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Big Data4 'V

It's estimated that

2005 2.5 QUINTILLION BYTES

[ 2.3 TRILLION GIGABYTES ]
of data are created each day

40 ZETTABYTES

[43 TRILLION GIGABYTES ]

of data will be created by
2020, an increase of 300

times from 2005 202

The
FOURV’s
of Big
Data

From traffic patterns and music downloads to web
history and medical records, data is recorded,
stored, and analyzed to enable the technology
and services that the world relies on every day.
But what exactly is big data, and how can these
massive amounts of data be used?

6 BILLION
PEOPLE

have cell
phones

Most companies in the
U.S. have at least

100 TERABYTES
[ 100,000 GIGABYTES ]
of data stored

WORLD POPULATION: 7 BILLION As a leader in the sector, IBM data scientists
break big data into four dimensions: Volume,

Velocity, Variety and Veracity

Modern cars have close to

100 SENSORS

The New York Stock Exchange Depending on the industry and organization, big

captures data encompasses information from multiple
] TB UF TRADE ( that monitor items such as internal and external sources such as transactions,
INFORMATION (\ fuel level and tire pressure social media, enterprise content, sensors and

mobile devices. Companies can leverage data to

during each trading session adapt their products and services to better meet

customer needs, optimize operations and
infrastructure, and find new sources of revenue.

Velocity = B

By 2015
ANALYSIS OF 4.4 MILLION IT JOBS
STREAMING DATA

will be created globally to support big data,
with 1.9 million in the United States

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

YYYYYYYYYYY
sz fR4d e R R R EE

As of 2011, the global size of
data in healthcare was
estimated to be

By 2014, it's anticipated
there will be

420 MILLION
150 EXABYTES WEARABLE, WIRELESS
{161 BILLION GIGABYTES ] HEALTH MONITORS

&2
&.

4 BILLION+
HOURS OF VIDEO

are watched on
YouTube each month

You
You
m
‘

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

&

30 BILLION
PIECES OF CONTENT

are shared on Facebook
every month

Poor data quality costs the US

R

economy around
$3.1 TRILLION A YE

they use to make decisions .

Veracity

UNCERTAINTY
OF DATA

in one survey were unsure of
how much of their data was
inaccurate

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

Source: https://www-01.ibm.com/software/data/bigdata/ 5






History of Data Science

Computer Science = Turing machines = Text/ string search
= Information Theory = 1974 Peter Naur “Concise Survey of Computer
= Weiner & Cybernetics = Sort & Search Algorithms — Methods", Data Science, Datalogy
= Von Neumann Architecture. Dijkstra, Kruskal, Shell Sort, ... * Knuth — Art of Computer Programming.
@ * Heuristics — Simulated Annealing, ...

= Liebniz — Binary Logic. « Babbage, Lovelace

= Boolean Algebra
= Punch cards.

= Database Marketing
= Data Mining, Knowledge Discovery

= Graph Algorithms . R . .
= “Data science, classification, and related methods."”

= Multigrid methods

= First IBM = Tree based methods. = 1989 First KDD Workshop
Computers = Gregory Piatetsky-Shapiro.
Data Technology * DBMS. (o) A~
/'.9\ (@) = Removable Disk drives U? Baakion § —{® ) @ @-
. Catrography\'/ « William Playfair * Relational DBMS. F Sg?_ g%p()ppy = William Cleveland: Data Science
= Astronomical Charts. « Charles Minard /-\High level Iangua9§§ * Leo Breimann: Statistical Modeling: 2 Cul}ﬂes— =
= Florence Nightingale. = — (@) {(®) @ @ — —
" Ty f‘\; ,.\ = Jacques B:rtin . uft - Grammar of Graphics /
Visualization"—" 4 ‘ ! Edward Tufte. , \ord Cloud, Tag Cloud. 4
* Optimization Methods « Applications to Military, ‘@ @) A\.} 5.3 o ——
= Fourier and other transforms ; = Assignment Problems o
Matrix & G lizati manufacturing, « Automation
= Matrix eneralizations it 7N\ =)
Communications. " e B}
= Calculus * Non-euclidean geometries. = Sche @ @/ \!/ @ ]
= Logarithms
* Newton-Raphson. = 1962 John W. Tukey, Future o Y /e
—@ 4/.\\f Data Analysis @) &> e = :
. . = Decision Science
Mathematics/ OR 1976 — SAS Institute = Pattorn recognition -~ -
= 1977 The International Association for « Machine learnin
= Theoretical Foundations of Modern St Statistical Computing (IASC). 9:
= Hypothesis, DOE
* Mathematical Statistics. . )
= Simulation, Markov
* Probability . R ion. Least = Bayesian Methods = Computational Statistics.
= Correlation Seg:::mn, eas = Time Series Methods (Box Cox,
» Bayes Theorem. q Survival, etc.)

