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Outline
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• Question Answering

• Dialogue Systems 



IMTKU System Architecture for NTCIR-13 QALab-3 
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NTCIR-13 Conference, December 5-8, 2017, Tokyo, Japan



System Architecture of 
Intelligent Dialogue and Question Answering System
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IMTKU Emotional Dialogue 
System Architecture
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NTCIR-14 Conference, June 10-13, 2019, Tokyo, Japan
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The system architecture of 
IMTKU retrieval-based model for NTCIR-14 STC-3

8NTCIR-14 Conference, June 10-13, 2019, Tokyo, Japan
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The system architecture of 
IMTKU generation-based model for NTCIR-14 STC-3

9NTCIR-14 Conference, June 10-13, 2019, Tokyo, Japan
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The system architecture of 
IMTKU emotion classification model for NTCIR-14 STC-3

10NTCIR-14 Conference, June 10-13, 2019, Tokyo, Japan
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11NTCIR-14 Conference, June 10-13, 2019, Tokyo, Japan
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The system architecture of 
IMTKU Response Ranking for NTCIR-14 STC-3
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Short Text Conversation Task 
(STC-3)

Chinese Emotional Conversation 
Generation (CECG) Subtask

12Source: http://coai.cs.tsinghua.edu.cn/hml/challenge.html

http://coai.cs.tsinghua.edu.cn/hml/challenge.html


NTCIR Short Text Conversation
STC-1, STC-2, STC-3

13Source: https://waseda.app.box.com/v/STC3atNTCIR-14

https://waseda.app.box.com/v/STC3atNTCIR-14


Chatbots: Evolution of UI/UX 

14Source: https://bbvaopen4u.com/en/actualidad/want-know-how-build-conversational-chatbot-here-are-some-tools



AI Dialogue 
System

15



Dialogue Subtasks

16

Dialogue 
Generation

Task-Oriented 
Dialogue 
Systems

Source: https://paperswithcode.com/area/natural-language-processing/dialogue

Short-Text 
Conversation

https://paperswithcode.com/area/natural-language-processing/dialogue


Chatbot
Dialogue System
Intelligent Agent

17



Chatbot

18Source: https://www.mdsdecoded.com/blog/the-rise-of-chatbots/



Dialogue System

19
Source: Serban, I. V., Lowe, R., Charlin, L., & Pineau, J. (2015). A survey of available corpora for building data-driven dialogue systems. arXiv
preprint arXiv:1512.05742.



Overall Architecture of 
Intelligent Chatbot

20Source: Borah, Bhriguraj, Dhrubajyoti Pathak, Priyankoo Sarmah, Bidisha Som, and Sukumar Nandi. "Survey of Textbased Chatbot in Perspective of Recent Technologies." 
In International Conference on Computational Intelligence, Communications, and Business Analytics, pp. 84-96. Springer, Singapore, 2018.



Can 
machines 

think?
(Alan Turing ,1950)

21
Source: Cahn, Jack. "CHATBOT: Architecture, Design, & Development." 

PhD diss., University of Pennsylvania, 2017.



Chatbot
“online human-computer

dialog system
with 

natural language.”
22

Source: Cahn, Jack. "CHATBOT: Architecture, Design, & Development." 
PhD diss., University of Pennsylvania, 2017.



Chatbot Conversation Framework

23Source: https://chatbotslife.com/ultimate-guide-to-leveraging-nlp-machine-learning-for-you-chatbot-531ff2dd870c



Chatbots
Bot Maturity Model

24Source: https://www.capgemini.com/2017/04/how-can-chatbots-meet-expectations-introducing-the-bot-maturity/

Customers want to have simpler means to interact with businesses and 
get faster response to a question or complaint.



