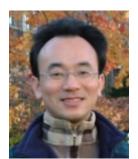




## Research on Social Computing and Big Data Analytics (社群運算與大數據分析研究)

Time: 2016/11/17 (Thu) (15:30-17:30) Place: 東吳大學資管研究所 <城中校區 教室: 4303> Host: 鄭麗珍 教授 (Prof. Li-chen Cheng)



<u>Min-Yuh Day</u> <u>戴敏育</u> Assistant Professor 專任助理教授

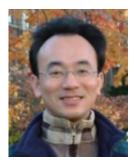
 Dept. of Information Management, Tamkang University

 淡江大學 資訊管理學系



http://mail.tku.edu.tw/myday/

2016-11-17





### (Min-Yuh Day, Ph.D.) 淡江大學資管系專任助理教授 中央研究院資訊科學研究所訪問學人 國立台灣大學資訊管理博士

Publications Co-Chairs, IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013-)

Program Co-Chair, IEEE International Workshop on Empirical Methods for Recognizing Inference in TExt (IEEE EM-RITE 2012-) Workshop Chair, The IEEE International Conference on Information Reuse and Integration (IEEE IRI)







## Outline

- Big Data Sentiment Analysis
- Social Computing
- International Research
   Collaboration and Mobility

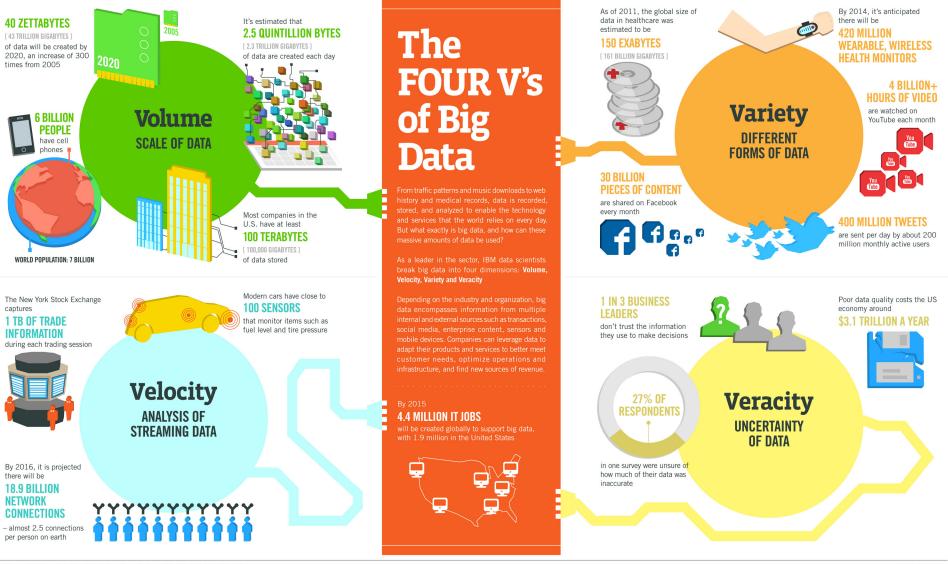
# Big Data

# Sentiment

Analysis

# Big Data Analytics

## **Big Data 4 V**

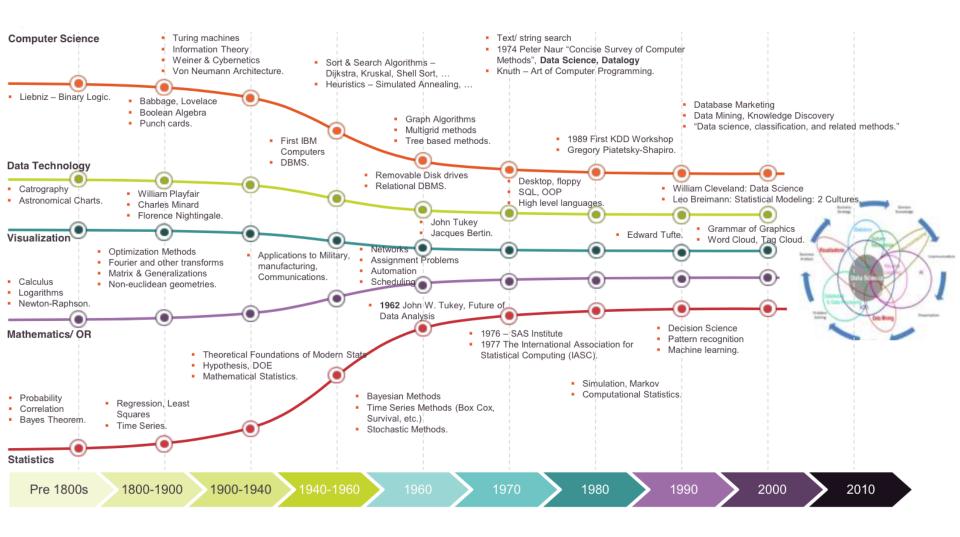


Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

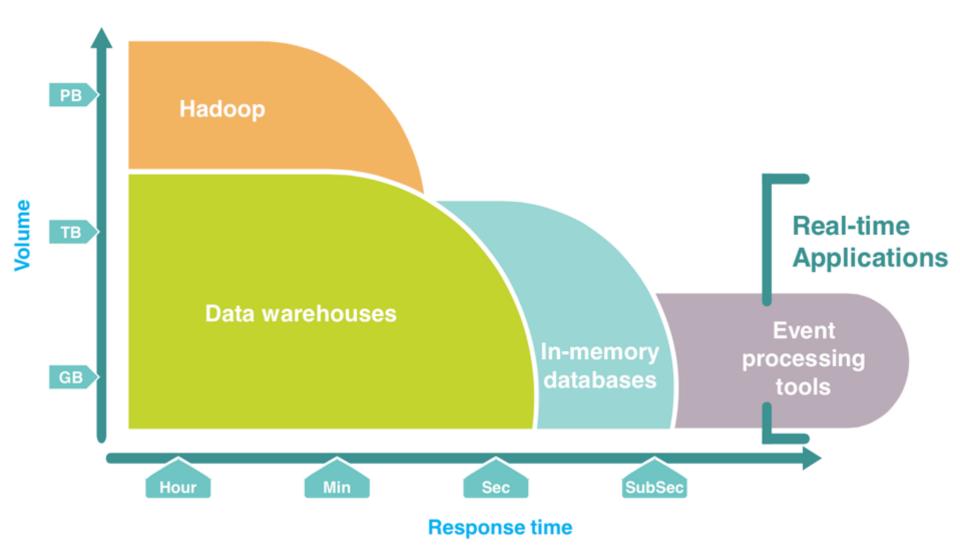
TRM



## **History of Data Science**



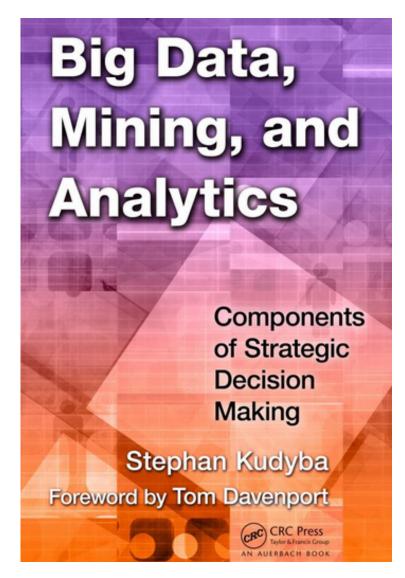
## Big Data Technologies are Enabling a New Approach



Source: http://www.doclens.com/119898/think-1-13-big-datas-impact-on-analytics/

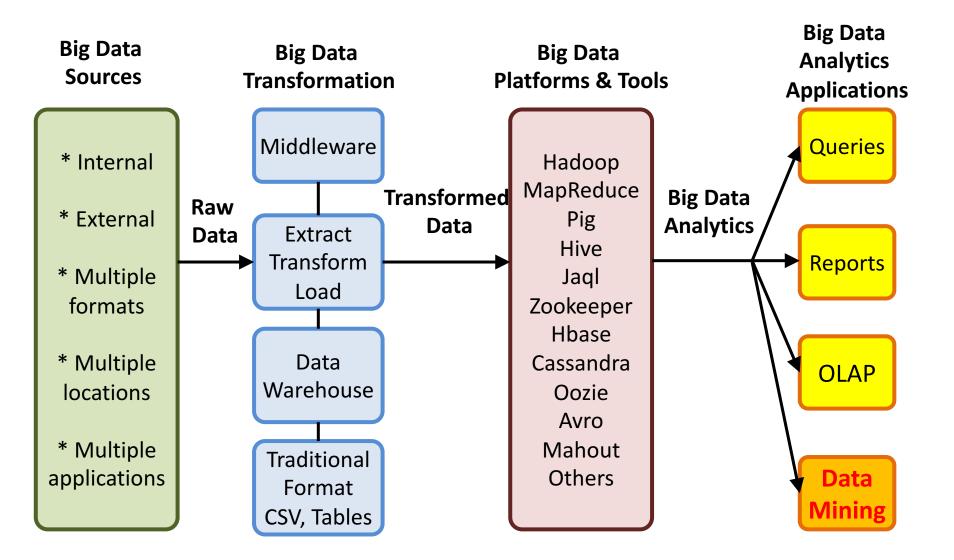
# **Big Data** Analytics and **Data Mining**

Stephan Kudyba (2014), Big Data, Mining, and Analytics: Components of Strategic Decision Making, Auerbach Publications

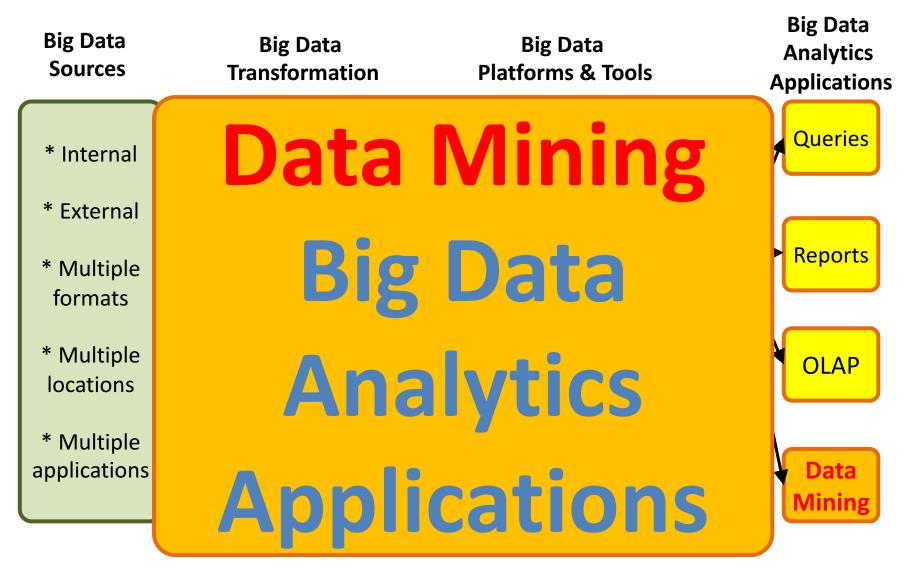


Source: http://www.amazon.com/gp/product/1466568704

## **Architecture of Big Data Analytics**

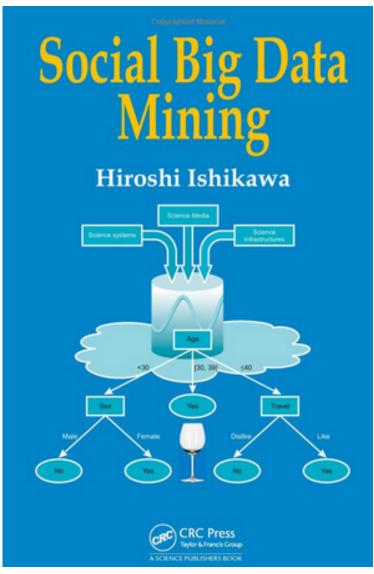


## **Architecture of Big Data Analytics**



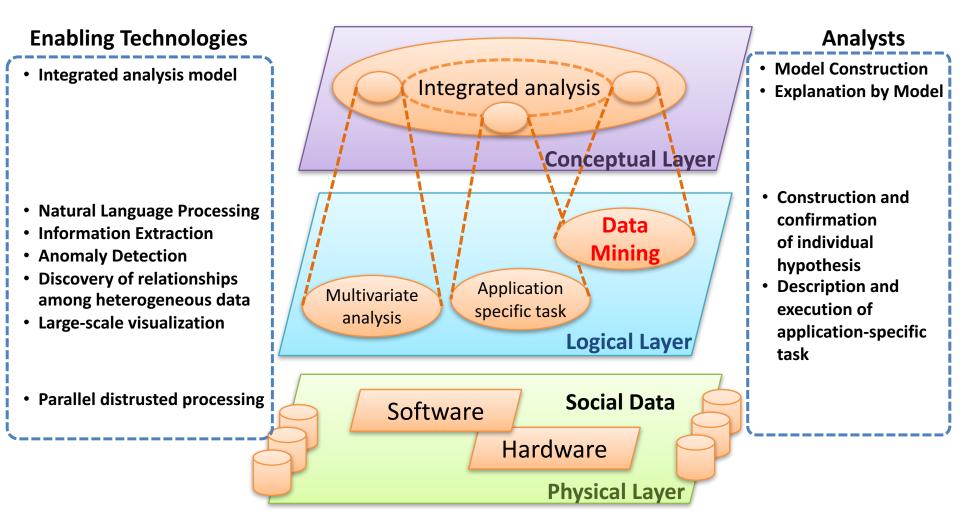
## **Social Big Data Mining**

(Hiroshi Ishikawa, 2015)

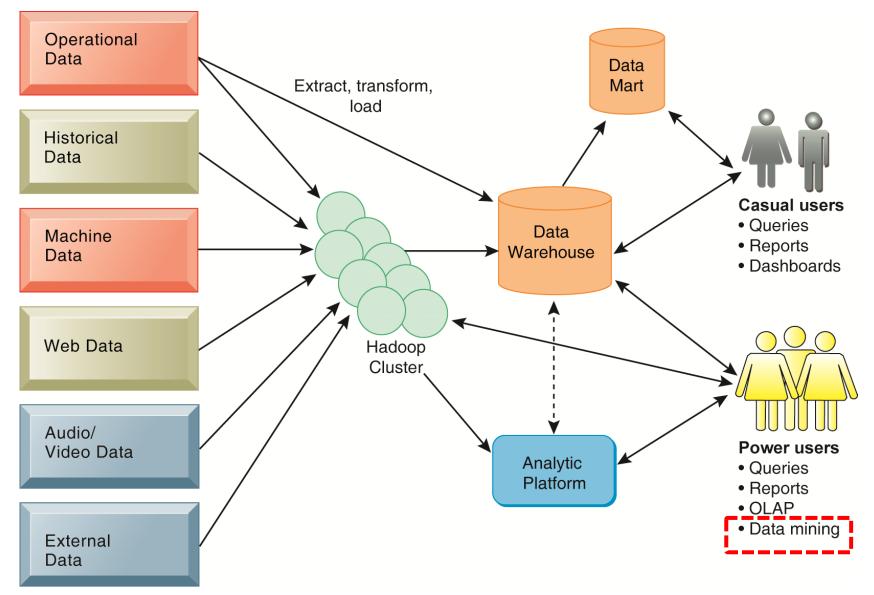


## Architecture for Social Big Data Mining

(Hiroshi Ishikawa, 2015)



### **Business Intelligence (BI) Infrastructure**



LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." Nature 521, no. 7553 (2015): 436-444

## REVIEW

doi:10.1038/nature14539

18

## **Deep learning**

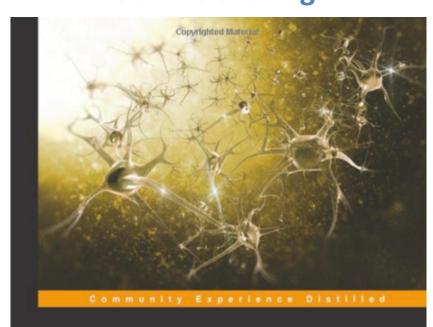
Yann LeCun<sup>1,2</sup>, Yoshua Bengio<sup>3</sup> & Geoffrey Hinton<sup>4,5</sup>

Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

Achine-learning technology powers many aspects of modern society: from web searches to content filtering on social networks to recommendations on e-commerce websites, and it is increasingly present in consumer products such as cameras and smartphones. Machine-learning systems are used to identify objects in images, transcribe speech into text, match news items, posts or products with users' interests, and select relevant results of search. Increasingly, these applications make use of a class of techniques called deep learning.

Conventional machine-learning techniques were limited in their ability to process natural data in their raw form. For decades, conintricate structures in high-dimensional data and is therefore applicable to many domains of science, business and government. In addition to beating records in image recognition<sup>1-4</sup> and speech recognition<sup>5-7</sup>, it has beaten other machine-learning techniques at predicting the activity of potential drug molecules<sup>8</sup>, analysing particle accelerator data<sup>9,10</sup>, reconstructing brain circuits<sup>11</sup>, and predicting the effects of mutations in non-coding DNA on gene expression and disease<sup>12,13</sup>. Perhaps more surprisingly, deep learning has produced extremely promising results for various tasks in natural language understanding<sup>14</sup>, particularly topic classification, sentiment analysis, question answering<sup>15</sup> and language translation<sup>16,17</sup>.

### Sebastian Raschka (2015), **Python Machine Learning**, Packt Publishing



### **Python Machine Learning**

Unlock deeper insights into machine learning with this vital guide to cutting-edge predictive analytics

Foreword by Dr. Randal S. Olson Artificial Intelligence and Machine Learning Researcher, University of Pennsylvania

Sebastian Raschka

### Sunila Gollapudi (2016),

## **Practical Machine Learning**,

### **Packt Publishing**



### **Practical Machine Learning**

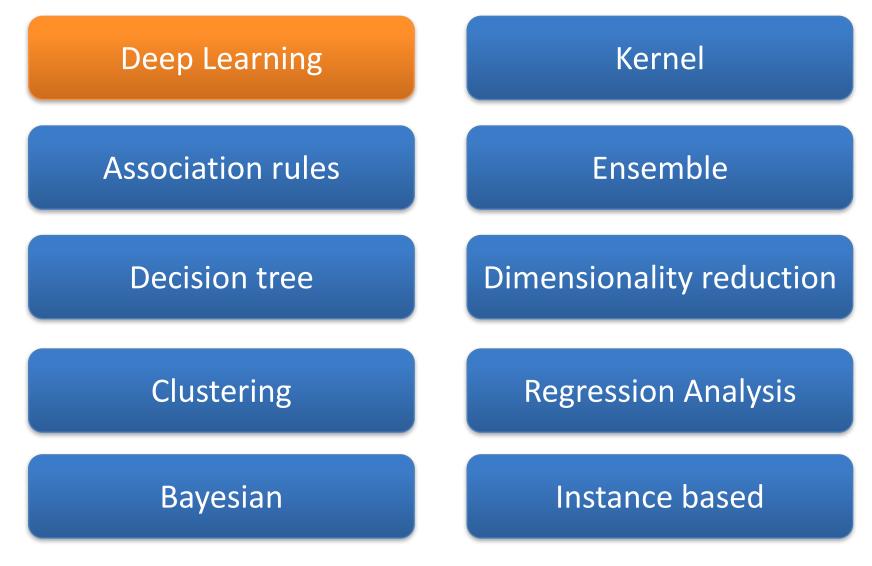
Tackle the real-world complexities of modern machine learning with innovative and cutting-edge techniques

Foreword by V. Laxmikanth, Managing Director, Broadridge Financial Solutions (India) Pvt Ltd

Sunila Gollapudi Capatantet Material

PACKT

## **Machine Learning Models**



Source: Sunila Gollapudi (2016), Practical Machine Learning, Packt Publishing

# Data Scientist 資料科學家

#### What makes a data scientist?

The big data phenomenon trained a bright spotlight on those who perform deep information analysis and can combine quantitative and statistical modeling expertise with business acumen and a talent for finding hidden patterns. Here's a closer lock.

Data scientists rely on analytics, predictive models, statistical analysis and modeling, data mining, sentiment and what -R analysis, and more to do their jobs. Cleanning new data and building models is detailed work, and the right tools make the process much more efficient.

The IBM8 Biginsights™ Data Scientist module accelerates data science with advanced analytics to extract valuable insights from Hadoop. Stable machine learning algorithms are optimized for Hadoop. Text analytics extract insight from unstructured data with existing tooling so analytic applications don't have to be developed from scratch. Big R statistical analysis and distributed harnes allow data scientists to use the entire Hadoop cluster. not just a limited sample

Good data scientists select and address the business problems that have the most value to the organization. Armed with data and and/ylical results, they must present their informed conclusions and recommendations to technical and nontechnical stakeholders.