= Time Series. = Stochastic Methods.

4/.\
Statistics



Volume

Big Data Technologies are Enabling
a New Approach

Real-time
Applications

Data warehouses
Event

In-memory processing
databases tools

S A a B |

Response time

Source: http://www.doclens.com/119898/think-1-13-big-datas-impact-on-analytics/



Big Data
Analytics
and
Data Mining




Stephan Kudyba (2014),
Big Data, Mining, and Analytics:
Components of Strategic Decision Making, Auerbach Publications

Big Data,
Mining, and
Analytics

: ‘Fore

Source: http://www.amazon.com/gp/product/1466568704

10



Architecture of Big Data Analytics

Big Data
Sources

\

* Internal
* External

* Multiple
formats

* Multiple
locations

* Multiple
applications

y

N

Big Data
Analytics

Big Data
Analytics
Applications

Queries

Big Data Big Data
Transformation Platforms & Tools
f
Middleware N
Raw Transformed IVIapR.ed uce
Data | Extract Data P.'g
» Transform > Hive
Load Jaq|
Zookeeper
Hbase
Data Cassandra
Warehouse Oozie
| Avro
Traditional Mahout
Format Others
CSV, Tables L

Reports

11



Architecture of Big Data Analytics

Big Data
Sources

\

* Internal
* External

* Multiple
formats

* Multiple
locations

* Multiple
applications

Big Data
Transformation

Big Data
Platforms & Tools

Big Data
Analytics
Applications

Queries

Reports

Source: Stephan Kudyba (2014), Big Data, Mining, and Analytics: Components of Strategic Decision Making, Auerbach Publications
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Social Big Data Mining

(Hiroshi Ishikawa, 2015)

Social Big Data
Mining

Hiroshi Ishikawa

Source: http://www.amazon.com/Social-Data-Mining-Hiroshi-Ishikawa/dp/149871093X

13
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Architecture for
Social Big Data Mining

Analysts

Enabling Technologies

* Integrated analysis model

Integrated analysis . '
'Iv(‘ g y AA Explanation by Model
\ r /
/ \ \
I 1 1 Conceptual Layer
L 1 " 1 I' i\
l ‘ 'l L\ y ] ‘ .
N I > . T r H v/ 3 * Construction and
| ?tura _ang:age rocessing ! \ i ,‘! Data ) confirmation
An ormaltloDn xtr.actlon i \ { e ) of individual
Dr\oma y eftecltl:J.n i ! \ ! K,g/ hypothesis
* Discovery of relationships \ . \ P
1 . » Application * Description and
among heterogeneous data / Multivariate | ¢ bP ) P

execution of
application-specific
task

. specific task -

Large-scale visualization analysis

Logical Layer

Parallel distrusted processing Social Data

Software

S ————

- Hardware

- Physical Layer /

14



Business Intelligence (BIl) Infrastructure

Extract, transform,
load

Historical

Casual users
* Queries
* Reports

e Dashboards

Web Dat

/ Power users

* Queries
* Reports

r- Data mining :

Source: Kenneth C. Laudon & Jane P. Laudon (2014), Management Information Systems: Managing the Digital Firm, Thirteenth Edition, Pearson. 15
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LeCun, Yann,
Yoshua Bengio,
and Geoffrey Hinton.

‘Deep learning:

Nature 521, no. 7553 (2015): 436-
444,



REVIEW

doi:10.1038/naturel4539

Deep learning

Yann LeCun'?, Yoshua Bengio® & Geoffrey Hinton**

Deep learning allows computational models that are composed of multiple processing layers to learn representations of
data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech rec-
ognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep
learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine
should change its internal parameters that are used to compute the representation in each layer from the representation in
the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and
audio, whereas recurrent nets have shone light on sequential data such as text and speech.

society: from web searches to content filtering on social net-

works to recommendations on e-commerce websites, and

it is increasingly present in consumer products such as cameras and

smartphones. Machine-learning systems are used to identify objects

in images, transcribe speech into text, match news items, posts or

products with users’ interests, and select relevant results of search.