From 
E-Commerce 

to 
Conversational Commerce: 

Chatbots 
and 

Virtual Assistants
25Source: http://www.guided-selling.org/from-e-commerce-to-conversational-commerce/



Conversational Commerce: 
eBay AI Chatbots

26Source: https://www.forbes.com/sites/rachelarthur/2017/07/19/conversational-commerce-ebay-ai-chatbot/



Hotel Chatbot

27Source: https://sdtimes.com/amazon/guest-view-capitalize-amazon-lex-available-general-public/

Intent 
Detection

Slot Filling



28Source: http://www.guided-selling.org/from-e-commerce-to-conversational-commerce/

H&M’s Chatbot on Kik



29Source: http://www.guided-selling.org/from-e-commerce-to-conversational-commerce/

Uber’s Chatbot on Facebook’s Messenger

Uber’s chatbot on Facebook’s messenger 
- one main benefit: it loads much faster than the Uber app



Savings Bot

30Source: https://chatbotsmagazine.com/artificial-intelligence-ai-and-fintech-part-1-7cae1e67dc13



Mastercard Makes Commerce More Conversational

31Source: https://newsroom.mastercard.com/press-releases/mastercard-makes-commerce-more-conversational-with-launch-of-chatbots-for-banks-and-merchants/

https://newsroom.mastercard.com/press-releases/mastercard-makes-commerce-more-conversational-with-launch-of-chatbots-for-banks-and-merchants/


Bot Life Cycle 
and Platform

Ecosystem
32



The Bot Lifecycle

33Source: https://chatbotsmagazine.com/the-bot-lifecycle-1ff357430db7



34Source: https://www.oreilly.com/ideas/infographic-the-bot-platform-ecosystem



35Source: https://www.oreilly.com/ideas/infographic-the-bot-platform-ecosystem



36Source: https://venturebeat.com/2016/08/11/introducing-the-bots-landscape-170-companies-4-billion-in-funding-thousands-of-bots/



37Source: https://medium.com/@RecastAI/2017-messenger-bot-landscape-a-public-spreadsheet-gathering-1000-messenger-bots-f017fdb1448a /



How to Build Chatbots

38Source: Igor Bobriakov (2018), https://activewizards.com/blog/a-comparative-analysis-of-chatbots-apis/



Chatbot Frameworks 
and AI Services

• Bot Frameworks 
– Botkit
– Microsoft Bot Framework
– Rasa NLU

• AI Services
– Wit.ai
– api.ai
– LUIS.ai
– IBM Watson

39Source: Igor Bobriakov (2018), https://activewizards.com/blog/a-comparative-analysis-of-chatbots-apis/



Chatbot Frameworks

40Source: Igor Bobriakov (2018), https://activewizards.com/blog/a-comparative-analysis-of-chatbots-apis/



41Source: Igor Bobriakov (2018), https://activewizards.com/blog/a-comparative-analysis-of-chatbots-apis/



Transformer (Attention is All You Need) 
(Vaswani et al., 2017)

42
Source: Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 

"Attention is all you need." In Advances in neural information processing systems, pp. 5998-6008. 2017.



BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding

43
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

BERT (Bidirectional Encoder Representations from Transformers)
Overall pre-training and fine-tuning procedures 

for BERT



BERT: Pre-training of Deep Bidirectional 
Transformers for Language Understanding

44
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

BERT (Bidirectional Encoder Representations from Transformers)

BERT input representation



BERT, OpenAI GPT, ELMo

45
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.



46
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on Different Tasks



47
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on 
Question Answering (QA)



48
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on Dialogue
Intent Detection (ID; Classification)



49
Source: Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2018). 

"Bert: Pre-training of deep bidirectional transformers for language understanding." arXiv preprint arXiv:1810.04805.

Fine-tuning BERT on Dialogue
Slot Filling (SF)



Pre-trained Language Model (PLM)

50Source: https://github.com/thunlp/PLMpapers

https://github.com/thunlp/PLMpapers


Turing Natural Language Generation 
(T-NLG) 

51Source: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

BERT-Large
340m

2018 2019 2020

GPT-2
1.5b RoBERTa

355m DistilBERT
66m

MegatronLM
8.3b

T-NLG
17b

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/


• Transformers
– pytorch-transformers 
– pytorch-pretrained-bert

• provides state-of-the-art general-purpose architectures 
– (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet, CTRL...) 
– for Natural Language Understanding (NLU) and 

Natural Language Generation (NLG) 
with over 32+ pretrained models 
in 100+ languages 
and deep interoperability between 
TensorFlow 2.0 and 
PyTorch.