Insight

-0-

The BigInsights Analyst module lets data scientists use their existing skills to find data across the organization and visualize it without extra coding. IBM BigSheets is a spreadsheet-style data manipulation and visualization tool that gives business users direct access to data through a recognizable interface. IBMdesigned Big SQL offers HDFS caching and high avaiability benefits as well as query optimization -- without forcing data scientists to learn a new skill set.

Source: http://www.ibmbigdatahub.com/infographic/what-makes-data-scientist

Analytics

<u>0000</u>

## Deep Learning Intelligence from Big Data



# **Big Data**



# Data Scientist: The Sexiest Job of the 21st Century

(Davenport & Patil, 2012)(HBR)

Source: Davenport, T. H., & Patil, D. J. (2012). Data Scientist. Harvard business review

## Data Scientist: The Sexiest Job of the 21st Century

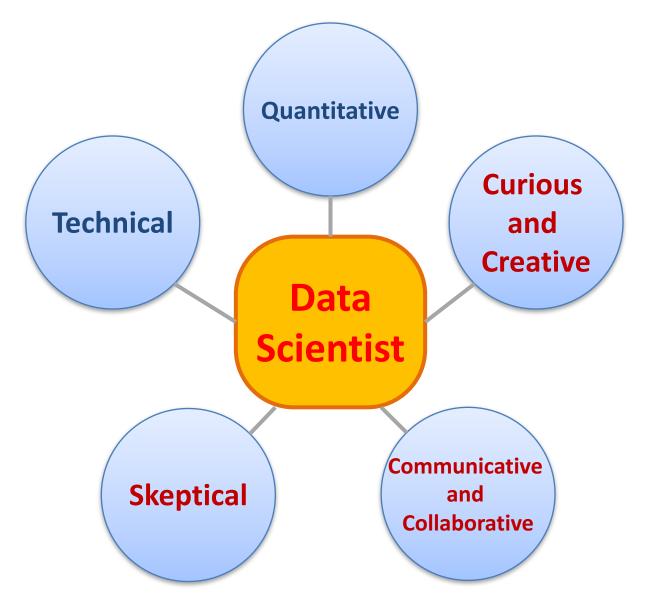
Meet the people who can coax treasure out of messy, unstructured data. by Thomas H. Davenport and D.J. Patil



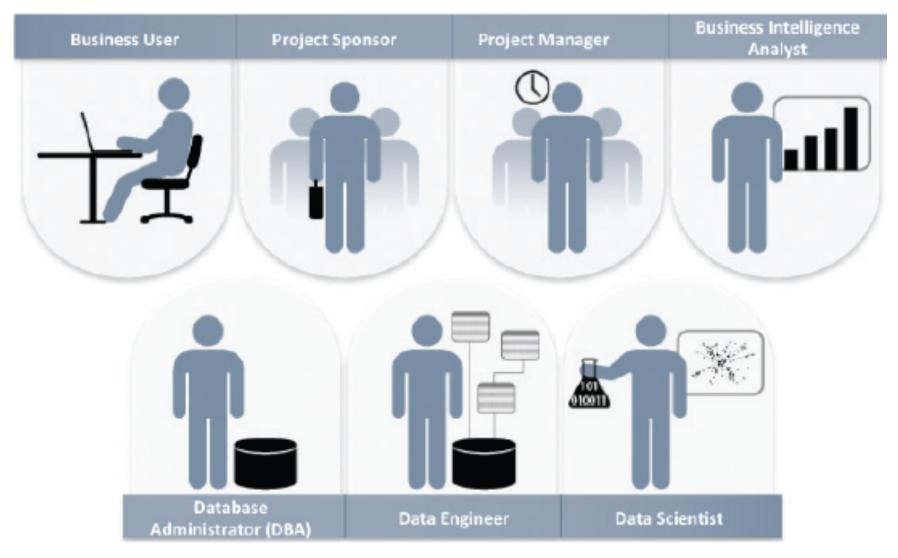
hen Jonathan Goldman arrived for work in June 2006 at LinkedIn, the business networking site, the place still felt like a start-up. The company had just under 8 million accounts, and the number was growing quickly as existing members invited their friends and colleagues to join. But users weren't

seeking out connections with the people who were already on the site at the rate executives had expected. Something was apparently missing in the social experience. As one LinkedIn manager put it, "It was like arriving at a conference reception and realizing you don't know anyone. So you just stand in the corner sipping your drink—and you probably leave early."

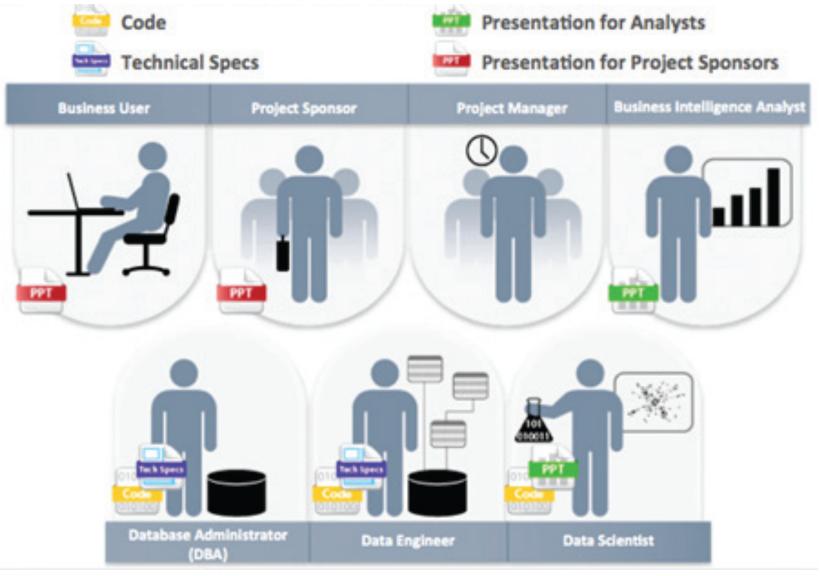
## **Data Scientist Profile**



## Key Roles for a Successful Analytics Project



## Key Outputs from a Successful Analytics Project



Source: EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015

## Data Science vs. Big Data vs. Data Analytics

### Data Science VS Big Data VS Data Analytics

DATA IS GROWING FASTER THAN EVER BEFORE.



### Data Science vs. Big Data vs. Data Analytics

### WHAT ARE THEY?



Data Science is a field that comprises of everything that related to data cleansing, preparation, and analysis.



Big Data is something that can be used to analyze insights which can lead to better decision and strategic business moves.



Data Analytics Involves automating insights into a certain dataset as well as supposes the usage of queries and data aggregation procedures.

## What are they used?



Source: https://www.simplilearn.com/data-science-vs-big-data-vs-data-analytics-article

## Data Science What are the Skills Required?

#### DATA SCIENTIST

- In-depth knowledge in SAS and/or R
- Python coding
- Hadoop platform
- SQL database/coding
- Working with unstructured data

#### **BIG DATA SPECIALIST**

- Analytical skills
- Creativity
- Mathematics and
- Statistical skills
- Computer science
- Business skills

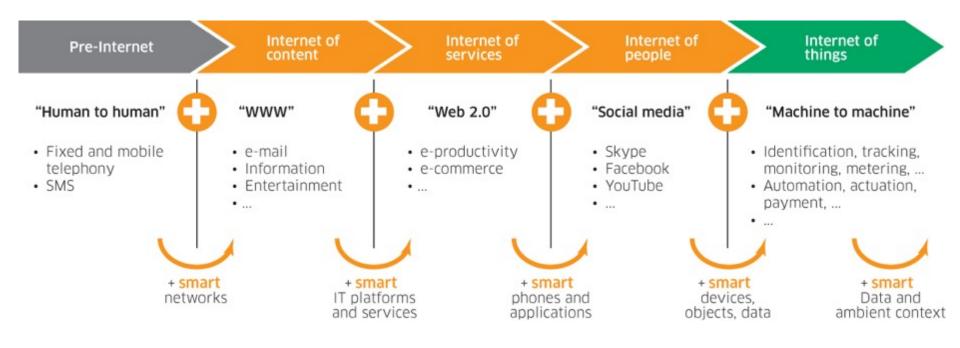
#### DATA ANALYST

- Programming skills
- Statistical skills
- Mathematics
- Machine learning skills
- Data wrangling skills
- Communication and Data Visualization skills
- Data Intuition



Source: https://www.simplilearn.com/data-science-vs-big-data-vs-data-analytics-article

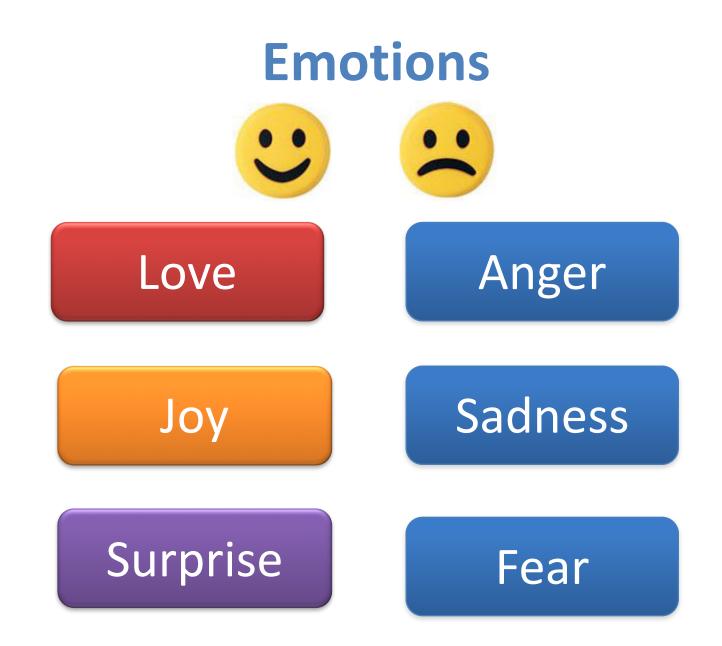
## Internet of People (IoP): Social Media Internet of Things (IoT): Machine to Machine



Source: Marc Jadoul (2015), The IoT: The next step in internet evolution, March 11, 2015 http://www2.alcatel-lucent.com/techzine/iot-internet-of-things-next-step-evolution/

## **Social Media**







::

- "I bought an iPhone a few days ago.
- It was such a nice phone.
- The touch screen was really cool.
- The voice quality was clear too.
- However, my mother was mad with me as I did not tell her before I bought it.
- She also thought the phone was too expensive, and wanted me to return it to the shop. ... "

## Example of Opinion: review segment on iPhone

- "(1) I bought an <u>iPhone</u> a few days ago.
- (2) It was such a **nice** phone.
- (3) The touch screen was really cool.
- (4) The voice quality was clear too.



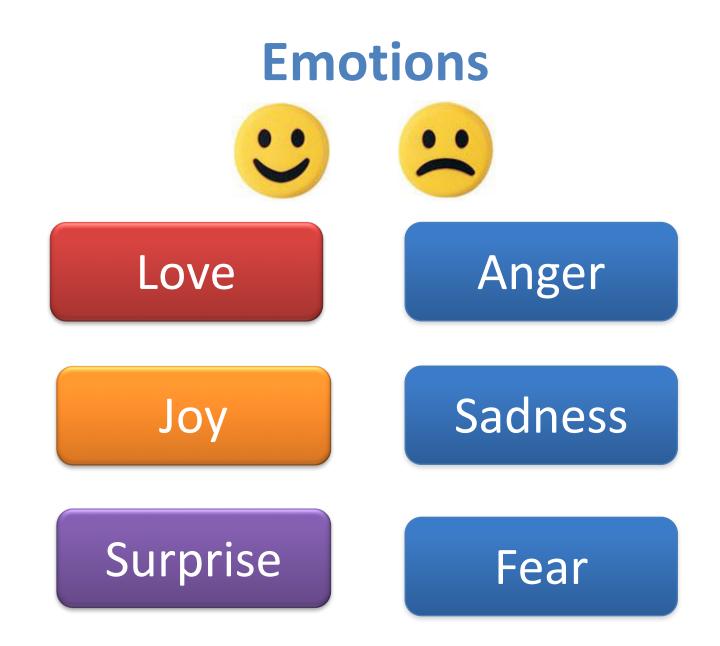
- (5) However, my mother was mad with me as I did not tell her before I bought it.
- (6) She also thought the phone was too **expensive**, and wanted me to return it to the shop. ... " -Negative



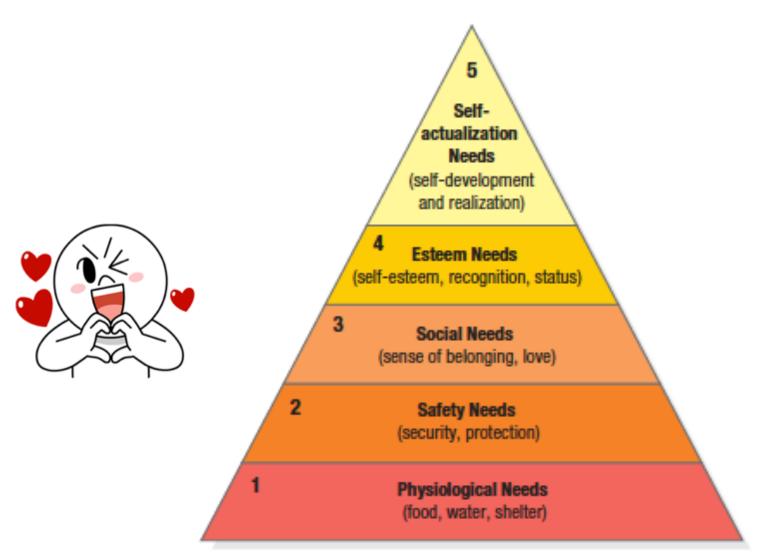
Opinion

## How consumers think, feel, and act

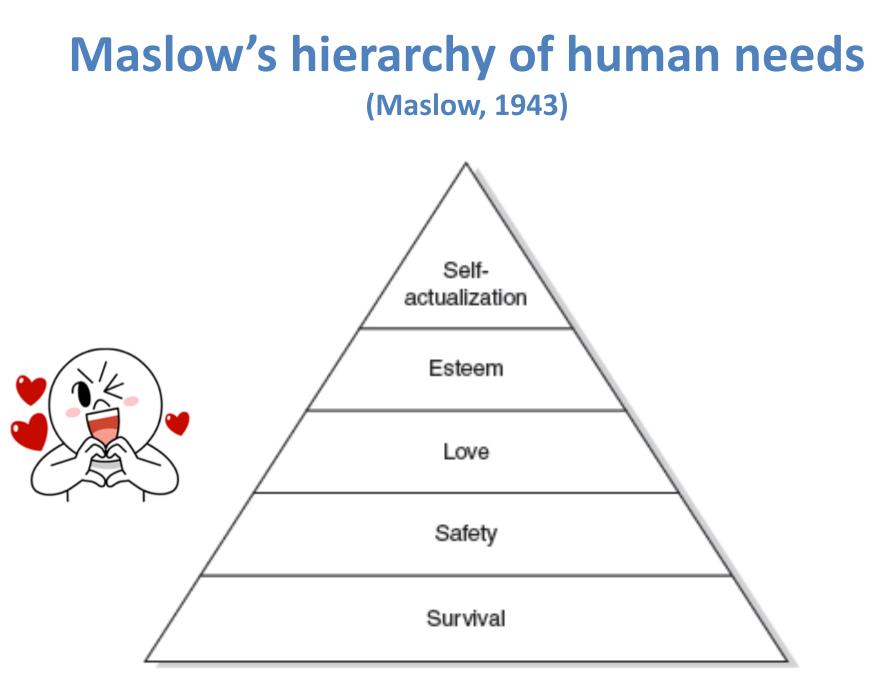
Source: Philip Kotler & Kevin Lane Keller, Marketing Management, 14th ed., Pearson, 2012



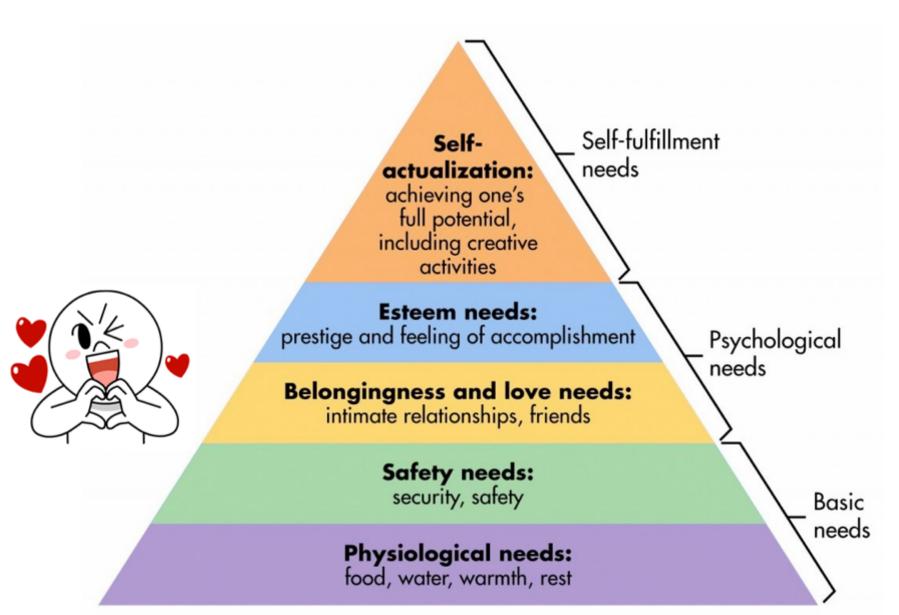
## **Maslow's Hierarchy of Needs**



Source: Philip Kotler & Kevin Lane Keller, Marketing Management, 14th ed., Pearson, 2012

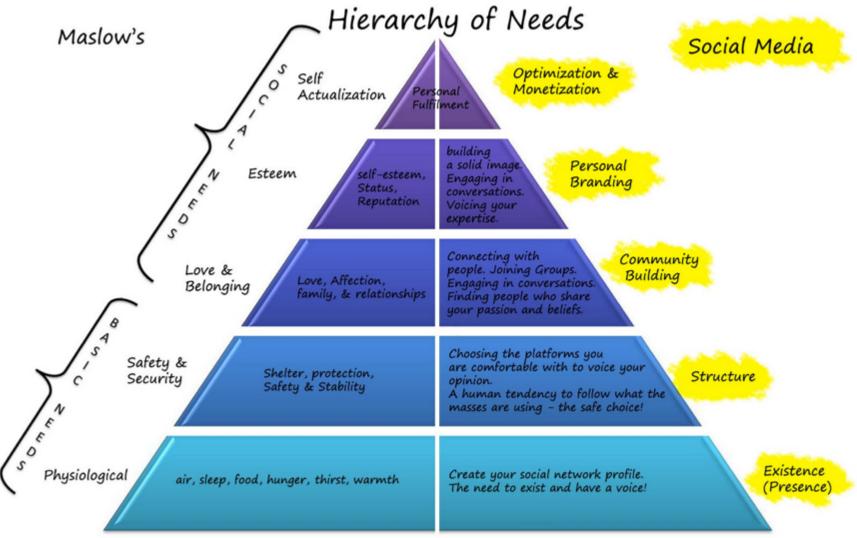


## **Maslow's Hierarchy of Needs**



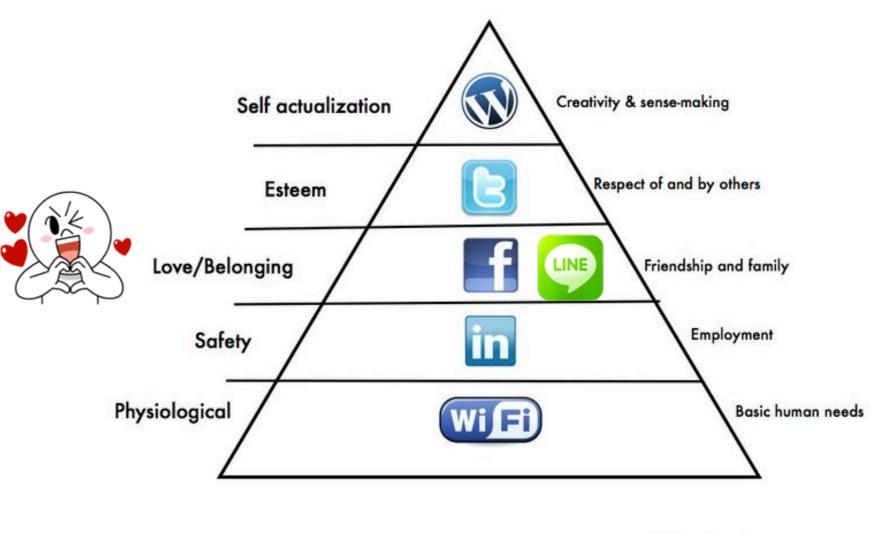
Source: http://sixstoriesup.com/social-psyche-what-makes-us-go-social/

