghy, Lin-Ching Chang: A message-based interoperability framework with application to astrophysics. 1-6
Awny Alnusair, Tian Zhao, Eric Bodden: Effective APl navigation and reuse. 7-12
Manabu Ohta, Ryohei Inoue, Atsuhiro Takasu: Empirical evaluation of active sampling for CRF-based analysis of pages. 13-18

Qunzhi Zhou, Viktor K. Prasanna: Workflow management of simulation based computation processes in transportation domain. 19-24

Source: http://www.informatik.uni-trier.de/~ley/db/conf/iri/iri2010.html 37




Research Question

* RQ1l: What are the
scientific collaboration patterns
in the IRl research community?

* RQ2: Who are the
prominent researchers
in the IRl community?



Methodology

* Developed a simple web focused crawler program to
download literature information about all IRl papers
published between 2003 and 2010 from |IEEE Xplore
and DBLP.

— /67 paper
— 1599 distinct author

 Developed a program to convert the list of coauthors
into the format of a network file which can be
readable by social network analysis software.

* UCINet and Pajek were used in this study for the
social network analysis.



Top10 prolific authors
(IR1 2003-2010)

Stuart Harvey Rubin
Taghi M. Khoshgoftaar
Shu-Ching Chen
Mei-Ling Shyu
Mohamed E. Fayad
Reda Alhajj

Du Zhang

Wen-Lian Hsu

L 0 N O U B W

Jason Van Hulse
10. Min-Yuh Day



Data Analysis and Discussion

Closeness Centrality
— Collaborated widely

Betweenness Centrality
— Collaborated diversely

Degree Centrality
— Collaborated frequently

Visualization of Social Network Analysis

— Insight into the structural characteristics of
research collaboration networks



Top 20 authors with the highest closeness scores

Rank ID Closeness Author

1 3 0.024675 Shu-Ching Chen
2 1 0.022830 Stuart Harvey Rubin
3 4 0.022207 Mei-Ling Shyu
4 6 0.020013 Reda Alhajj

5 61 0.019700 Na Zhao

6 260 0.018936 Min Chen

7 151 0.018230 Gordon K. Lee
8 19 0.017962 Chengcui Zhang
9 1043 0.017962 Isai Michel Lombera
10 1027 0.017962 Michael Armella
11 443 0.017448 James B. Law
12 157 0.017082 Keqi Zhang

13 253 0.016731 Shahid Hamid
14 1038 0.016618 Walter Z. Tang
15 959 0.016285 Chengjun Zhan
16 957 0.016285 Lin Luo

17 956 0.016285 Guo Chen

18 955 0.016285 Xin Huang

19 943 0.016285 Sneh Gulati
20 960 0.016071 Sheng-Tun Li
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Top 20 authors with the highest betweeness scores

Rank ID Betweenness  Author
1 1 0.000752 Stuart Harvey Rubin
2 3 0.000741 Shu-Ching Chen
3 2 0.000406 Taghi M. Khoshgoftaar
4 66 0.000385 Xingquan Zhu
5 4 0.000376 Mei-Ling Shyu
6 6 0.000296 Reda Alhayjj
7 65 0.000256 Xindong Wu
8 19 0.000194 Chengcui Zhang
9 39 0.000185 Wei Dai
10 15 0.000107 Narayan C. Debnath
11 31 0.000094 Qianhui Althea Liang
12 151 0.000094 Gordon K. Lee
13 7 0.000085 Du Zhang
14 30 0.000072 Baowen Xu
15 41 0.000067 Hongji Yang
16 270 0.000060 Zhiwei Xu
17 5 0.000043 Mohamed E. Fayad
18 110 0.000042 Abhijit S. Pandya
19 106 0.000042 Sam Hsu
20 8 0.000042 Wen-Lian Hsu




Top 20 authors with the highest degree scores

Rank ID Degree Author

1 3 0.035044 Shu-Ching Chen

2 1 0.034418 Stuart Harvey Rubin

3 2 0.030663 Taghi M. Khoshgoftaar
4 6 0.028786 Reda Alhajj

5 8 0.028786 Wen-Lian Hsu

6 10 0.024406 Min-Yuh Day

7 4 0.022528 Mei-Ling Shyu

8 17 0.021277 Richard Tzong-Han Tsai
9 14 0.017522 Eduardo Santana de Almeida
10 16 0.017522 Roumen Kountchev

11 40 0.016896 Hong-Jie Dai

12 15 0.015645 Narayan C. Debnath

13 9 0.015019 Jason Van Hulse

14 25 0.013767 Roumiana Kountcheva
15 28 0.013141 Silvio Romero de Lemos Meira
16 24 0.013141 Vladimir Todorov

17 23 0.013141 Mariofanna G. Milanova
18 5 0.013141 Mohamed E. Fayad

19 19 0.012516 Chengcui Zhang
20 18 0.011890 Waleed W. Smari




Visualization of IRI (IEEE IRI 2003-2010)
co-authorship network (global view)
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Visualization of Social Network Analysis

% 1. C\pajek\Psjek\Data\I[EEEIRI2003-2010Coauthorship_n.net (1599) / C1. All Degree partition of N1 (1599) / V1. Normalized All Degree partition of N1 (1599) = 3|
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Visualization of Social Network Analysis
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Visualization of Social Network Analysis
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Summary

e Social Network Analysis (SNA)
— Degree Centrality
— Betweenness Centrality

— Closeness Centrality
* Applications of SNA
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