52

Transformers
State-of-the-art Natural Language Processing 

for TensorFlow 2.0 and PyTorch

Source: https://github.com/huggingface/transformers

https://github.com/huggingface/transformers


Transfer Learning 
in Natural Language Processing

53

Source: Sebastian Ruder, Matthew E. Peters, Swabha Swayamdipta, and Thomas Wolf (2019),  "Transfer learning in 
natural language processing." In Proceedings of the 2019 Conference of the North American Chapter of the 
Association for Computational Linguistics: Tutorials, pp. 15-18.



NLP Benchmark Datasets

54Source: Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavvaf, and Edward A. Fox  (2020). 
"Natural Language Processing Advancements By Deep Learning: A Survey." arXiv preprint arXiv:2003.01200.



Question Answering

(QA)
SQuAD

Stanford Question Answering Dataset
55



SQuAD

56https://rajpurkar.github.io/SQuAD-explorer/

https://rajpurkar.github.io/SQuAD-explorer/


SQuAD

57
Source: Rajpurkar, Pranav, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 

"Squad: 100,000+ questions for machine comprehension of text." arXiv preprint arXiv:1606.05250 (2016).



58https://en.wikipedia.org/wiki/Precipitation

SQuAD (Question Answering)
Q: What causes precipitation to fall?

https://en.wikipedia.org/wiki/Precipitation


In meteorology, precipitation is any product of the 
condensation of atmospheric water vapor that falls under 
gravity. The main forms of precipitation include drizzle, rain, 
sleet, snow, graupel and hail... Precipitation forms as 
smaller droplets coalesce via collision with other rain drops 
or ice crystals within a cloud. Short, intense periods of rain 
in scattered locations are called “showers”.

59

SQuAD (Question Answering)

Q: What causes precipitation to fall?

Paragraph



SQuAD (Question Answering)
In meteorology, precipitation is any product of the 
condensation of atmospheric water vapor that falls under 
gravity. The main forms of precipitation include drizzle, rain, 
sleet, snow, graupel and hail... Precipitation forms as 
smaller droplets coalesce via collision with other rain drops 
or ice crystals within a cloud. Short, intense periods of rain 
in scattered locations are called “showers”.

Q: What causes precipitation to fall?
A: gravity

60



SQuAD (Question Answering)
In meteorology, precipitation is any product of the 
condensation of atmospheric water vapor that falls under 
gravity. The main forms of precipitation include drizzle, rain, 
sleet, snow, graupel and hail... Precipitation forms as 
smaller droplets coalesce via collision with other rain drops 
or ice crystals within a cloud. Short, intense periods of rain 
in scattered locations are called “showers”.

Q: What is another main form of precipitation besides 
drizzle, rain, snow, sleet and hail? 
A: graupel

61



SQuAD (Question Answering)
In meteorology, precipitation is any product of the 
condensation of atmospheric water vapor that falls under 
gravity. The main forms of precipitation include drizzle, rain, 
sleet, snow, graupel and hail... Precipitation forms as 
smaller droplets coalesce via collision with other rain drops 
or ice crystals within a cloud. Short, intense periods of rain 
in scattered locations are called “showers”.

Q: Where do water droplets collide with ice crystals to form 
precipitation?
A: within a cloud

62



In meteorology, precipitation is any product of the condensation of 
atmospheric water vapor that falls under gravity. The main forms of 
precipitation include drizzle, rain, sleet, snow, graupel and hail... 
Precipitation forms as smaller droplets coalesce via collision with other 
rain drops or ice crystals within a cloud. Short, intense periods of rain in 
scattered locations are called “showers”.

Q: What causes precipitation to fall?
A: gravity
Q: What is another main form of precipitation besides drizzle, rain, snow, 
sleet and hail? 
A: graupel
Q: Where do water droplets collide with ice crystals to form precipitation?
A: within a cloud

63

SQuAD (Question Answering)



64https://en.wikipedia.org/wiki/Super_Bowl_50

SQuAD (Question Answering)

https://en.wikipedia.org/wiki/Super_Bowl_50


Dialogue 
on

Airline Travel 
Information System 

(ATIS)  
65



The ATIS 
(Airline Travel Information System) 

Dataset

66Source: Haihong, E., Peiqing Niu, Zhongfu Chen, and Meina Song. "A novel bi-directional interrelated model for joint intent detection and slot filling." In Proceedings of the 57th 
Annual Meeting of the Association for Computational Linguistics, pp. 5467-5471. 2019.