## **Social Media Hierarchy of Needs**



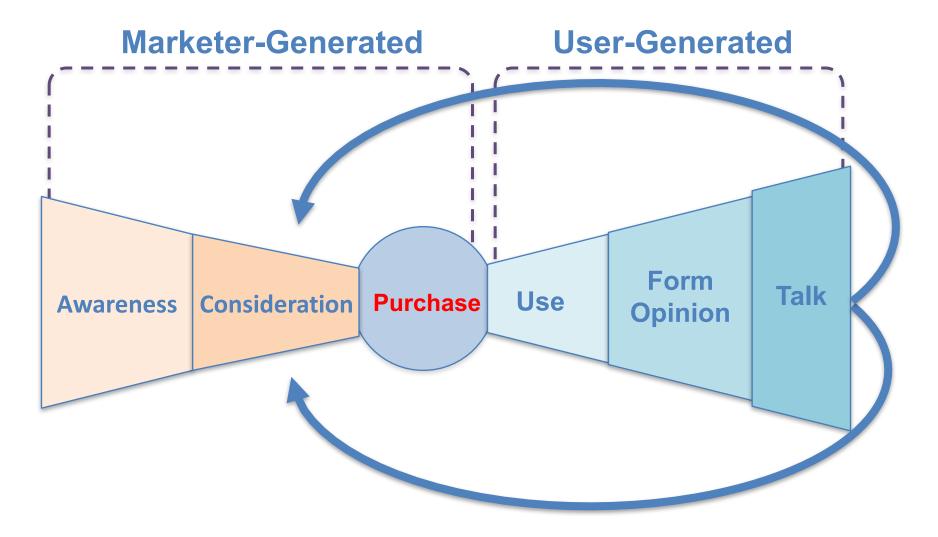
Social Media Hierarchy of Needs - by John Antonios

## **Social Media Hierarchy of Needs**

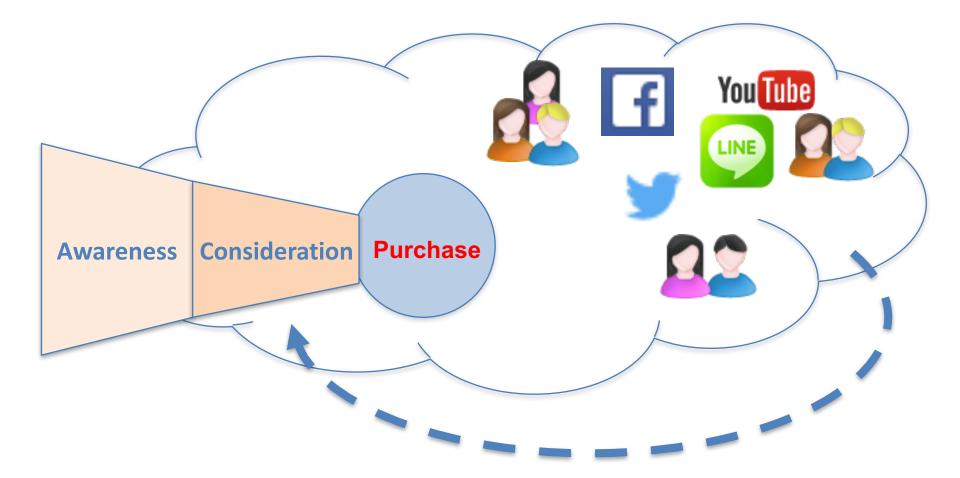


**@daveduarte** 

## The Social Feedback Cycle Consumer Behavior on Social Media



## **The New Customer Influence Path**



# Architectures of Sentiment Analytics

Bing Liu (2015), Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, Cambridge University Press

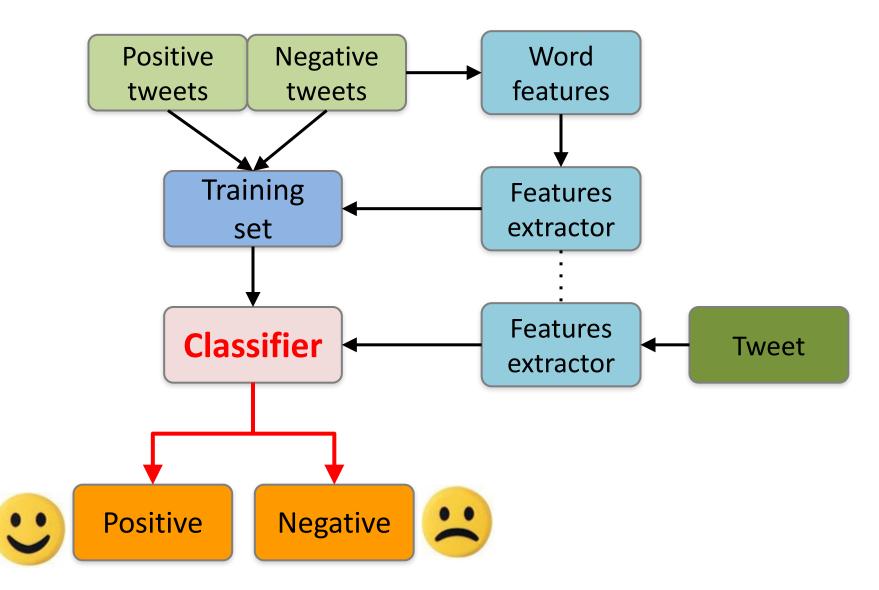


Mining Opinions, Sentiments, and Emotions

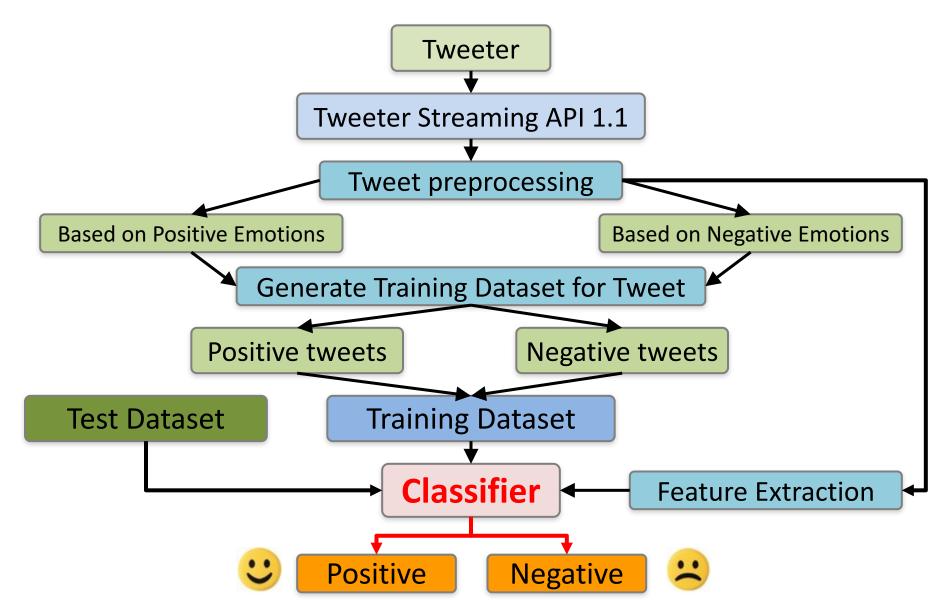


http://www.amazon.com/Sentiment-Analysis-Opinions-Sentiments-Emotions/dp/1107017890

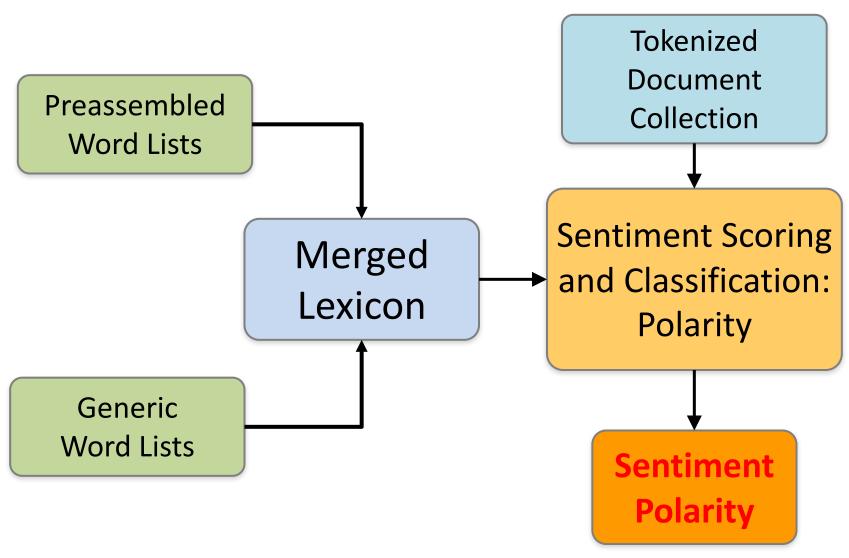
## **Sentiment Analysis Architecture**

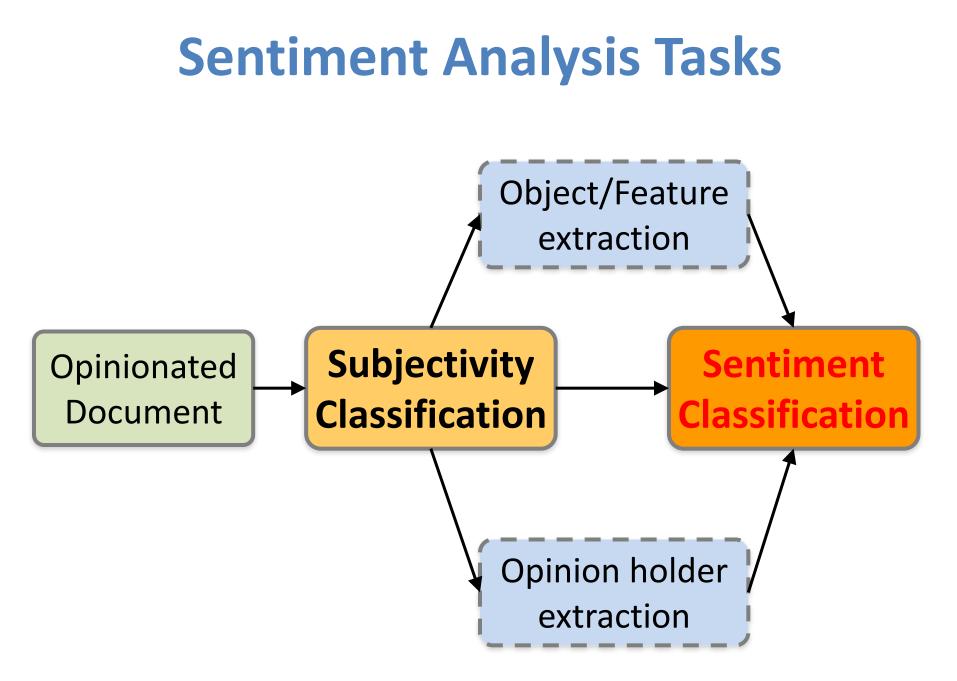


#### **Sentiment Classification Based on Emoticons**

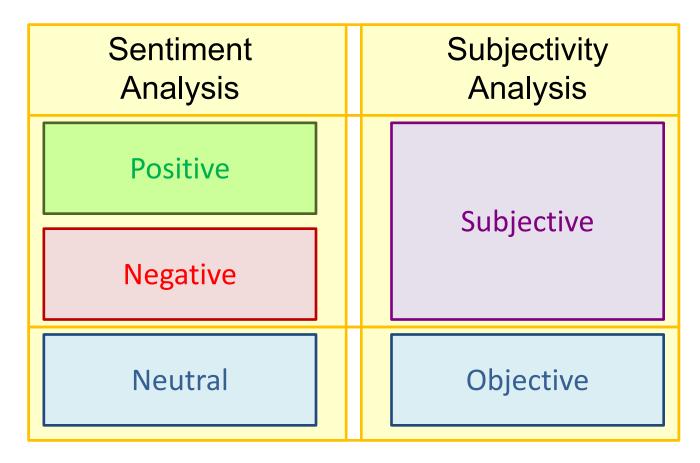


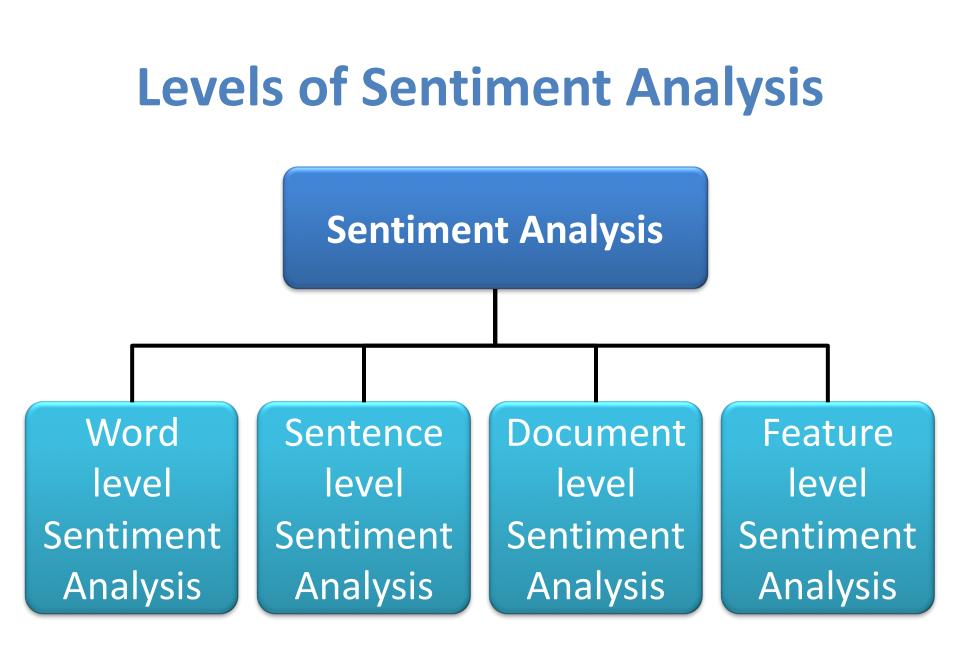
## **Lexicon-Based Model**



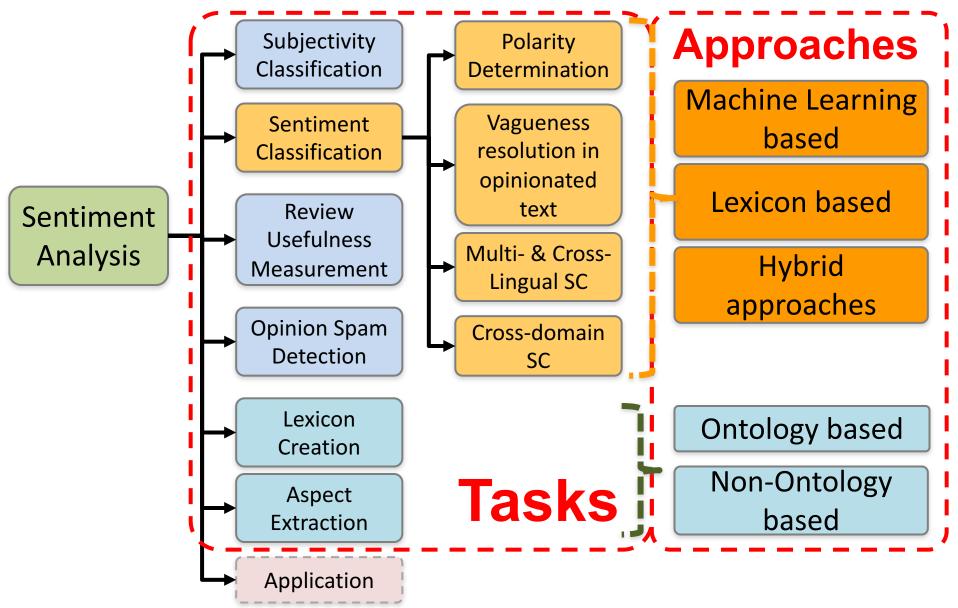


## Sentiment Analysis vs. Subjectivity Analysis



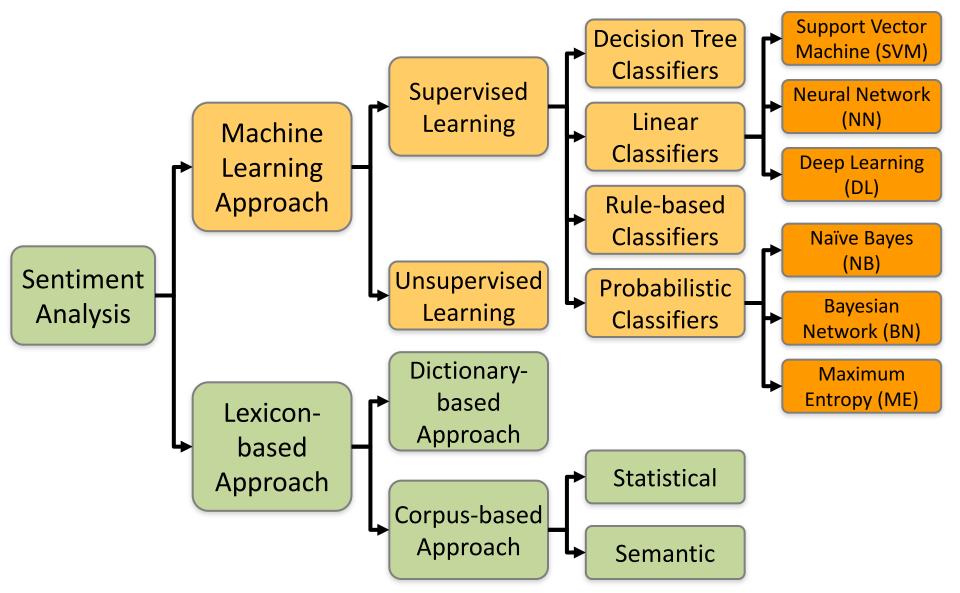


## **Sentiment Analysis**



Source: Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.

## **Sentiment Classification Techniques**



Source: Jesus Serrano-Guerrero, Jose A. Olivas, Francisco P. Romero, and Enrique Herrera-Viedma (2015), "Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.

## Sentiment Analysis and Opinion Mining

- Computational study of  $\bullet$ opinions, sentiments, subjectivity, evaluations, attitudes, appraisal, affects, views, emotions,
  - ets., expressed in text.
    - Reviews, blogs, discussions, news, comments, feedback, or any other documents

### **Research Area of Opinion Mining**

- Many names and tasks with difference objective and models
  - Sentiment analysis
  - Opinion mining
  - Sentiment mining
  - Subjectivity analysis
  - Affect analysis
  - Emotion detection
  - Opinion spam detection

## **Sentiment Analysis**

- Sentiment
  - A thought, view, or attitude, especially one based mainly on emotion instead of reason
- Sentiment Analysis
  - opinion mining
  - use of natural language processing (NLP) and computational techniques to automate the extraction or classification of sentiment from typically unstructured text

## **Applications of Sentiment Analysis**

- Consumer information
  - Product reviews
- Marketing
  - Consumer attitudes
  - Trends
- Politics
  - Politicians want to know voters' views
  - Voters want to know policitians' stances and who else supports them
- Social
  - Find like-minded individuals or communities

## **Sentiment detection**

- How to interpret features for sentiment detection?
  - Bag of words (IR)
  - Annotated lexicons (WordNet, SentiWordNet)
  - Syntactic patterns
- Which features to use?
  - Words (unigrams)
  - Phrases/n-grams
  - Sentences

## Problem statement of Opinion Mining

- Two aspects of abstraction
  - Opinion definition
    - What is an opinion?
    - What is the structured definition of opinion?
  - Opinion summarization
    - Opinion are subjective
      - An opinion from a single person (unless a VIP) is often not sufficient for action
    - We need opinions from many people, and thus opinion summarization.