Increasingly, these applications make use of a class of techniques called
deep learning.

Conventional machine-learning techniques were limited in their

ability to process natural data in their raw form. For decades, con-

M achine-learning technology powers many aspects of modern

intricate structures in high-dimensional data and is therefore applica-
ble to many domains of science, business and government. In addition
to beating records in image recognition' " and speech recognition®”, it
has beaten other machine-learning techniques at predicting the activ-
ity of potential drug molecules®, analysing particle accelerator data™"’,
reconstructing brain circuits*’, and predicting the effects of mutations
in non-coding DNA on gene expression and disease’*"’. Perhaps more
surprisingly, deep learning has produced extremely promising results
for various tasks in natural language understanding'’, particularly
topic classification, sentiment analysis, question answering'* and lan-

guage translation'*".

18



Sebastian Raschka (2015),

Python Machine Learning,
Packt Publishing

-
Copyrighted Matedal SN

Community Experience Distilled

Python Machine Learning
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Sunila Gollapudi (2016),

Practical Machine Learning,
Packt Publishing
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Machine Learning Models

Deep Learning Kernel

Ensemble

Association rules

Decision tree

Dimensionality reduction

Clustering Regression Analysis

Bayesian Instance based

21



Data Scientist

FHAER

What makes a data scientist?

The big data phencmencn trained & Dright SpOtgh 0n hose who Deriorm deep NIormation analyss

And Can Combing Quartative and stataSical mOdelng expertine with Dusingess acumen and a takert for
Sncing hidden patierns. Here's & closer look,

22
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Intelligence from Big Data

Deep Learn




Smart
Grids

Geophysical
Exploration

Medical
Imaging

Video
Rendering

Gene
Sequencing
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Data Scientist.

The Sexiest Job
of the 21st Century

(Davenport & Patil, 2012)(HBR)



Data Scientist:

The Sexiest Job of the 21st Century

hen Jonathan Goldman ar-
rived for work in June 2006

Meet the people who

can coax treasure out of
messy, unstructured data.
by Thomas H. Davenport
and D.J. Patil

at LinkedIn, the business
networking site, the place still
felt like a start-up. The com-
pany had just under 8 million
accounts, and the number was
growing quickly as existing mem-
bers invited their friends and col-
leagues to join. But users weren’t
seeking out connections with the people who were already on the site
at the rate executives had expected. Something was apparently miss-
ing in the social experience. As one LinkedIn manager put it, “It was
like arriving at a conference reception and realizing you don’t know
anyone. So you just stand in the comner sipping your drink—and you
probably leave early.”

70 Harvard Business Review October 2012

26



Data Scientist Profile

Quantitative

Communicative
and

Source: EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015
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Key Roles for a
Successful Analytics Project

Business Intelligence
Analyst

Business User Project Sponsor Project Manager

AF T+

Database

Administrator (DBA Data Engineer Data Scientist

Source: EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015

28



Key Outputs from a
Successful Analytics Project

' Code NUN Presentation for Analysts
B3 Technical Specs NN Presentation for Project Sponsors

Project Manager Business Intelligence Analyst

7 ¥ ¥

—
¢ ‘—'
J

Database

Source: EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley, 2015
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Data Science vs.

Big Data vs. Data Analytics
Data Science VS Big Data VS Data Analytics

DATA IS GROWING FASTER THAN EVER BEFORE.

Each person-
1.7 megabytes

created ,, |




Data Science vs. Big Data vs. Data Analytics
WHAT ARE THEY?

s a field that comprises of
everything that related to data cleansing,

preparation, and analysis. IS something that can be used to
analyze insights which can lead to better
decision and strategic business moves.,

Involves automating insights into
a certain dataset as well as supposes the usage of
queries and data aggregation procedures.




What are they used?

Data Science algorithms are Big Data is used in Data Analytics is used
used in industries like: industries like: in industries like:

Internet searches Financial Services Healthcare

=

En
Mana .

32



Data Science

What are the Skills Required?

DATA SCIENTIST BIG DATA SPECIALIST DATA ANALYST
In-depth knowledge in Analytical skills Programming skills
SAS and/or R _ ,

Creativity Statistical skills
Python coding
Mathematics and Mathematics
Hadoop platform
tatistical skills Machine learning skills
SQL database/coding _
Computer science Jata wrangling skills
w Working with : 4 :
Business skills Communication and Data

unstructured data |
Visualization skills

Jata Intuition




DATA SCIENTIST ‘
o
BIG DATA SPECIALIST o ‘

$S113,436
per year.