Training samples: 4978
Testing samples:  893
Vocab size:  943
Slot count:  129
Intent count:   26

https://www.kaggle.com/siddhadev/atis-dataset-from-ms-cntk

https://www.kaggle.com/siddhadev/atis-dataset-from-ms-cntk


SF-ID Network (E et al., 2019)

Slot Filling (SF) 
Intent Detection (ID)

67Source: Haihong, E., Peiqing Niu, Zhongfu Chen, and Meina Song. "A novel bi-directional interrelated model for joint intent detection and slot filling." In Proceedings of the 57th 
Annual Meeting of the Association for Computational Linguistics, pp. 5467-5471. 2019.

A Novel Bi-directional Interrelated Model for Joint Intent Detection and Slot Filling



Intent Detection on ATIS
State-of-the-art

68Source: https://paperswithcode.com/sota/intent-detection-on-atis

https://paperswithcode.com/sota/intent-detection-on-atis


Slot Filling on ATIS
State-of-the-art

69Source: https://paperswithcode.com/sota/slot-filling-on-atis

https://paperswithcode.com/sota/slot-filling-on-atis


Restaurants Dialogue Datasets

• MIT Restaurant Corpus
– https://groups.csail.mit.edu/sls/downloads/restaurant/

• CamRest676 
(Cambridge restaurant dialogue domain 
dataset)
– https://www.repository.cam.ac.uk/handle/1810/260970

• DSTC2 (Dialog State Tracking Challenge 2 & 3)
– http://camdial.org/~mh521/dstc/

70

https://groups.csail.mit.edu/sls/downloads/restaurant/
https://www.repository.cam.ac.uk/handle/1810/260970
http://camdial.org/~mh521/dstc/


CrossWOZ: 
A Large-Scale Chinese Cross-Domain 

Task-Oriented Dialogue Dataset

71
Source: Zhu, Qi, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. "Crosswoz: A large-scale 

chinese cross-domain task-oriented dialogue dataset." arXiv preprint arXiv:2002.11893 (2020).



72
Source: Zhu, Qi, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. "Crosswoz: A large-scale 

chinese cross-domain task-oriented dialogue dataset." arXiv preprint arXiv:2002.11893 (2020).

CrossWOZ: 
A Large-Scale Chinese Cross-Domain 

Task-Oriented Dialogue Dataset



73
Source: Zhu, Qi, Kaili Huang, Zheng Zhang, Xiaoyan Zhu, and Minlie Huang. "Crosswoz: A large-scale 

chinese cross-domain task-oriented dialogue dataset." arXiv preprint arXiv:2002.11893 (2020).

Task-Oriented Dialogue



�����
�
The Evaluation of Chinese Human-Computer 

Dialogue Technology, SMP2019-ECDT
• �����


Natural Language Understanding (NLU)
• ��	�

Dialog Management (DM)
• ������

Natural Language Generation (NLG)

74
Source: http://conference.cipsc.org.cn/smp2019/evaluation.html

https://github.com/OnionWang/SMP2019-ECDT-NLU

http://conference.cipsc.org.cn/smp2019/evaluation.html
https://github.com/OnionWang/SMP2019-ECDT-NLU


75

Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/imtkupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/imtkupython101
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Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/imtkupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/imtkupython101
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Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/imtkupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/imtkupython101
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Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/imtkupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/imtkupython101
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Python in Google Colab (Python101)
https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT

https://tinyurl.com/imtkupython101

https://colab.research.google.com/drive/1FEG6DnGvwfUbeo4zJ1zTunjMqf2RkCrT
https://tinyurl.com/imtkupython101


NLP Benchmark Datasets

80Source: Amirsina Torfi, Rouzbeh A. Shirvani, Yaser Keneshloo, Nader Tavvaf, and Edward A. Fox  (2020). 
"Natural Language Processing Advancements By Deep Learning: A Survey." arXiv preprint arXiv:2003.01200.



Summary

81

• Question Answering

• Dialogue Systems 
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