## What is an opinion?

- Id: Abc123 on 5-1-2008 "I bought an iPhone a few days ago. It is such a nice phone. The touch screen is really cool. The voice quality is clear too. It is much better than my old Blackberry, which was a terrible phone and so difficult to type with its tiny keys. However, my mother was mad with me as I did not tell her before I bought the phone. She also thought the phone was too expensive, ..."
- One can look at this review/blog at the
  - Document level
    - Is this review + or -?
  - Sentence level
    - Is each sentence + or -?
  - Entity and feature/aspect level

## **Entity and aspect/feature level**

- Id: Abc123 on 5-1-2008 "I bought an iPhone a few days ago. It is such a nice phone. The touch screen is really cool. The voice quality is clear too. It is much better than my old Blackberry, which was a terrible phone and so difficult to type with its tiny keys. However, my mother was mad with me as I did not tell her before I bought the phone. She also thought the phone was too expensive, ..."
- What do we see?
  - Opinion targets: entities and their features/aspects
  - Sentiments: positive and negative
  - Opinion holders: persons who hold the opinions
  - Time: when opinion are expressed

## Two main types of opinions

- Regular opinions: Sentiment/Opinion expressions on some target entities
  - Direct opinions: sentiment expressions on one object:
    - "The touch screen is really cool."
    - "The picture quality of this camera is great"
  - Indirect opinions: comparisons, relations expressing similarities or differences (objective or subjective) of more than one object
    - "phone X is cheaper than phone Y." (objective)
    - "phone X is better than phone Y." (subjective)
- Comparative opinions: comparisons of more than one entity.
  - "iPhone is better than Blackberry."

## **Subjective and Objective**

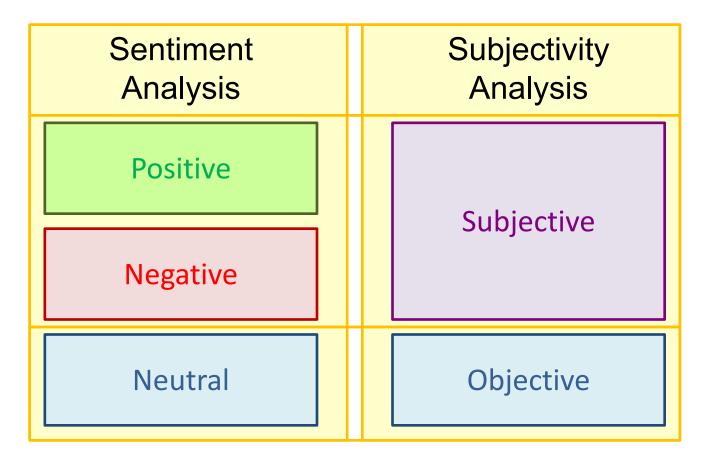
#### • Objective

- An objective sentence expresses some factual information about the world.
- "I returned the phone yesterday."
- Objective sentences can implicitly indicate opinions
  - "The earphone broke in two days."
- Subjective
  - A subjective sentence expresses some personal feelings or beliefs.
  - "The voice on my phone was not so clear"
  - Not every subjective sentence contains an opinion
    - "I wanted a phone with good voice quality"
- Subjective analysis

Source: Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," Springer, 2nd Edition,

68

## Sentiment Analysis vs. Subjectivity Analysis



## A (regular) opinion

- Opinion (a restricted definition)
  - An opinion (regular opinion) is simply a positive or negative sentiment, view, attitude, emotion, or appraisal about an entity or an aspect of the entity from an opinion holder.
- Sentiment orientation of an opinion
  - Positive, negative, or neutral (no opinion)
  - Also called:
    - Opinion orientation
    - Semantic orientation
    - Sentiment polarity

## **Entity and aspect**

- Definition of Entity:
  - An *entity e* is a product, person, event, organization, or topic.
  - e is represented as
    - A hierarchy of components, sub-components.
    - Each node represents a components and is associated with a set of attributes of the components
- An opinion can be expressed on any node or attribute of the node
- Aspects(features)
  - represent both components and attribute

## **Opinion Definition**

- An opinion is a quintuple
   (e<sub>j</sub>, a<sub>jk</sub>, so<sub>ijk</sub>, h<sub>i</sub>, t<sub>l</sub>)
   where
  - $-e_j$  is a target entity.
  - $-a_{jk}$  is an aspect/feature of the entity  $e_j$ .
  - *so<sub>ijkl</sub>* is the sentiment value of the opinion from the opinion holder on feature of entity at time.
     *so<sub>ijkl</sub>* is +ve, -ve, or neu, or more granular ratings
  - $-h_i$  is an opinion holder.
  - $-t_1$  is the time when the opinion is expressed.
- (*e<sub>j</sub>*, *a<sub>jk</sub>*) is also called opinion target

Source: Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," Springer, 2nd Edition, 72

#### **Terminologies**

- Entity: object
- Aspect: feature, attribute, facet
- Opinion holder: opinion source

• Topic: entity, aspect

• Product features, political issues

#### **Subjectivity and Emotion**

• Sentence subjectivity

 An objective sentence presents some factual information, while a subjective sentence expresses some personal feelings, views, emotions, or beliefs.

- Emotion
  - Emotions are people's subjective feelings and thoughts.

#### Classification Based on Supervised Learning

- Sentiment classification
  - Supervised learning Problem
  - Three classes
    - Positive
    - Negative
    - Neutral

## Opinion words in Sentiment classification

- topic-based classification
  - topic-related words are important
    - e.g., politics, sciences, sports
- Sentiment classification
  - topic-related words are unimportant
  - opinion words (also called sentiment words)
    - that indicate positive or negative opinions are important,

e.g., great, excellent, amazing, horrible, bad, worst

#### **Features in Opinion Mining**

- Terms and their frequency
  - TF-IDF
- Part of speech (POS)
  - Adjectives
- Opinion words and phrases
  - beautiful, wonderful, good, and amazing are positive opinion words
  - bad, poor, and terrible are negative opinion words.
  - opinion phrases and idioms,
    e.g., cost someone an arm and a leg
- Rules of opinions
- Negations
- Syntactic dependency

Source: Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," Springer, 2nd Edition, 77

#### A Brief Summary of Sentiment Analysis Methods

| Study                             | Analysis | Sentiment Identification          |          | Sentiment Aggregation |          | Nature of |
|-----------------------------------|----------|-----------------------------------|----------|-----------------------|----------|-----------|
| -                                 | Task     | Method Level                      |          | Method Level          |          | Measure   |
| Hu and Li, 2011                   | Polarity | ML (Probabilistic model)          | Snippet  |                       |          | Valence   |
| Li and Wu, 2010                   | Polarity | Lexicon/Rule                      | Phrase   | Sum                   | Snippet  | Valence   |
| Thelwall et al., 2010             | Polarity | Lexicon/Rule                      | Sentence | Max & Min             | Snippet  | Range     |
| Boiy and Moens, 2009              | Both     | ML (Cascade ensemble)             | Sentence |                       |          | Valence   |
| Chung 2009                        | Polarity | Lexicon                           | Phrase   | Average               | Sentence | Valence   |
| Wilson, Wiebe, and Hoffmann, 2009 | Both     | ML (SVM, AdaBoost, Rule, etc.)    | Phrase   |                       |          | Valence   |
| Zhang et al., 2009                | Polarity | Lexicon/Rule                      | Sentence | Weighted average      | Snippet  | Valence   |
| Abbasi, Chen, and Salem, 2008     | Polarity | ML (GA + feature selection)       | Snippet  |                       |          | Valence   |
| Subrahmanian and Reforgiato, 2008 | Polarity | Lexicon/Rule                      | Phrase   | Rule                  | Snippet  | Valence   |
| Tan and Zhang 2008                | Polarity | ML (SVM, Winnow, NB, etc.)        | Snippet  |                       |          | Valence   |
| Airoldi, Bai, and Padman, 2007    | Polarity | ML (Markov Blanket)               | Snippet  |                       |          | Valence   |
| Das and Chen, 2007                | Polarity | ML (Bayesian, Discriminate, etc.) | Snippet  | Average               | Daily    | Valence   |
| Liu et al., 2007                  | Polarity | ML (PLSA)                         | Snippet  |                       |          | Valence   |
| Kennedy and Inkpen, 2006          | Polarity | Lexicon/Rule, ML (SVM)            | Phrase   | Count                 | Snippet  | Valence   |
| Mishne 2006                       | Polarity | Lexicon                           | Phrase   | Average               | Snippet  | Valence   |
| Liu et al., 2005                  | Polarity | Lexicon/Rule                      | Phrase   | Distribution          | Object   | Range     |
| Mishne 2005                       | Polarity | ML (SVM)                          | Snippet  |                       |          | Valence   |
| Popescu and Etzioni 2005          | Polarity | Lexicon/Rule                      | Phrase   |                       |          | Valence   |
| Efron 2004                        | Polarity | ML (SVN, NB)                      | Snippet  |                       |          | Valence   |
| Wilson, Wiebe, and Hwa, 2004      | Both     | ML (SVM, AdaBoost, Rule, etc.)    | Sentence |                       |          | Valence   |
| Nigam and Hurst 2004              | Polarity | Lexicon/Rule                      | Chunk    | Rule                  | Sentence | Valence   |
| Dave, Lawrence, and Pennock, 2003 | Polarity | ML (SVM, Rainbow, etc.)           | Snippet  |                       |          | Valence   |
| Nasukawa and Yi 2003              | Polarity | Lexicon/Rule                      | Phrase   | Rule                  | Sentence | Valence   |
| Yi et al., 2003                   | Polarity | Lexicon/Rule                      | Phrase   | Rule                  | Sentence | Valence   |
| Yu and Hatzivassiloglou 2003      | Both     | ML (NB) + Lexicon/Rule            | Phrase   | Average               | Sentence | Valence   |
| Pang, Lee, and Vaithyanathan 2002 | Polarity | ML (SVM, MaxEnt, NB)              | Snippet  |                       |          | Valence   |
| Subasic and Huettner 2001         | Polarity | Lexicon/Fuzzy logic               | Phrase   | Average               | Snippet  | Valence   |
| Turney 2001                       | Polarity | Lexicon/Rule                      | Phrase   | Average               | Snippet  | Valence   |

(Both = Subjectivity and Polarity; ML= Machine Learning; Lexicon/Rule= Lexicon enhanced by linguistic rules)

Source: Zhang, Z., Li, X., and Chen, Y. (2012), "Deciphering word-of-mouth in social media: Text-based metrics of consumer reviews," ACM Trans. Manage. Inf. Syst. (3:1) 2012, pp 1-23.,

#### Word-of-Mouth (WOM)

 "This book is the best written documentary thus far, yet sadly, there is no soft cover edition."

 "This book is the best written documentary thus far, yet sadly, there is no soft cover edition."

|             | Word        | POS |
|-------------|-------------|-----|
| This        | This        | DT  |
| book        | book        | NN  |
| is          | is          | VBZ |
| the         | the         | DT  |
| best        | best        | JJS |
| written     | written     | VBN |
| documentary | documentary | NN  |
| thus        | thus        | RB  |
| far         | far         | RB  |
| ,           | ,           | ,   |
| yet         | yet         | RB  |
| sadly       | sadly       | RB  |
| ,           | )           | ,   |
| there       | there       | EX  |
| is          | is          | VBZ |
| no          | no          | DT  |
| soft        | soft        | JJ  |
| cover       | cover       | NN  |
| edition     | edition     | NN  |
|             | •           | •   |

#### **Conversion of text representation**

| Word Vector<br>(WV) |              | pscor | Po<br>e nscore | olarity Score Vector<br>(PSV) | I          | Microstate Sequence<br>(MS) | 2           |              |
|---------------------|--------------|-------|----------------|-------------------------------|------------|-----------------------------|-------------|--------------|
| This                |              | 0     | 0              | Neutral (0)                   |            | 0                           |             |              |
| book                |              | 0     | 0              | Neutral (0)                   |            | 0                           |             |              |
| is                  |              | 0     | 0              | Neutral (0)                   |            | 0                           |             | Probability  |
| the                 |              | 0     | 0              | Neutral (0)                   |            | 0                           |             | Distribution |
| best                |              | 0.75  | 0              | Positive (0.75)               |            | 1                           |             | (P)          |
| written             |              | 0     | 0              | Neutral (0)                   |            | 0                           | . [         |              |
| documentary         |              | 0     | 0              | Neutral (0)                   |            | 0                           |             |              |
| thus                |              | 0.375 | 0              | Positive (0.375)              |            | 1                           |             | P("1")=3/17  |
| far                 | SentiWordNet | 0.375 | 0              | Positive (0.375)              | Microstate | 1                           | Probability | D/# 1#>-2/17 |
| ,                   | Lookup /     |       |                |                               | Mapping /  |                             | Mapping /   | P("-1")=3/17 |
| yet                 |              | 0     | 0.125          | Negative (0.125)              |            | -1                          |             | P("0")=11/17 |
| sadly               |              | 0.25  | 0.5            | Negative (0.25)               |            | -1                          |             |              |
| ,                   |              |       |                |                               |            |                             |             |              |
| there               |              | 0     | 0              | Neutral (0)                   |            | 0                           |             |              |
| is                  |              | 0     | 0              | Neutral (0)                   |            | 0                           |             |              |
| no                  |              | 0     | 0.75           | Negative (0.75)               |            | -1                          |             |              |
| soft                |              | 0     | 0              | Neutral (0)                   |            | 0                           |             |              |
| cover               |              | 0     | 0              | Neutral (0)                   |            | 0                           |             |              |
| edition             |              | 0     | 0              | Neutral (0)                   |            | 0                           |             |              |
|                     |              |       |                |                               |            |                             |             |              |

#### Example of SentiWordNet

- POSIDPosScoreNegScoreSynsetTermsGlossa002177280.750beautiful#1delighting the senses orexciting intellectual or emotional admiration; "a beautiful child";<br/>"beautiful country"; "a beautiful painting"; "a beautiful theory"; "a<br/>beautiful party"
- a 00227507 0.75 0 best#1 (superlative of `good') having the most positive qualities; "the best film of the year"; "the best solution"; "the best time for planting"; "wore his best suit"
- r 00042614 0 0.625 unhappily#2 sadly#1 in an unfortunate way; "sadly he died before he could see his grandchild"
- r 00093270 0 0.875 woefully#1 sadly#3 lamentably#1 deplorably#1 in an unfortunate or deplorable manner; "he was sadly neglected"; "it was woefully inadequate"
- r 00404501 0 0.25 sadly#2 with sadness; in a sad manner; "`She died last night,' he said sadly"



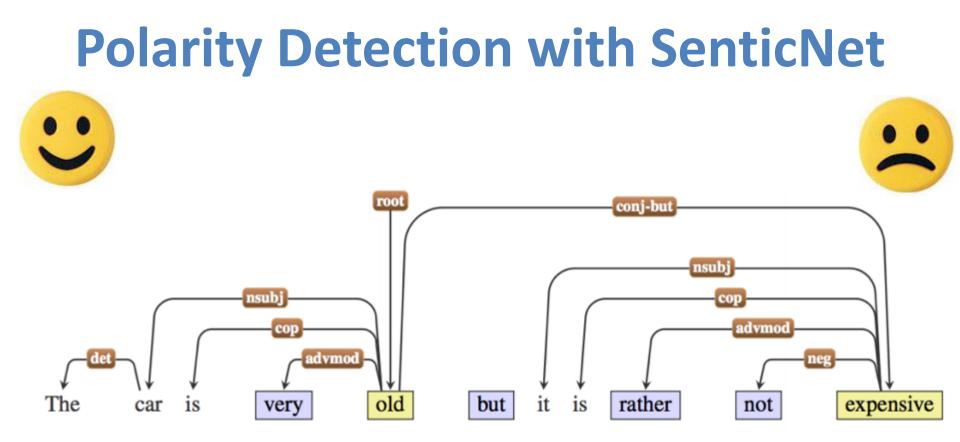




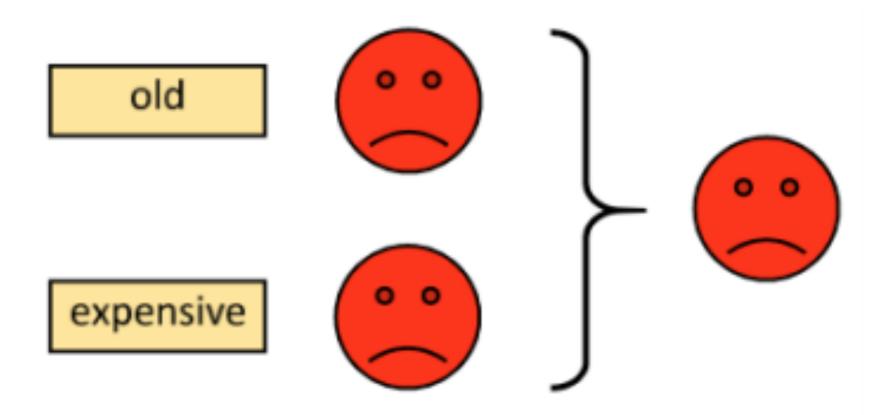
#### The car is very old but it is rather not expensive.

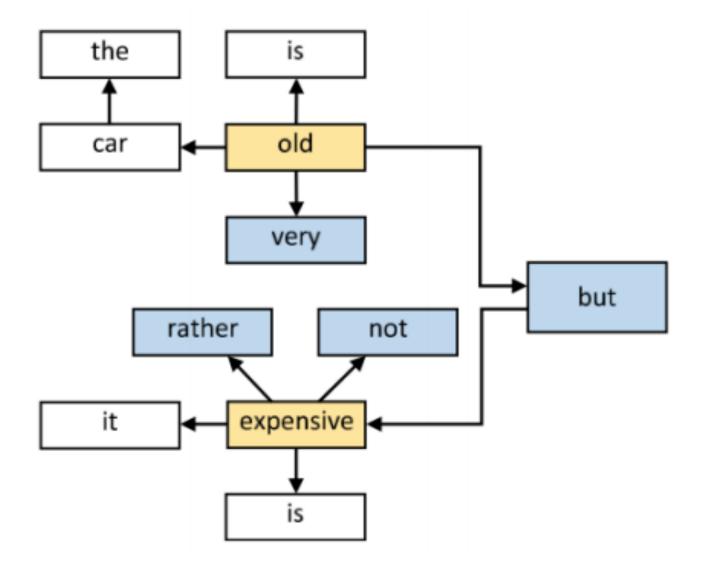
#### The car is very old but it is rather not expensive.

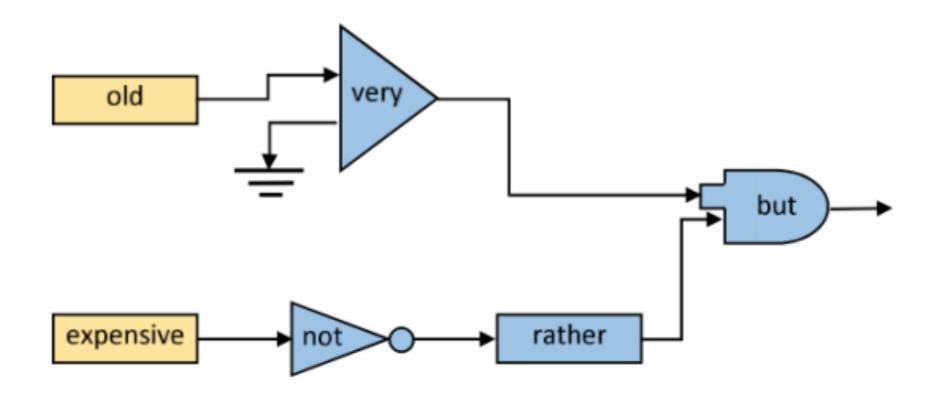
#### The car is very old but it is rather not expensive.