$62,066
per year.

DATA ANALYST ‘

$60,476
per year.
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Financial Technology
FinTech
“providing
financial services
by making use of
software and
modern technology”



Financial Revolution with Fintech

A financial services revolution

Consumer Trends

n : ol
’ / “n' ‘ - '/’J %
! \ . 'l'

[ o

BId &/

1. Simplification 2. Transparency 3. Analytics 4. Reduced Friction




FinTech: Financial Services Innova

Crypto

P2P FX
Currency

Emerging Payment Rails

Mobile Money

N
’ Intgﬁ::ted Mobile AN
/) 9 Payments N
1
Cashless World
Artificial Streamlined
: Intelligence / Payments
I Machine Machine . ’
! Learning Readable News AN !/
Stra
Streamlined Smarter, Faster trz){fe g)/g[fole
Infrastructure Machines ,
1 -
\ Social Sentiment  *~~
\

Big Data
Market Information

warket Provisioning

Platforms
New
Market Platforms
Automated Data [
: Collection & Analysis Algorithms
| Cloud-

Automation of _ _ - N Computing Capability
High-Value ,* - Process Sharing
Activities = o

' Externalisation
\

Automated Advice & Open Source
Management T

Empowered
Investors

Social
Trading

Retail Algorithmic _ _

Sharing  Autonomous

Virtual Exchanges
& Smart Contracts

Crowdfunding

Alternative Due
Diligence

Trading

Customer
Empowerment,”
’

10N

N
N
Economy  Vehicles Se
N
Insurance Disaggregation N
Digital ‘\
Distribution ‘Securitization \
and Hedge |
Funds |
Internet of Advanced \ 1
Things Sensors \
\ Niche.
Connected Insurance | Specialized
Wearable .- , Products
\ - Computers R / '
\ ¢ “ ’
‘\ ’/ \ l'
\ == ! ‘i
. ’\\ ! \ Virtual g
1 "
\ P2P Lending \ Technologies \ 3
\ \ o
) | Mobile ' o,
) Alternative | 3.0 | 73
1 1 Py
! Lending ) Shifting ! Qo
X | Customer | -
| Alternative \ Preferences | 3
| Adjudication | ! 9'
‘ | Third- ~
Reduced - --->C . «Q
Intermediation vl Party
’ 1 API
1
! 1
|

\
\
\
1
1
1
1

|

1

1

1 d !
!
1

’

’
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FinTech:
Investment Management
Market Provisioning



FinTech: Market Provisioning

/ Integrated Mobile .

Artificial
Intelligence /

I
! Machine Machine
|

~ Market Information
Platforms
New
Market Platforms

Automated Data
Collection & Analysis

warket Provisioning

Automation of —
High-Value ,~
Activities

Billing

Learning Readable News

Streamlined Smarter, Faster
Infrastructure Machines

\ Social Sentiment —

Payments
Cashless World

Streamlined
Payments

of Data

Big Data

Advanced
Algorithms

Cloud-

Computing  capability

~ Sharing
‘ Process

Externalisation

~_ N

/

/

~S trategic Role

A
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FinTech: Investment Management

o " _ _ »
U-) \ Social Sentiment -
—_ \ ‘
P . Big Data
o ~ Market Information
—
. Platforms
) New
< Market Platforms
% Automated Data fyhemes
: Collection & Analysis Algorithms It
| Cloud- ‘
Automation of Computing Capaplllty \
High-Value ,~ s T Sharing
Activities ) .
' Externalisation

Open Source

Automated Advice & T

Management
Empowered
Investors

Social
Trading

Retail Algorithmic _ _ § _ _ _.
Trading

.
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FinTech

21

B3 Payments

BlFIRE

HIRESHR (Cashless World)
LT (< (Emerging Payment Rails)

Insurance

\Hf#%2Z< % (Insurance Disaggregation)

W ehtZe B (Connected Insurance)

B i i i i i i i i i i i i i i i e i i i e i i i i o i i i i i i i i S i S i S i i i S i S S S i ™

FE
Deposit & Lending

o
&%E

Capital Raising

REEE

Investment Management

iz EEHE

Market Provisioning

HLEIE (Aternative Lending)
B RIFEE (Shifting Customer Preferences)

ﬁ%%g (Crowdfunding)

iR EE (Empowered Investors)