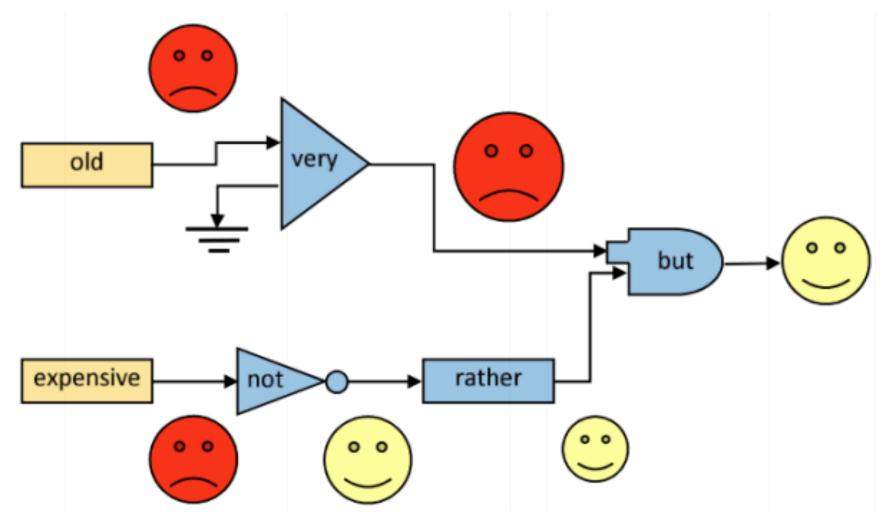


#### The car is very old but it is rather not expensive. The car is very old but it is rather not expensive.









## Evaluation of Text Mining and Sentiment Analysis

- Evaluation of Information Retrieval
- Evaluation of Classification Model (Prediction)
  - -Accuracy
  - -Precision
  - Recall
  - -F-score

# Deep Learning for

# Sentiment Analytics

#### Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

#### Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng and Christopher Potts Stanford University, Stanford, CA 94305, USA

richard@socher.org,{aperelyg,jcchuang,ang}@cs.stanford.edu {jeaneis,manning,cgpotts}@stanford.edu

#### Abstract

Semantic word spaces have been very useful but cannot express the meaning of longer phrases in a principled way. Further progress towards understanding compositionality in tasks such as sentiment detection requires richer supervised training and evaluation resources and more powerful models of composition. To remedy this, we introduce a Sentiment Treebank. It includes fine grained sentiment labels for 215,154 phrases in the parse trees of 11,855 sentences and presents new challenges for sentiment compositionality. To address them, we introduce the Recursive Neural Tensor Network. When trained on the new treebank, this model out-

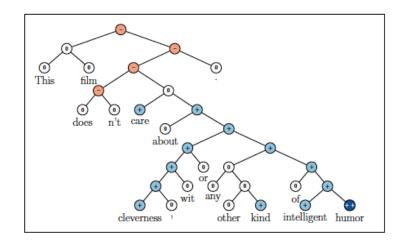
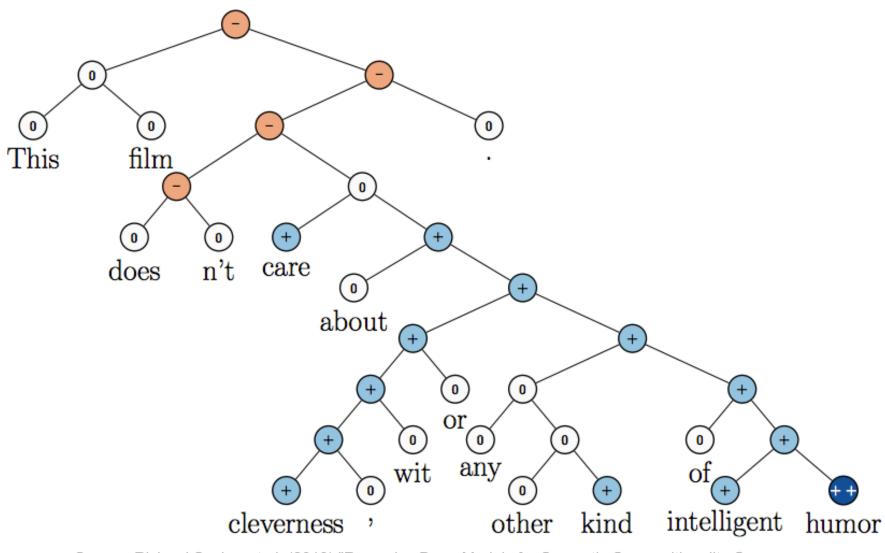
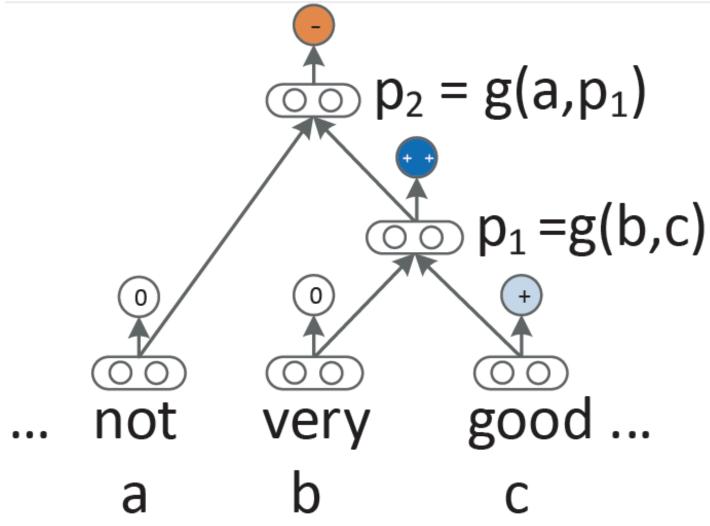


Figure 1: Example of the Recursive Neural Tensor Network accurately predicting 5 sentiment classes, very negative to very positive (--, -, 0, +, ++), at every node of a parse tree and capturing the negation and its scope in this sentence.

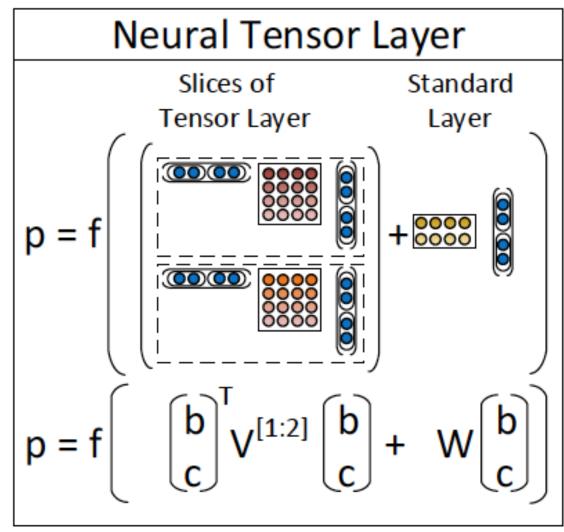
#### **Recursive Neural Tensor Network (RNTN)**



#### Recursive Neural Network (RNN) models for sentiment



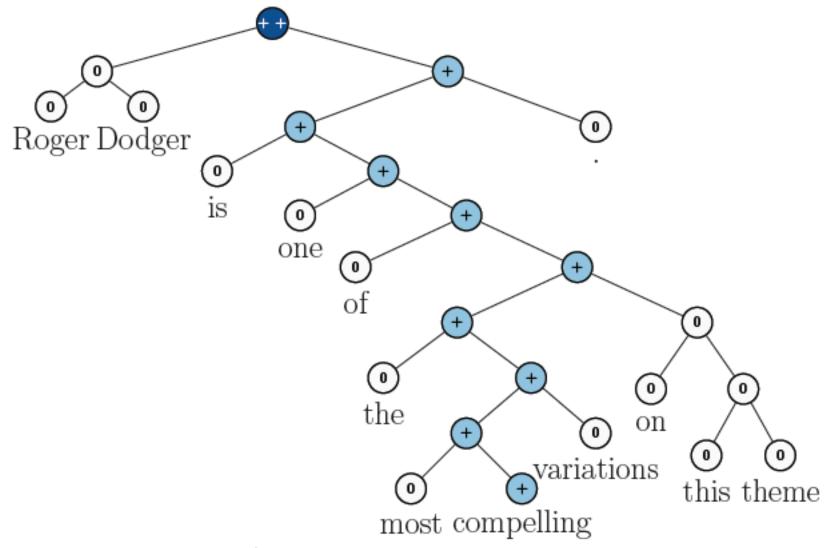
#### Recursive Neural Tensor Network (RNTN)



#### Roger Dodger is one of the most compelling variations on this theme.

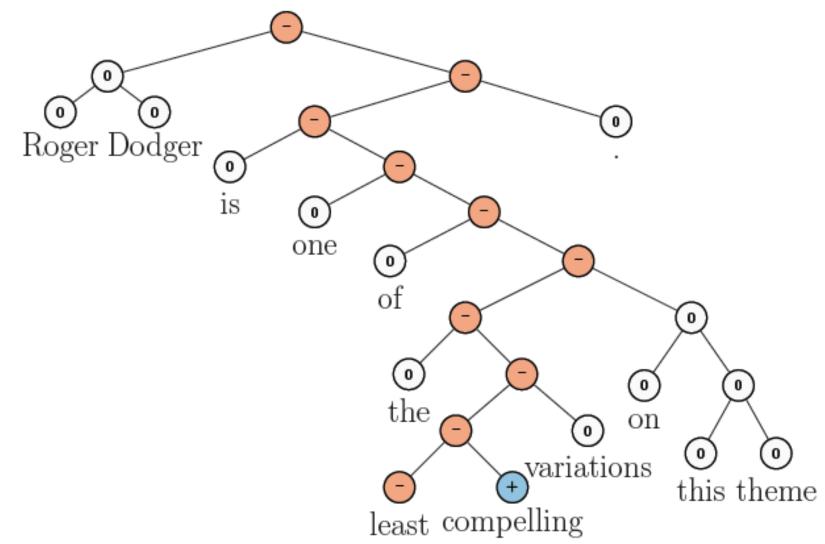
## Roger Dodger is one of the least compelling variations on this theme.

#### **RNTN for Sentiment Analysis**



Roger Dodger is one of the most compelling variations on this theme.

#### **RNTN for Sentiment Analysis**



#### Roger Dodger is one of the least compelling variations on this theme.

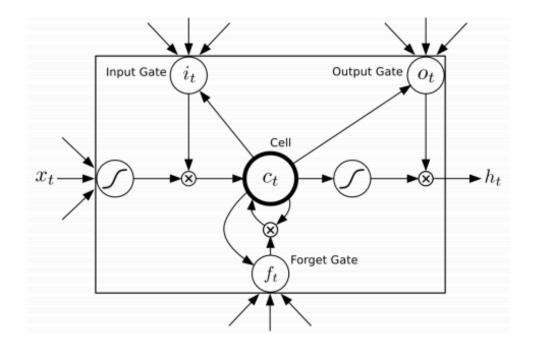
#### Accuracy for fine grained (5-class) and binary predictions at the sentence level (root) and for all nodes

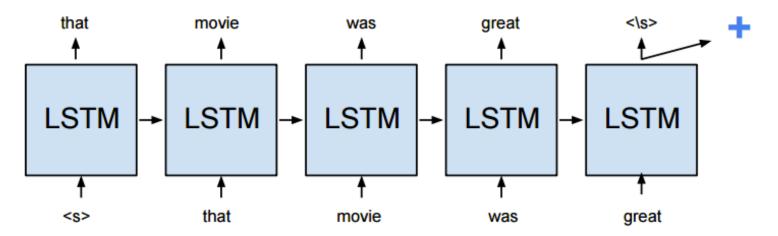
| Mode1  | Fine-g | grained | Positive | Positive/Negative |  |  |
|--------|--------|---------|----------|-------------------|--|--|
| in our | All    | Root    | All      | Root              |  |  |
| NB     | 67.2   | 41.0    | 82.6     | 81.8              |  |  |
| SVM    | 64.3   | 40.7    | 84.6     | 79.4              |  |  |
| BiNB   | 71.0   | 41.9    | 82.7     | 83.1              |  |  |
| VecAvg | 73.3   | 32.7    | 85.1     | 80.1              |  |  |
| RNN    | 79.0   | 43.2    | 86.1     | 82.4              |  |  |
| MV-RNN | 78.7   | 44.4    | 86.8     | 82.9              |  |  |
| RNTN   | 80.7   | 45.7    | 87.6     | 85.4              |  |  |

#### Accuracy of negation detection

| Model  | Accuracy         |                  |  |  |
|--------|------------------|------------------|--|--|
|        | Negated Positive | Negated Negative |  |  |
| biNB   | 19.0             | 27.3             |  |  |
| RNN    | 33.3             | 45.5             |  |  |
| MV-RNN | 52.4             | 54.6             |  |  |
| RNTN   | 71.4             | 81.8             |  |  |

#### Long Short-Term Memory (LSTM)





Source: https://cs224d.stanford.edu/reports/HongJames.pdf

## Deep Learning for Sentiment Analysis CNN RNTN LSTM

| Fine (5-class) | Binary                                                                                                   |
|----------------|----------------------------------------------------------------------------------------------------------|
| 0.485          | 0.868                                                                                                    |
| 0.457          | 0.854                                                                                                    |
| 0.480          | 0.872                                                                                                    |
| 0.474          | 0.881                                                                                                    |
| 0.498          | 0.866                                                                                                    |
| 0.487          | 0.878                                                                                                    |
| 0.484          | 0.857                                                                                                    |
| 0.439          | 0.820                                                                                                    |
| 0.510          | 0.880                                                                                                    |
| 0.391          | 0.798                                                                                                    |
| 0.456          | 0.843                                                                                                    |
| 0.469          | 0.847                                                                                                    |
|                | 0.485<br>0.457<br>0.480<br>0.474<br>0.498<br>0.498<br>0.487<br>0.484<br>0.439<br>0.510<br>0.391<br>0.456 |

#### **Performance Comparison of Sentiment Analysis Methods**

|                     | Method             | Data Set                              | Acc.         | Author                           |
|---------------------|--------------------|---------------------------------------|--------------|----------------------------------|
| Machine<br>Learning | SVM                | Movie<br>reviews                      | 86.40%       | Pang,<br>Lee[23]                 |
|                     | CoTraining<br>SVM  | Twitter                               | 82.52%       | Liu[14]                          |
|                     | Deep<br>learning   | Stanford<br>Sentimen<br>t<br>Treebank | 80.70%       | Richard[18]                      |
| Lexical<br>based    | Corpus             | Product<br>reviews                    | 74.00%       | Turkey                           |
|                     | Dictionary         | Amazon'<br>s<br>Mechani<br>cal Turk   |              | Taboada[20]                      |
| Cross-              | Ensemble           | Amazon                                | 81.00%       | Wan,X[16]                        |
| lingual             | Co-Train           | Amazon,<br>ITI68                      | 81.30%       | Wan,X.[16]                       |
|                     | EWGA               | IMDb<br>movie<br>review               | >90%         | Abbasi,A.                        |
|                     | CLMM               | MPQA,N<br>TCIR,ISI                    | 83.02%       | Mengi                            |
| Cross-              | Active<br>Learning | Book,<br>DVD,                         | 80%<br>(avg) | Li, S                            |
| domain              | Thesaurus<br>SFA   | Electroni<br>cs,<br>Kitchen           |              | Bollegala[22<br>]<br>Pan S J[15] |

Vishal Kharde and Sheetal Sonawane (2016), "Sentiment Analysis of Twitter Data: A Survey of Techniques," International Journal of Computer Applications, Vol 139, No. 11, 2016. pp.5-15

## Resources of Opinion Mining

#### **Datasets of Opinion Mining**

- Blog06
  - 25GB TREC test collection
  - <u>http://ir.dcs.gla.ac.uk/test collections/access to data.html</u>
- Cornell movie-review datasets
  - <u>http://www.cs.cornell.edu/people/pabo/movie-review-data/</u>
- Customer review datasets
  - http://www.cs.uic.edu/~liub/FBS/CustomerReviewData.zip
- Multiple-aspect restaurant reviews
  - <u>http://people.csail.mit.edu/bsnyder/naacl07</u>
- NTCIR multilingual corpus
  - NTCIR Multilingual Opinion-Analysis Task (MOAT)

#### **Lexical Resources of Opinion Mining**

- SentiWordnet
  - <u>http://sentiwordnet.isti.cnr.it/</u>
- General Inquirer
  - <u>http://www.wjh.harvard.edu/~inquirer/</u>
- OpinionFinder's Subjectivity Lexicon
  - <u>http://www.cs.pitt.edu/mpqa/</u>
- NTU Sentiment Dictionary (NTUSD)
  - http://nlg18.csie.ntu.edu.tw:8080/opinion/
- Hownet Sentiment
  - <u>http://www.keenage.com/html/c\_bulletin\_2007.htm</u>

#### Example of SentiWordNet

- POSIDPosScoreNegScoreSynsetTermsGlossa002177280.750beautiful#1delighting the senses orexciting intellectual or emotional admiration; "a beautiful child";<br/>"beautiful country"; "a beautiful painting"; "a beautiful theory"; "a<br/>beautiful party"
- a 00227507 0.75 0 best#1 (superlative of `good') having the most positive qualities; "the best film of the year"; "the best solution"; "the best time for planting"; "wore his best suit"
- r 00042614 0 0.625 unhappily#2 sadly#1 in an unfortunate way; "sadly he died before he could see his grandchild"
- r 00093270 0 0.875 woefully#1 sadly#3 lamentably#1 deplorably#1 in an unfortunate or deplorable manner; "he was sadly neglected"; "it was woefully inadequate"
- r 00404501 0 0.25 sadly#2 with sadness; in a sad manner; "`She died last night,' he said sadly"

#### 《知網》情感分析用詞語集(betak)

- "中英文情感分析用詞語集"
   包含詞語約 17887
- •"中文情感分析用詞語集"
  - 包含詞語約 9193
- "英文情感分析用詞語集"

- 包含詞語 8945

#### 中文情感分析用詞語集

| 中文正面情感詞語 | 836  |
|----------|------|
| 中文負面情感詞語 | 1254 |
| 中文正面評價詞語 | 3730 |
| 中文負面評價詞語 | 3116 |
| 中文程度級別詞語 | 219  |
| 中文主張詞語   | 38   |
| Total    | 9193 |

### 中文情感分析用詞語集

- •"正面情感"詞語
  - -如:

愛,讚賞,快樂,感同身受,好奇, 喝彩,魂牽夢縈,嘉許...

- •"負面情感"詞語
  - -如:

哀傷,半信半疑,鄙視,不滿意,不是滋味兒,後悔,大失所望...

### 中文情感分析用詞語集

- •"正面評價"詞語
  - -如:

不可或缺,部優,才高八斗,沉魚落雁, 催人奮進,動聽,對勁兒...

- •"負面評價"詞語
  - -如:

醜,苦,超標,華而不實,荒涼,混濁, 畸輕畸重,價高,空洞無物...

# 中文情感分析用詞語集

- "程度級別" 詞語
  - -1. "極其|extreme/最|most"
    - •非常,極,極度,無以倫比,最為
  - -2. "很|very"
    - 多麼,分外,格外,著實

### •"主張"詞語

. . .

- -1. {perception | 感知}
  - 感覺,覺得,預感
- 2. {regard | 認為}
  - 認為,以為,主張

# Social Computing

# Social Network Analysis

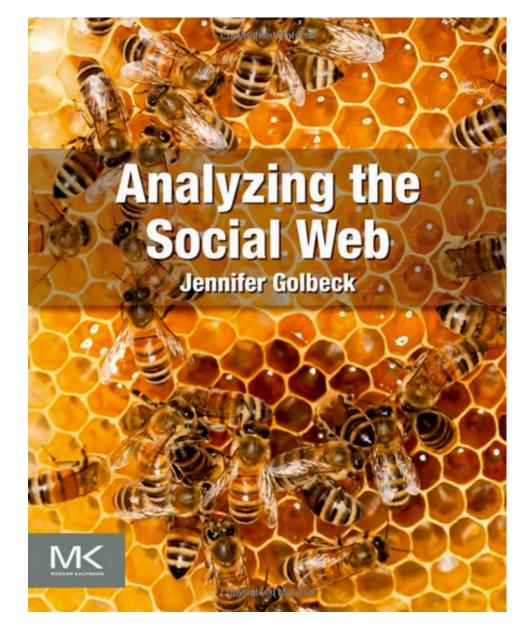
# Social Computing Social Network Analysis

- Link mining
- Community Detection
- Social Recommendation

# **Business Insights** with **Social Analytics**

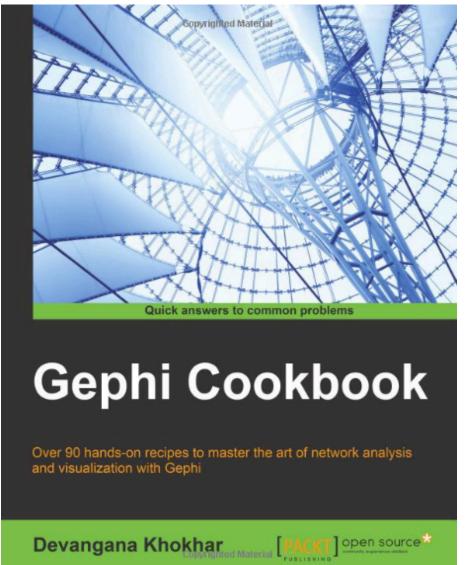
# Analyzing the Social Web: Social Network Analysis

#### Jennifer Golbeck (2013), Analyzing the Social Web, Morgan Kaufmann

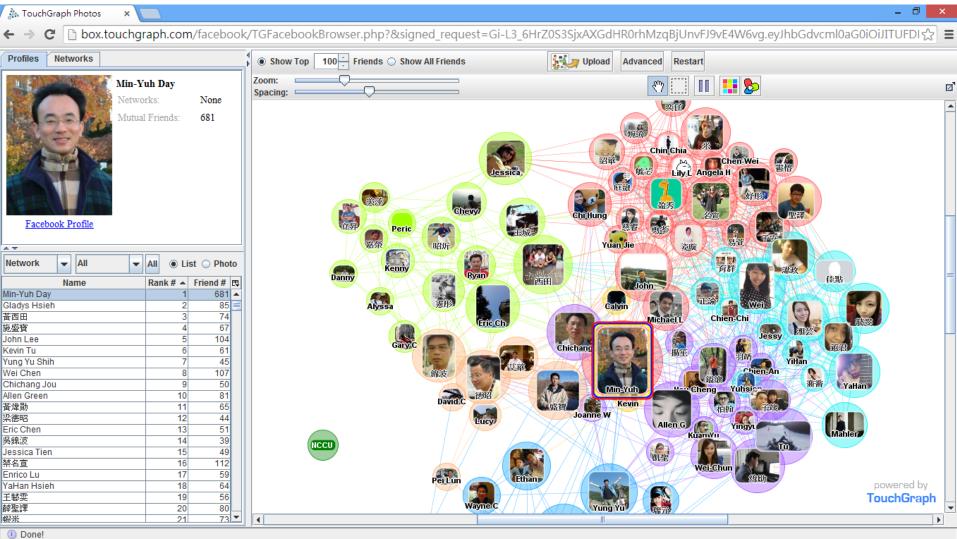


Source: http://www.amazon.com/Analyzing-Social-Web-Jennifer-Golbeck/dp/0124055311

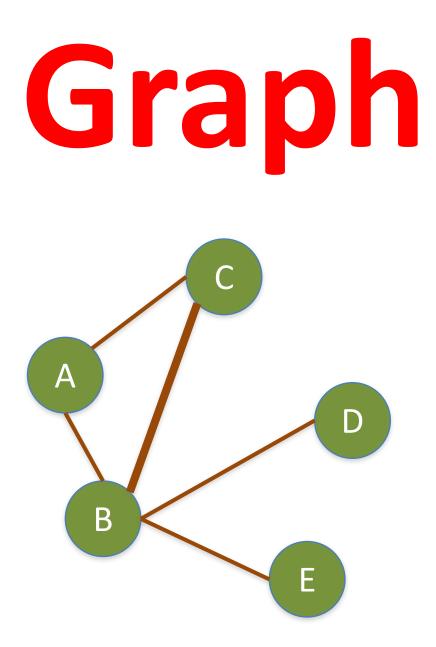
### Devangana Khokhar (2015), Gephi Cookbook, Packt Publishing



# Social Network Analysis (SNA) Facebook TouchGraph



# Graph Theory



# Graph g = (V, E)

# Vertex (Node)



# Vertices (Nodes)

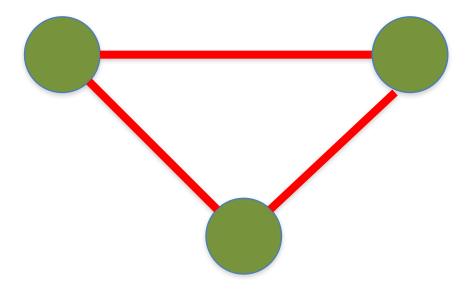








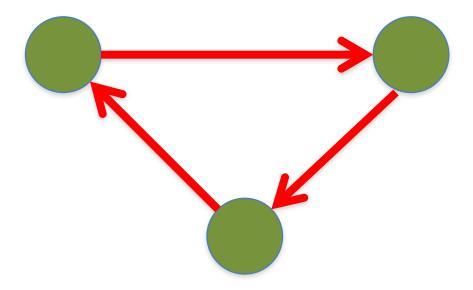




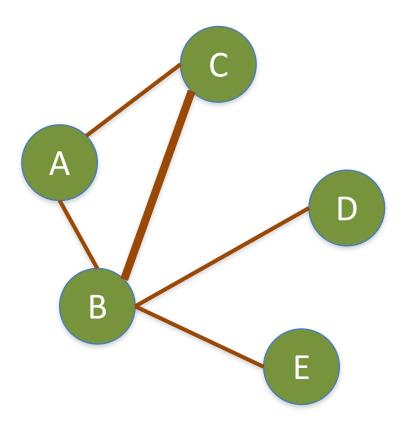




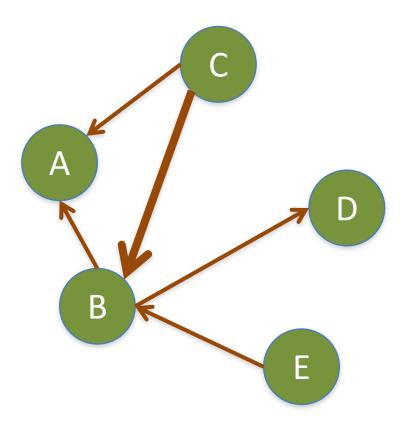




# **Undirected Graph**

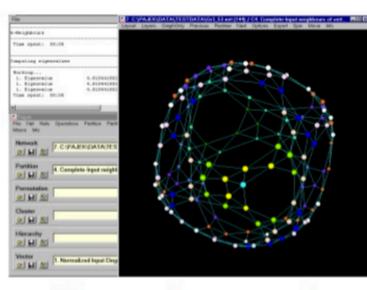


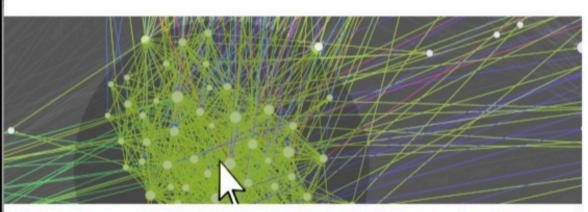
# **Directed Graph**



# Measurements of **Social Network** Analysis

# **Exploratory Network Analysis**



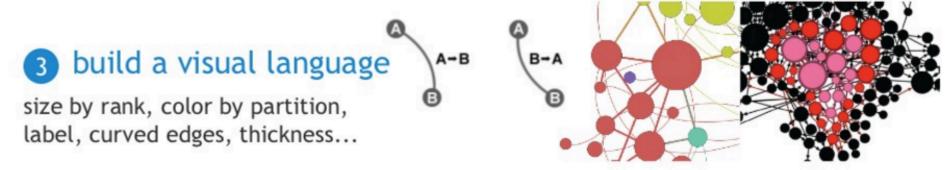


#### see the network

1st graph viz tool: Pajek (1996) Vladimir Batagelj, Andrej Mrvar

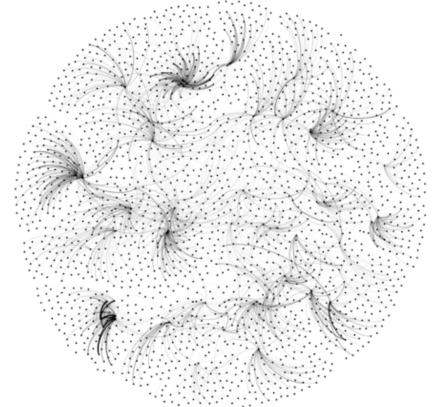
#### 2 interact in real time

Gephi prototype (2008) group, filter, compute metrics...



Source: http://sebastien.pro/gephi-icwsm-tutorial.pdf

# Looking for a "Simple Small Truth"? What Data Visualization Should Do?



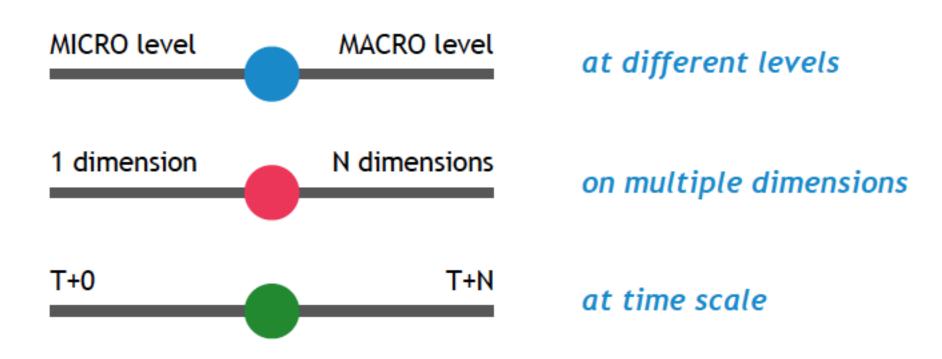
- 1. Make complex things **simple**
- 2. Extract small information from large data
- 3. Present truth, do not deceive

Source: http://sebastien.pro/gephi-icwsm-tutorial.pdf

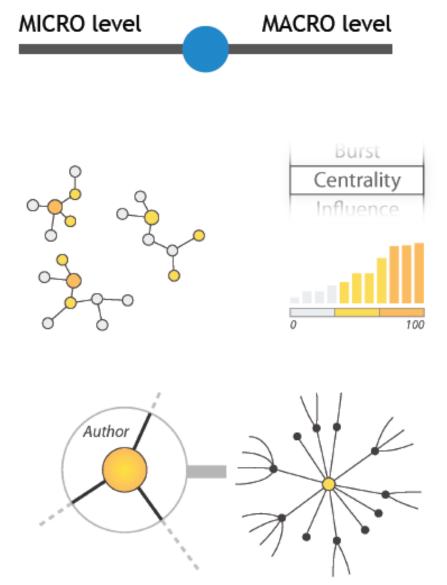
Measurements

### **Looking for Orderness in Data**

Make varying 3 cursors simultaneously to extract meaningful patterns



### "Zoom" cursor on Quantitative Data



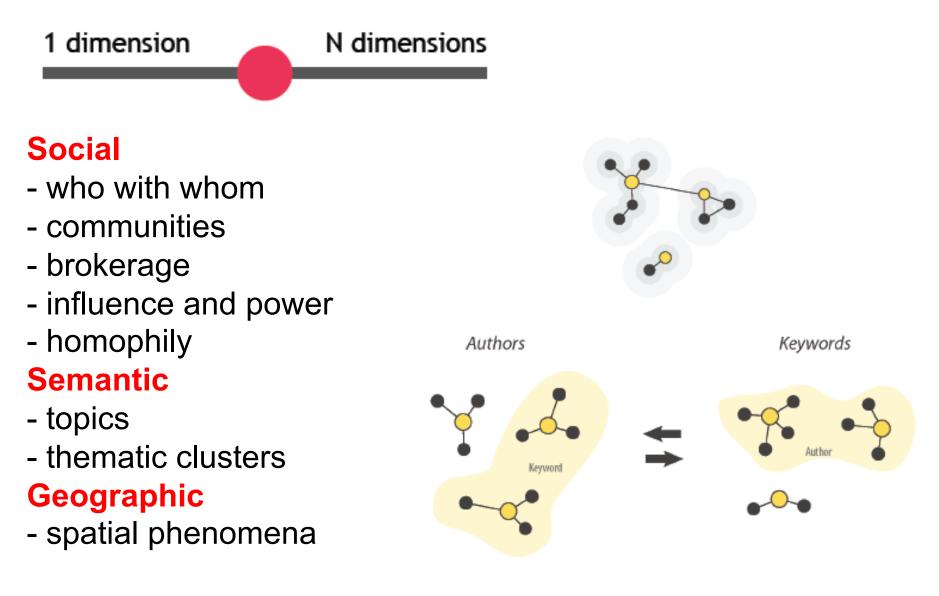
#### Global

- connectivity
- density
- centralization

#### Local

- communities
- bridges between communities
- local centers vs periphery
   Individual
- centrality
- distances
- neighborhood
- location
- local authority vs hub

# "Crossing" cursor on Quantitative Data



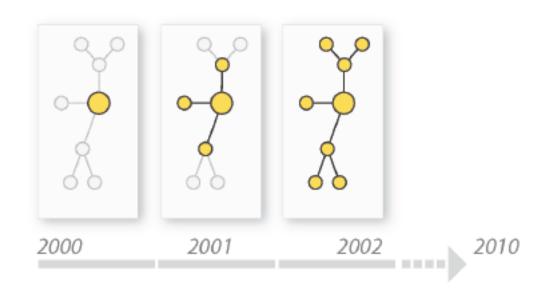
### "Timeline" cursor on Temporal Data



Evolution of social ties

**Evolution of communities** 

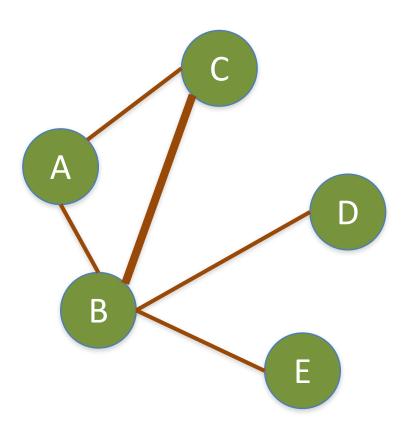
**Evolution of topics** 

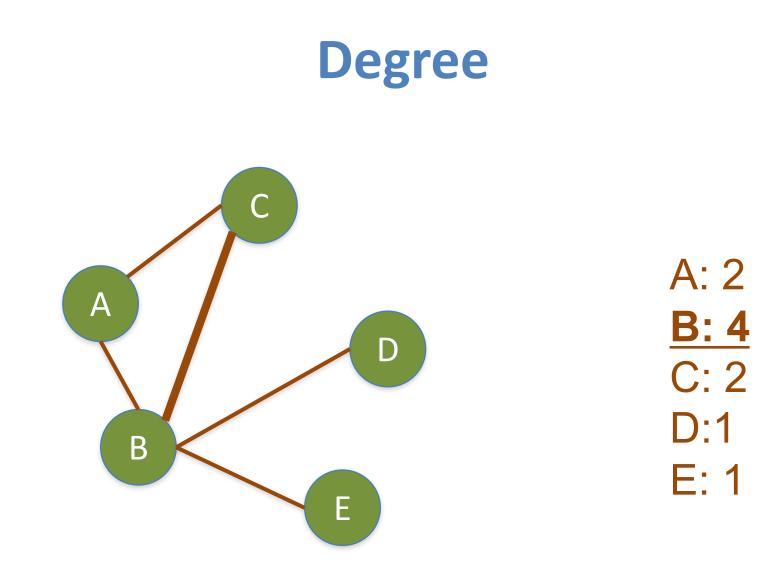


### **SNA Guideline**

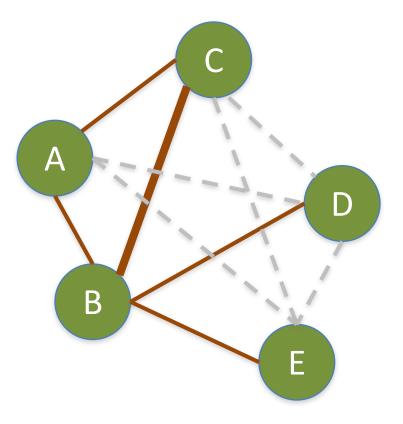
| # nodes        |                                                                                                                                                                                                                                                                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 - 100        | lists + edges in bonus, focus on qualitative data                                                                                                                                                                                                                                                                                                           |
| 100 - 1,000    | <ul> <li>How attributes explain the structure?</li> <li>easy to read, "obvious" patterns</li> <li>focus on entities (in context)</li> <li>metrics are tools to describe the graph (centrality, bridging)</li> <li>links help to build and interpret categories of entities</li> <li>challenge: mix attribute crossing and connectivity</li> </ul>           |
| 1,000 - 50,000 | <ul> <li>How the structure explains attributes?</li> <li>hard to read, problem of "hidden signals":<br/>track patterns with various layouts and filtering</li> <li>focus on structures</li> <li>metrics are tools to build the graph (cosine similarity)</li> <li>categories help to understand the structure<br/>challenge: pattern recognition</li> </ul> |
| > 50,000       | require high computational power                                                                                                                                                                                                                                                                                                                            |





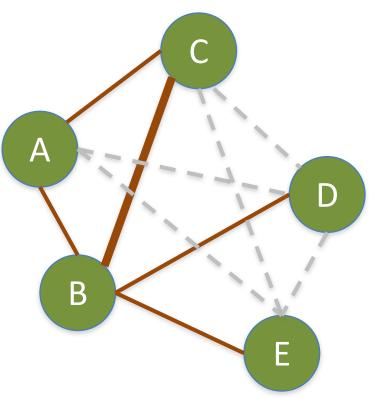


# Density

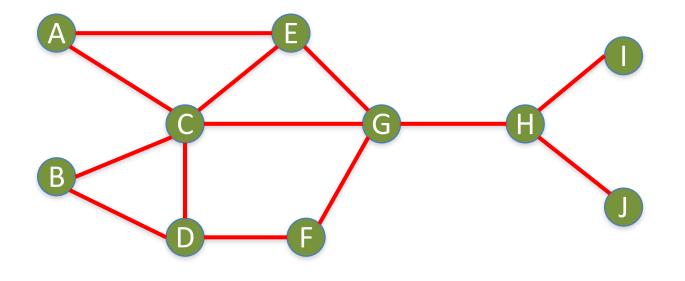


# Density

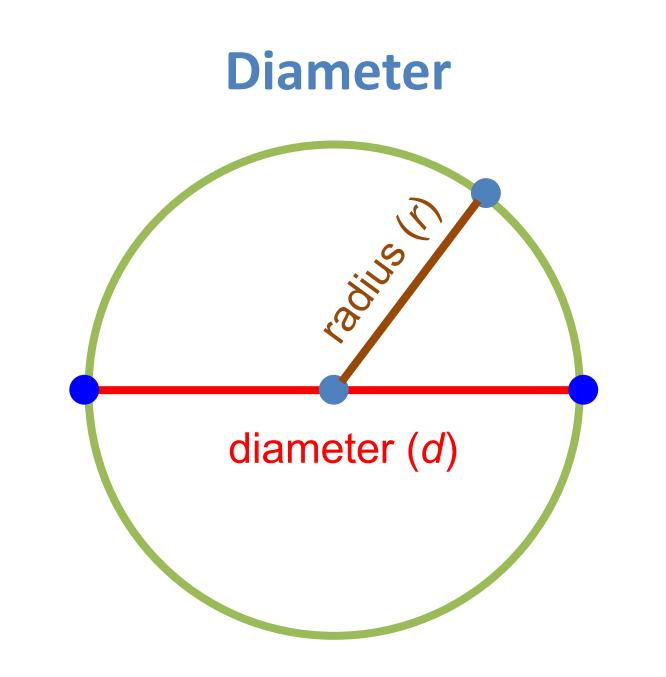
### Edges (Links): 5 Total Possible Edges: 10 Density: 5/10 = 0.5

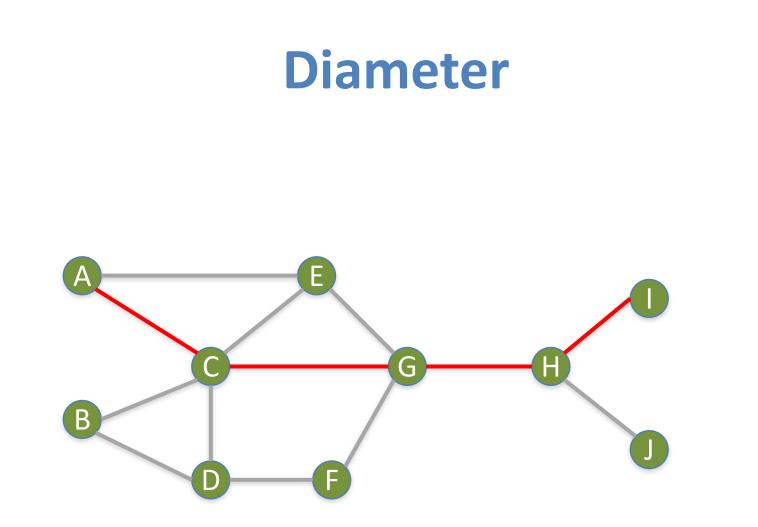


### Density

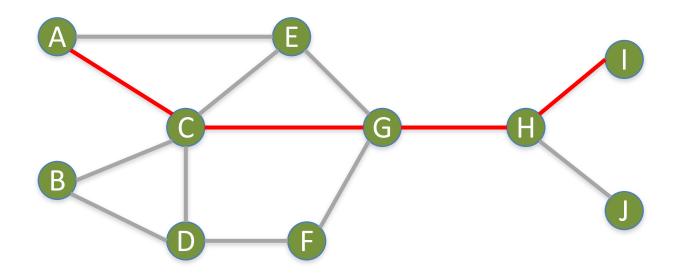


Nodes (n): 10 Edges (Links): 13 Total Possible Edges: (n \* (n-1)) / 2 = (10 \* 9) / 2 = 45 Density: 13/45 = 0.29



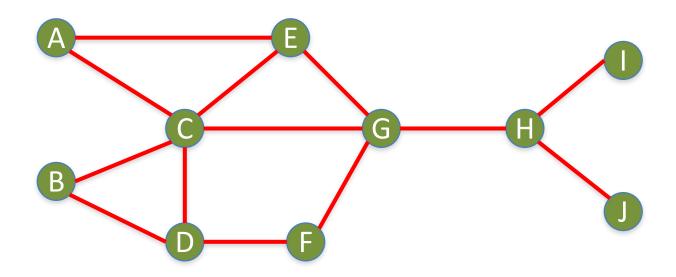


## Diameter Geodesic Path (Shortest Path)



 $A \rightarrow I$ : Diameter = 4

#### Which Node is Most Important?



#### Centrality

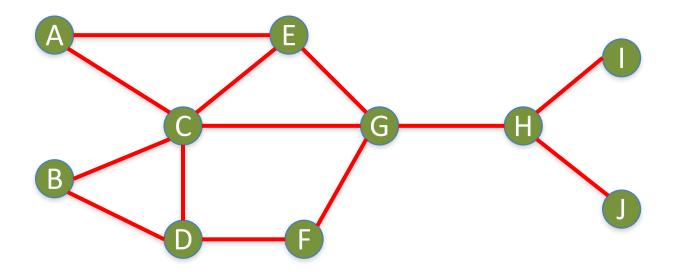
- Important or prominent actors are those that are linked or involved with other actors extensively.
- A person with extensive contacts (links) or communications with many other people in the organization is considered more important than a person with relatively fewer contacts.
- The links can also be called ties.
   A central actor is one involved in many ties.

### Social Network Analysis (SNA)

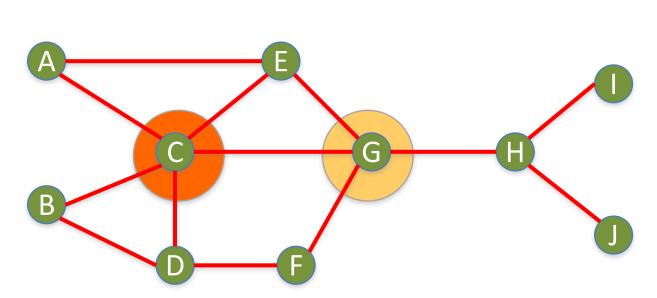
- Degree Centrality
- Betweenness Centrality
- Closeness Centrality

# Degree Centrality

## Social Network Analysis: Degree Centrality



## Social Network Analysis: Degree Centrality



| Node | Score | Standardized<br>Score |
|------|-------|-----------------------|
| Α    | 2     | 2/10 = 0.2            |
| В    | 2     | 2/10 = 0.2            |
| С    | 5     | 5/10 = 0.5            |
| D    | 3     | 3/10 = 0.3            |
| E    | 3     | 3/10 = 0.3            |
| F    | 2     | 2/10 = 0.2            |
| G    | 4     | 4/10 = 0.4            |
| Н    | 3     | 3/10 = 0.3            |
| I    | 1     | 1/10 = 0.1            |
| J    | 1     | 1/10 = 0.1            |

# Betweenness centrality: Connectivity

Number of shortest paths going through the actor

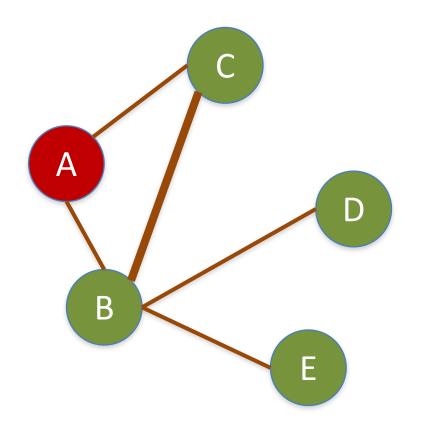
$$C_B(i) = \sum_{j < k} g_{ik}(i) / g_{jk}$$

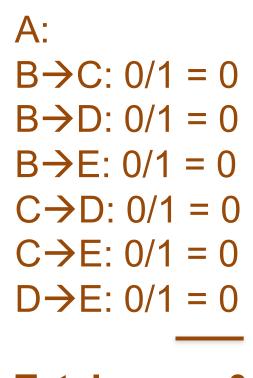
Where  $g_{jk}$  = the number of shortest paths connecting *jk*  $g_{jk}(i)$  = the number that actor *i* is on.

#### **Normalized Betweenness Centrality**

$$C'_{B}(i) = C_{B}(i) / [(n-1)(n-2)/2]$$

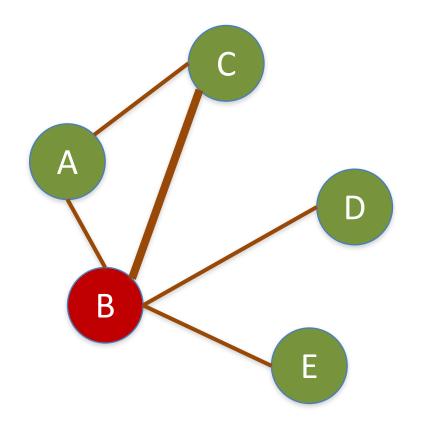
Number of pairs of vertices excluding the vertex itself

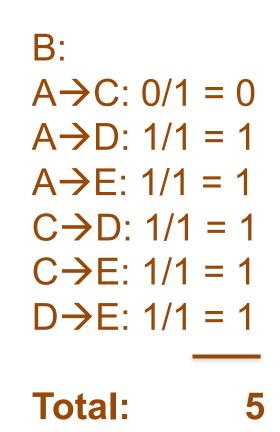




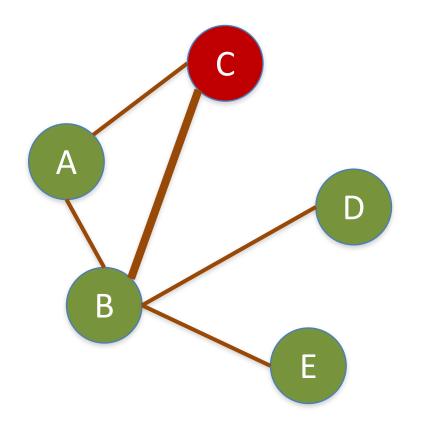
Total: 0

A: Betweenness Centrality = 0





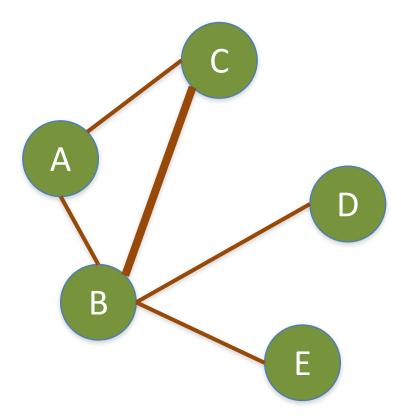
**B:** Betweenness Centrality = 5



**C**:  $A \rightarrow B: 0/1 = 0$  $A \rightarrow D: 0/1 = 0$  $A \rightarrow E: 0/1 = 0$  $B \rightarrow D: 0/1 = 0$  $B \rightarrow E: 0/1 = 0$  $D \rightarrow E: 0/1 = 0$ 

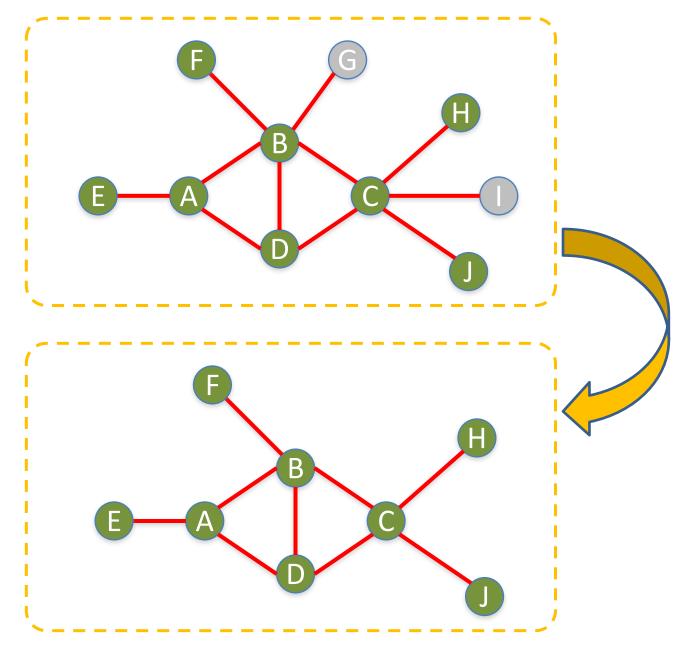
Total: 0

C: Betweenness Centrality = 0

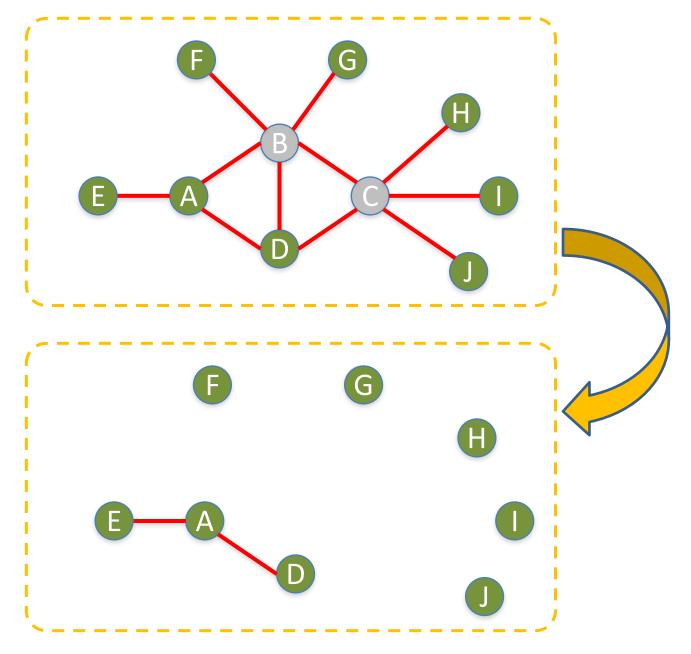


A: 0 **B: 5** C: 0 D: 0 E: 0

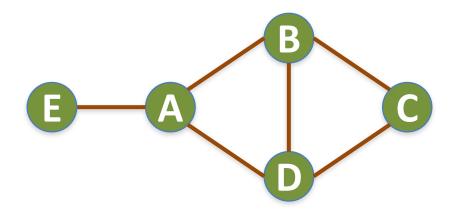
#### Which Node is Most Important?

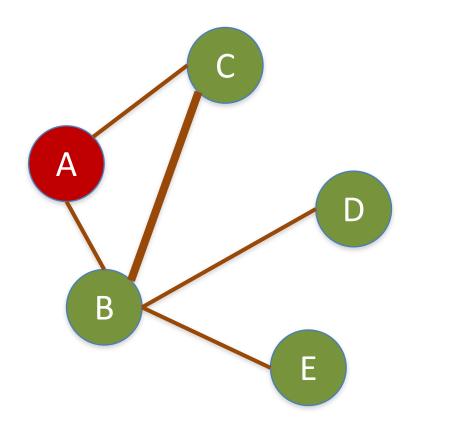


#### Which Node is Most Important?



 $C_B(i) = \sum g_{ik}(i) / g_{jk}$ j<k



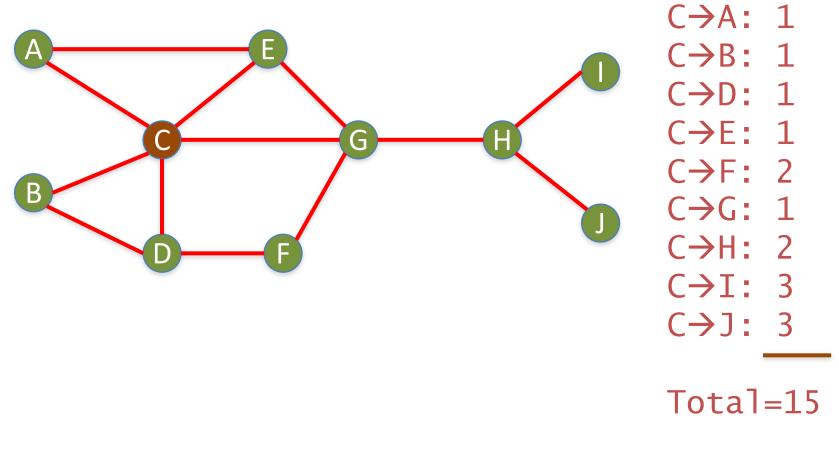


**A**:  $B \rightarrow C: 0/1 = 0$  $B \rightarrow D: 0/1 = 0$  $B \rightarrow E: 0/1 = 0$  $C \rightarrow D: 0/1 = 0$  $C \rightarrow E: 0/1 = 0$  $D \rightarrow E: 0/1 = 0$ 

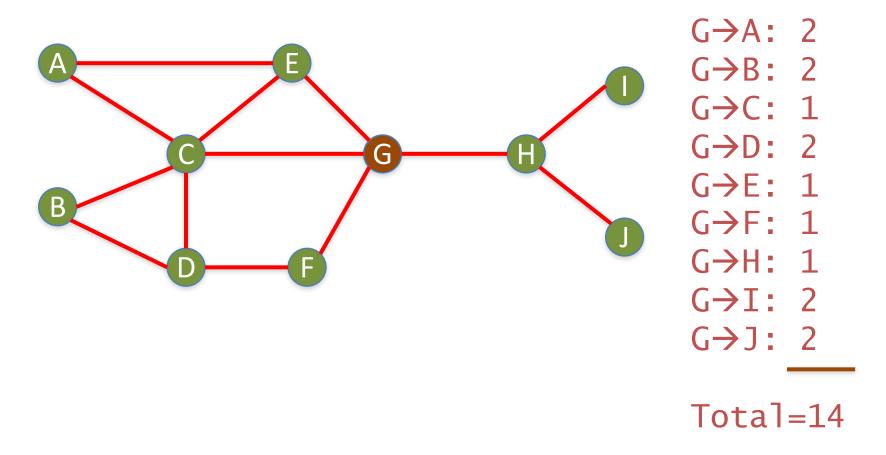
Total: 0

A: Betweenness Centrality = 0

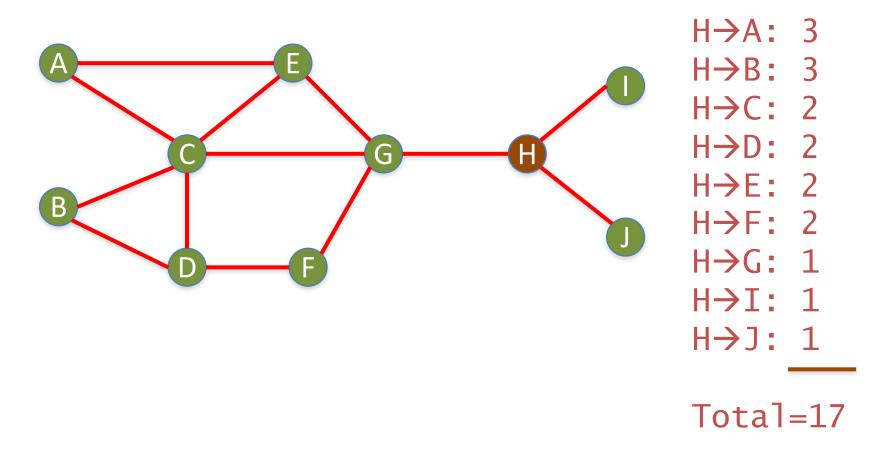
# Closeness Centrality



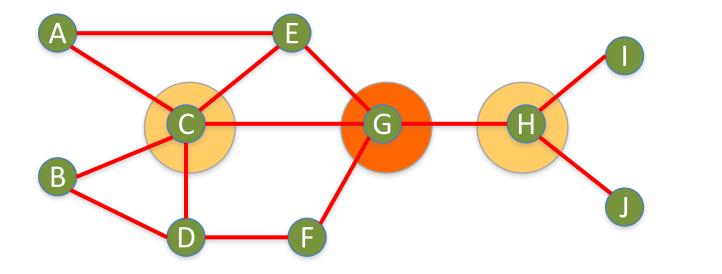
C: Closeness Centrality = 15/9 = 1.67



G: Closeness Centrality = 14/9 = 1.56



H: Closeness Centrality = 17/9 = 1.89



<u>G: Closeness Centrality = 14/9 = 1.56</u> C: Closeness Centrality = 15/9 = 1.67 H: Closeness Centrality = 17/9 = 1.89 3

# International Research Collaboration and Mobility

#### **Application of SNA**

# **Social Network Analysis** of **Research Collaboration** in

#### **Information Reuse and Integration**

Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

#### **Example of SNA Data Source**

home | browse | search | about

2



#### IRI 2010: Las Vegas, NV, USA

- Proceedings of the IEEE International Conference on Information Reuse and Integration, IRI 2010, 4-6 August 2010, Las Vegas, Nevada, USA. IEEE Systems, Man, and Cybernetics Society 2010
- 📕 🖹 😃 ᅉ Reda Alhajj, James B. D. Joshi, Mei-Ling Shyu: Message from Program Co-Chairs. 1
- 📕 🖹 🕹 😤 Stuart Harvey Rubin, Shu-Ching Chen: Forward. 1
- 🔳 🖹 😃 😤 Lotfi A. Zadeh: Precisiation of meaning toward computation with natural language. 1-4
- Reda Alhajj, Shu-Ching Chen, Gongzhu Hu, James B. D. Joshi, Gordon K. Lee, Stuart Harvey Rubin, Mei-Ling Shyu, Lotfi A. Zadeh: Panel title: Critical need for funding of basic and applied research in large-scale computing. 1

#### Automation, Integration and Reuse across Various Apps

- 📕 🖹 😃 😤 László István Etesi, André Csillaghy, Lin-Ching Chang: A message-based interoperability framework with application to astrophysics. 1-6
- 🔳 🖹 😃 약 🛛 Awny Alnusair, Tian Zhao, Eric Bodden: Effective API navigation and reuse. 7-12
- 📕 🖹 😃 😤 Manabu Ohta, Ryohei Inoue, Atsuhiro Takasu: Empirical evaluation of active sampling for CRF-based analysis of pages. 13-18
- 📕 🗄 😃 😤 Qunzhi Zhou, Viktor K. Prasanna: Workflow management of simulation based computation processes in transportation domain. 19-24

#### Source: http://www.informatik.uni-trier.de/~ley/db/conf/iri/iri2010.html

#### **Research Question**

 RQ1: What are the scientific collaboration patterns in the IRI research community?

 RQ2: Who are the prominent researchers in the IRI community?

### Methodology

- Developed a simple web focused crawler program to download literature information about all IRI papers published between 2003 and 2010 from IEEE Xplore and DBLP.
  - 767 paper
  - 1599 distinct author
- Developed a program to convert the list of coauthors into the format of a network file which can be readable by social network analysis software.
- UCINet and Pajek were used in this study for the social network analysis.

# Top10 prolific authors (IRI 2003-2010)

- 1. Stuart Harvey Rubin
- 2. Taghi M. Khoshgoftaar
- 3. Shu-Ching Chen
- 4. Mei-Ling Shyu
- 5. Mohamed E. Fayad
- 6. Reda Alhajj
- 7. Du Zhang
- 8. Wen-Lian Hsu
- 9. Jason Van Hulse
- 10. Min-Yuh Day

Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

#### **Data Analysis and Discussion**

Closeness Centrality

Collaborated widely

Betweenness Centrality

- Collaborated diversely

• Degree Centrality

Collaborated frequently

Visualization of Social Network Analysis

Insight into the structural characteristics of research collaboration networks

| •    |      |           |                     |
|------|------|-----------|---------------------|
| Rank | ID   | Closeness | Author              |
| 1    | 3    | 0.024675  | Shu-Ching Chen      |
| 2    | 1    | 0.022830  | Stuart Harvey Rubin |
| 3    | 4    | 0.022207  | Mei-Ling Shyu       |
| 4    | 6    | 0.020013  | Reda Alhajj         |
| 5    | 61   | 0.019700  | Na Zhao             |
| 6    | 260  | 0.018936  | Min Chen            |
| 7    | 151  | 0.018230  | Gordon K. Lee       |
| 8    | 19   | 0.017962  | Chengcui Zhang      |
| 9    | 1043 | 0.017962  | Isai Michel Lombera |
| 10   | 1027 | 0.017962  | Michael Armella     |
| 11   | 443  | 0.017448  | James B. Law        |
| 12   | 157  | 0.017082  | Keqi Zhang          |
| 13   | 253  | 0.016731  | Shahid Hamid        |
| 14   | 1038 | 0.016618  | Walter Z. Tang      |
| 15   | 959  | 0.016285  | Chengjun Zhan       |
| 16   | 957  | 0.016285  | Lin Luo             |
| 17   | 956  | 0.016285  | Guo Chen            |
| 18   | 955  | 0.016285  | Xin Huang           |
| 19   | 943  | 0.016285  | Sneh Gulati         |
| 20   | 960  | 0.016071  | Sheng-Tun Li        |
|      |      |           |                     |

#### Top 20 authors with the highest closeness scores

Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011),

"Social Network Analysis of Research Collaboration in Information Reuse and Integration"

#### **Top 20 authors with the highest <b>betweeness** scores

| Rank   | ID       | Betweenness | Author                |
|--------|----------|-------------|-----------------------|
| 1      | 1        | 0.000752    | Stuart Harvey Rubin   |
| 2      | 3        | 0.000741    | Shu-Ching Chen        |
| 3      | 2        | 0.000406    | Taghi M. Khoshgoftaar |
| 4      | <u> </u> | 0.000385    | Xingquan Zhu          |
| 5      | 4        | 0.000376    | Mei-Ling Shyu         |
| 6      | 6        | 0.000296    | Reda Alhajj           |
| 0<br>7 | 65       | 0.000256    | Xindong Wu            |
| 8      | 19       | 0.000194    | Chengcui Zhang        |
| 9      | 39       | 0.000185    | Wei Dai               |
| 10     | 15       | 0.000107    | Narayan C. Debnath    |
| 10     | 31       | 0.000094    | Qianhui Althea Liang  |
| 12     | 151      | 0.000094    | Gordon K. Lee         |
| 12     | 7        | 0.000085    | Du Zhang              |
| 15     | 30       | 0.000072    | Baowen Xu             |
| 15     | 41       | 0.000067    | Hongji Yang           |
| 16     | 270      | 0.000060    | Zhiwei Xu             |
| 10     | 5        | 0.000043    | Mohamed E. Fayad      |
| 18     | 110      | 0.000042    | Abhijit S. Pandya     |
| 10     | 106      | 0.000042    | Sam Hsu               |
| 20     | 8        | 0.000042    | Wen-Lian Hsu          |

Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011),

"Social Network Analysis of Research Collaboration in Information Reuse and Integration"

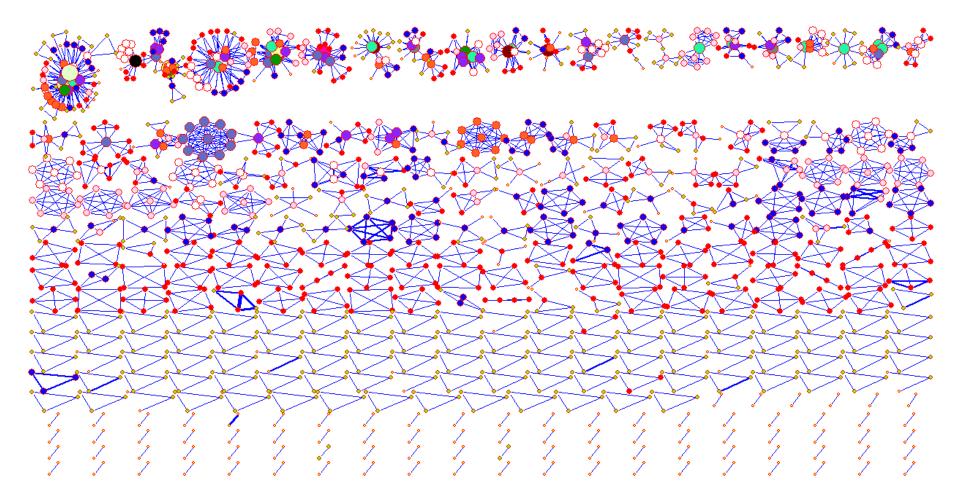
#### Top 20 authors with the highest degree scores

| •    |    |          | <b>U U</b>                   |
|------|----|----------|------------------------------|
| Rank | ID | Degree   | Author                       |
| 1    | 3  | 0.035044 | Shu-Ching Chen               |
| 2    | 1  | 0.034418 | Stuart Harvey Rubin          |
| 3    | 2  | 0.030663 | Taghi M. Khoshgoftaar        |
| 4    | 6  | 0.028786 | Reda Alhajj                  |
| 5    | 8  | 0.028786 | Wen-Lian Hsu                 |
| 6    | 10 | 0.024406 | Min-Yuh Day                  |
| 7    | 4  | 0.022528 | Mei-Ling Shyu                |
| 8    | 17 | 0.021277 | Richard Tzong-Han Tsai       |
| 9    | 14 | 0.017522 | Eduardo Santana de Almeida   |
| 10   | 16 | 0.017522 | Roumen Kountchev             |
| 11   | 40 | 0.016896 | Hong-Jie Dai                 |
| 12   | 15 | 0.015645 | Narayan C. Debnath           |
| 13   | 9  | 0.015019 | Jason Van Hulse              |
| 14   | 25 | 0.013767 | Roumiana Kountcheva          |
| 15   | 28 | 0.013141 | Silvio Romero de Lemos Meira |
| 16   | 24 | 0.013141 | Vladimir Todorov             |
| 17   | 23 | 0.013141 | Mariofanna G. Milanova       |
| 18   | 5  | 0.013141 | Mohamed E. Fayad             |
| 19   | 19 | 0.012516 | Chengcui Zhang               |
| 20   | 18 | 0.011890 | Waleed W. Smari              |

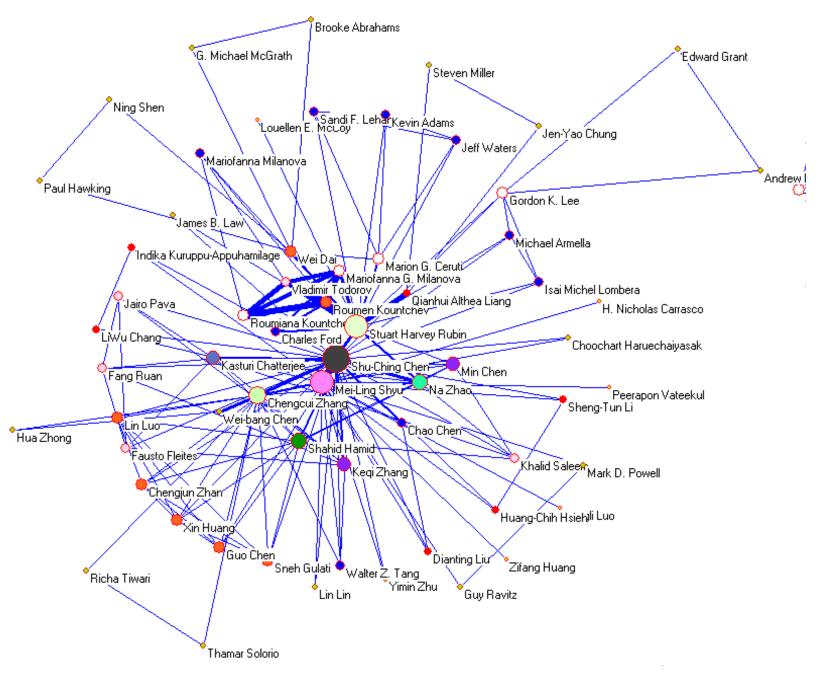
Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011),

"Social Network Analysis of Research Collaboration in Information Reuse and Integration"

#### Visualization of IRI (IEEE IRI 2003-2010) co-authorship network (global view)

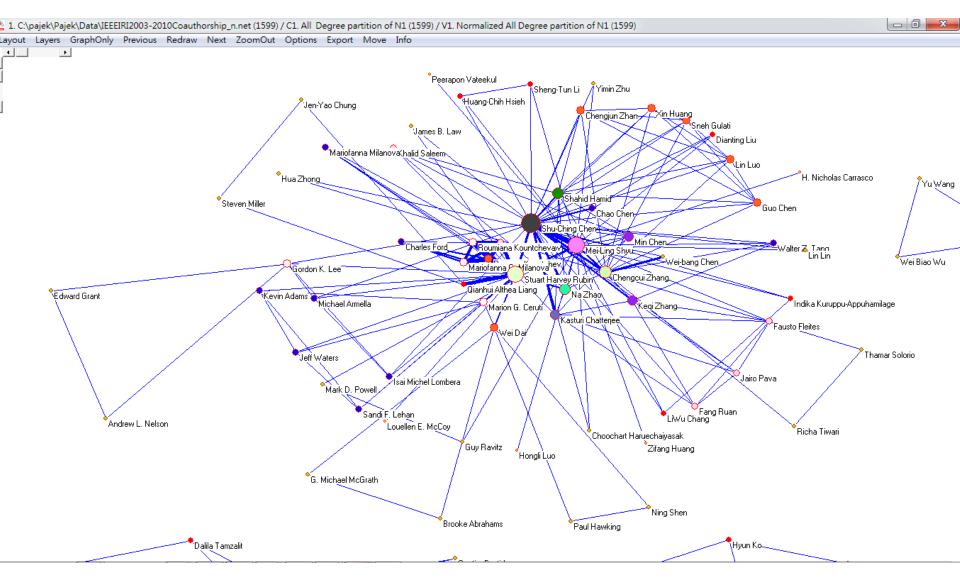


Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"



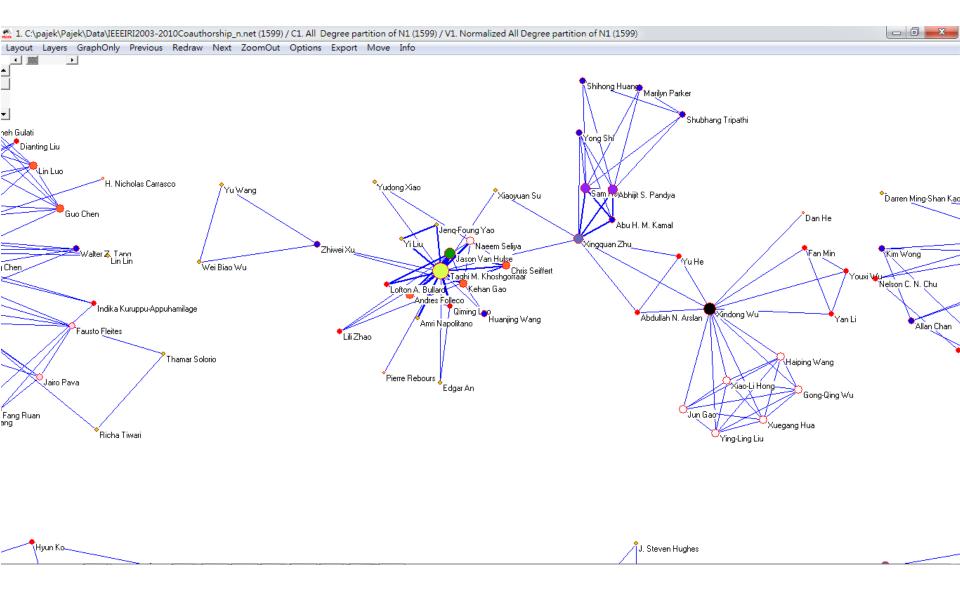
Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

### **Visualization of Social Network Analysis**



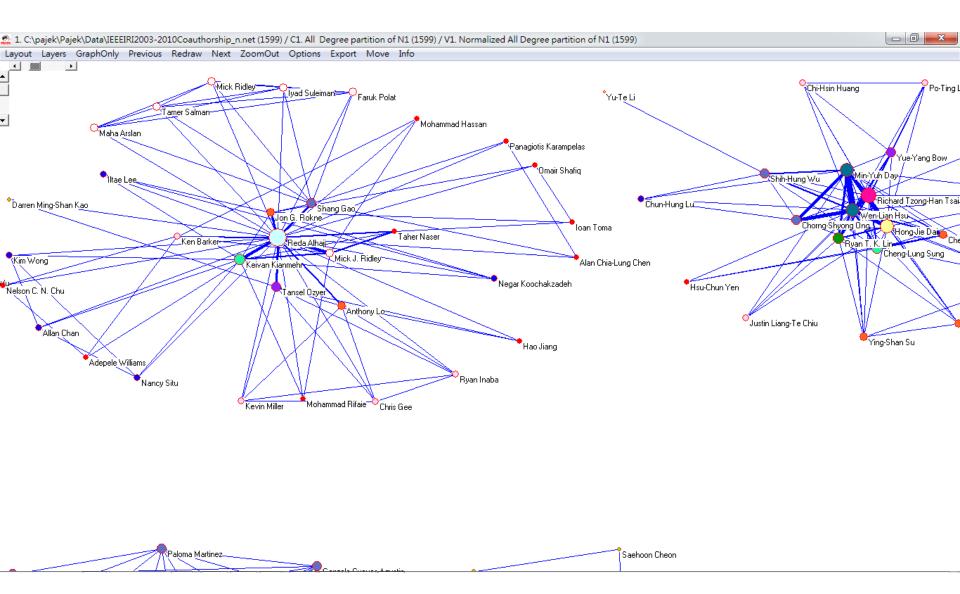
Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

### **Visualization of Social Network Analysis**



Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"

### **Visualization of Social Network Analysis**



Source: Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration"



# Tamkang University 淡紅大學

# NTCIR-12, 2016 NTCIR-11, 2014 NTCIR-10, 2013 NTCIR-9, 2011

**Tamkang University** 







# IMTKU Textual Entailment System for Recognizing Inference in Text NTCÍR at NTCIR-9 RITE

### Department of Information Management Tamkang University, Taiwan



Min-Yuh Day Chun Tu myday@mail.tku.edu.tw

NTCIR-9 Workshop, December 6-9, 2011, Tokyo, Japan

**Tamkang University** 

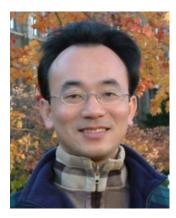






## IMTKU Textual Entailment System for Recognizing Inference in Text NTCÍR at NTCIR-10 RITE-2

### Department of Information Management Tamkang University, Taiwan



**Min-Yuh Day** 

Chun Tu



#### Hou-Cheng Vong



Shih-Wei Wu



Shih-Jhen Huang

#### myday@mail.tku.edu.tw

NTCIR-10 Conference, June 18-21, 2013, Tokyo, Japan

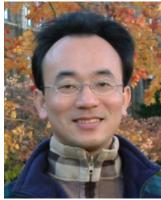
#### NTCIR IMTKU Textual Entailment System for Recognizing Inference in Text at NTCIR-11 RITE-VAL

#### **Tamkang University**



2014





**Min-Yuh Day** 



Ya-Jung Wang



Che-Wei Hsu



**En-Chun Tu** 



Huai-Wen Hsu



Yu-An Lin



Shang-Yu Wu



Yu-Hsuan Tai



Cheng-Chia Tsai

NTCIR-11 Conference, December 8-12, 2014, Tokyo, Japan

**Tamkang University** 



### 2016 **IMTKU Question Answering System for** World History Exams at NTCIR-12 QA Lab2

#### **Department of Information Management** Tamkang University, Taiwan

Sagacity Technolog



Min-Yuh Day Cheng-Chia Tsai Wei-Chun Chung Hsiu-Yuan Chang

Tzu-Jui Sun

Yuan-Jie Tsai



**Cheng-Hung Lee** 



NTCIR



**Yu-Ming Guo** 

Yue-Da Lin Wei-Ming Chen



Yun-Da Tsai

Cheng-Jhih Han







Yi-Jing Lin Yi-Heng Chiang Ching-Yuan Chien

myday@mail.tku.edu.tw

NTCIR-12 Conference, June 7-10, 2016, Tokyo, Japan



- (1)「社群媒體」(Social Media)(政治大學)
- (2)「資料科學」 (Data Science)(政治大學)
- (3)「分析技術」(Analytics Technology)(高雄大學)(淡江大學)
- (4)「領域應用」(Domain Application)(淡江大學)(政治大學)



 探討社群媒體和資料分析的概念,以個案 方式教學



探討 Data Thinking 和 EDA 等,
 與DSP或痞客邦合作

5.「分析技術」(Analytics Technology)
 (高雄大學)(淡江大學)

- 列舉重要的分析方法,包括社會網絡分析
   ,文字探勘分析技術簡介。
  - -\*社會網絡分析(高雄大學)
  - -\*社會網絡量測(高雄大學)
  - -\*社會網絡分析工具(高雄大學)
  - -\* 文字探勘分析技術簡介(淡江大學)

 「領域應用」(Domain Application) (淡江大學)(政治大學)

區分 Domain Knowledge,聚焦探討各種商業行銷和輿情分析等

-\*社群媒體行銷分析(淡江大學)

-\* 社群媒體情感分析 (淡江大學)

# Summary

- Big Data Sentiment Analysis
- Social Computing
- International Research
   Collaboration and Mobility

### References

- Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," 2<sup>nd</sup> Edition, Springer. <u>http://www.cs.uic.edu/~liub/WebMiningBook.html</u>
- Jennifer Golbeck (2013), Analyzing the Social Web, Morgan Kaufmann.
   http://analyzingthesocialweb.com/course-materials.shtml
- Sentinel Visualizer, http://www.fmsasg.com/SocialNetworkAnalysis/
- Min-Yuh Day, Sheng-Pao Shih, Weide Chang (2011), "Social Network Analysis of Research Collaboration in Information Reuse and Integration," The First International Workshop on Issues and Challenges in Social Computing (WICSOC 2011), August 2, 2011, in Proceedings of the IEEE International Conference on Information Reuse and Integration (IEEE IRI 2011), Las Vegas, Nevada, USA, August 3-5, 2011, pp. 551-556.

# References

 Bing Liu (2011), "Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data," 2<sup>nd</sup> Edition, Springer. http://www.cs.uic.edu/~liub/WebMiningBook.html

Ding Live (2012) Oninian Gram Data sting, Data sting False Davi

- Bing Liu (2013), Opinion Spam Detection: Detecting Fake Reviews and Reviewers, <u>http://www.cs.uic.edu/~liub/FBS/fake-reviews.html</u>
- Bo Pang and Lillian Lee (2008), "Opinion mining and sentiment analysis," Foundations and Trends in Information Retrieval 2(1-2), pp. 1–135, 2008.
- Wiltrud Kessler (2012), Introduction to Sentiment Analysis, <a href="http://www.ims.uni-stuttgart.de/~kesslewd/lehre/sentimentanalysis12s/introduction\_sentimentanalysis.pdf">http://www.ims.uni-stuttgart.de/~kesslewd/lehre/sentimentanalysis12s/introduction\_sentimentanalysis.pdf</a>
- Z. Zhang, X. Li, and Y. Chen (2012), "Deciphering word-of-mouth in social media: Textbased metrics of consumer reviews," ACM Trans. Manage. Inf. Syst. (3:1) 2012, pp 1-23.
- Efraim Turban, Ramesh Sharda, Dursun Delen (2011), Decision Support and Business Intelligence Systems, Ninth Edition, 2011, Pearson.
- Guandong Xu, Yanchun Zhang, Lin Li (2011), Web Mining and Social Networking: Techniques and Applications, 2011, Springer

### References

- Cambria, Erik, Soujanya Poria, Rajiv Bajpai, and Björn Schuller. "SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives." In the 26th International Conference on Computational Linguistics (COLING), Osaka. 2016.
- Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang, Christopher D. Manning, Andrew Y. Ng, and Christopher Potts (2013), "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank," In Proceedings of the conference on empirical methods in natural language processing (EMNLP), vol. 1631, p. 1642 <u>http://nlp.stanford.edu/~socherr/EMNLP2013\_RNTN.pdf</u>
- Kumar Ravi and Vadlamani Ravi (2015), "A survey on opinion mining and sentiment analysis: tasks, approaches and applications." Knowledge-Based Systems, 89, pp.14-46.
- Vishal Kharde and Sheetal Sonawane (2016), "Sentiment Analysis of Twitter Data: A Survey of Techniques," International Journal of Computer Applications, vol 139, no. 11, 2016. pp.5-15.
- Jesus Serrano-Guerrero, Jose A. Olivas, Francisco P. Romero, and Enrique Herrera-Viedma (2015), "Sentiment analysis: A review and comparative analysis of web services," Information Sciences, 311, pp. 18-38.
- Steven Struhl (2015), Practical Text Analytics: Interpreting Text and Unstructured Data for Business Intelligence (Marketing Science), Kogan Page
- Bing Liu (2015), Sentiment Analysis: Mining Opinions, Sentiments, and Emotions, Cambridge University Press

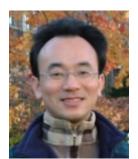






# Research on Social Computing and Big Data Analytics (社群運算與大數據分析研究)

Time: 2016/11/17 (Thu) (15:30-17:30) Place: 東吳大學資管研究所 <城中校區 教室: 4303> Host: 鄭麗珍 教授 (Prof. Li-chen Cheng)



<u>Min-Yuh Day</u> <u>戴敏育</u> Assistant Professor 專任助理教授

 Dept. of Information Management, Tamkang University

 淡江大學 資訊管理學系



http://mail.tku.edu.tw/myday/

2016-11-17