;ﬁ,¥§9 |‘§B{ L’, (Process Externalisation)

#%%%E‘:ﬁ'i (Smarter, Faster Machines)
*ﬁﬂﬂzé (New Market Platforms)

ERKR : FugleM R
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FinTech: Market Provisioning
Smarter, Faster Machines

A Erra

] Smﬁtafiiter a2 2 FHEUE (Machine Accessible Data) ~ A

g Mach’ines TEZ/ K328 - KEUR

E SFET & BElEWZEmFES ALGOMI s EE / HSE

E New Market HEF A Novus » FAZ / BliZIEA BISON »
Platforms FRABRETEE LIQUITY « [FHR R R E6T

SIS ClauseMatch

E®KE : FugleBRE21E
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FinTech: Investment Management

EER | mazigss |

Empowered
N Tl 15325 (Retail Algorithmic Trading)

e | HERE  MSRERMEEE  TEES

/"' imizJMaEBM(E TniERN AR #3 (Process-as-a-Service, PaaS) »
’ Process 557],\; (Capability Sharing) ~ &1 ~ B

ﬂﬂﬂ

Externalisation

E®KE : FugleEI[R%212
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FinTech for

Financial Services

Retail Banking
_.ending and Financing

Payments and Transfers

Wealth and Asset Management
Markets and Exchanges
Insurance

Blockchain Transactions

47



Fintech Companies

@ Payment

@ Blockchain /
Bitcoin

@® Crowdfunding

@® Lending

@ Digital
Banking

@ Financial Pla...

@ Investment

@ Security

@ Insurance

® Data
Other
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Major Participants in the FinTech
Ecosystem




FinTech Ecosystem Development
Framework

1. Business environment/access to markets 2. Government/regulatory support
e oty sty e
geigtr:grzzig:]ustering :;Elst;n;c:;g - Ease of doing business Taxes & work permits
3. Access to capital 4. Financial expertise
Governmental funding Bank funding - -
PE/NC funding Incubators / accelerators - -

50



The FinTech Innovation Ecosystem

Media

Academia Non-banks/disruptors

“Grassroots”

Industry associations
entrepreneurship

Banks
Federal & local
governments Infrastructure providers
FinTech
Regulators innovation

Established IT &

t
ecosystem software industry

Venture capital

Strategy and

Business angel
technology consultants

investor networks

Innovation labs &
think tanks

Incubators/
accelerators

Collaboration platforms
& communities

Source: http://www.strategyand.pwc.com/media/file/Developing-a-FinTech-ecosystem-in-the-GCC.pdf

51



The U.S. FinTech landscape

Entrepreneurs

- New York is the
fastest-growing FinTech
ecosystem in the U.S.

- Talent feed from world’s
biggest financial center

- New York is a lifestyle choice
for talented young
entrepreneurs

Support structures

- Tax credits for business R&D
and patents

- Incubators & accelerators (e.g.,
Partnership Fund for New York

City)

International banks
Venture capital funds

Financiers

Global and local PE shops
University funds

Entrepreneurs

Crowd funding

Payment platforms

Investment

U.S. received 83 percent of
global FinTech investments in
2013

The financial services industry
globally spent more than
US$485 billion on ICT" in 2014

Customers

Business to business: high
density of financial services
firms seeking support for
digitalization

Business to consumer:
widespread mobile &
e-commerce usage, low bank
client “stickiness”

52



Fintech Startups

QEDE USA Fintech Ecosystem

Crowdfunding

STARTUP

C Crowdera

\Y4 AngelList

Ciccle  CircleUp
Up

Early Shres

Fintech Startups WorldWide
Kickfurther

TEB FINTECH

FUTURE
FOUR

Kickstarter

@ m Indiegogo

ls Local lift

£ Subscribe to our Newsletter

¥ fstartupsco Onevest (Rock The Post)

® fintech@startups.watch
Quirky

2016 © startups.watch

DESCRIPTION

Community of start-ups & investors who
make fundraising efficient

Online marketplace that links accredited
investors with consumer product and retail
companies.

Real estate crowdfunding platform

Crowdfunding platform

Businesses finance inventory. Backers earn
returns.

Crowdfunding platform

Brings crowdfunding to your local area.

Equity crowd-funding platform

Community-led invention platform

LINKS

cb]v] £
cblv] £

ari

ol S1v] £]&)
v] §

o] S ] F[@h2
cbl ¥ ] !

cb] 5w ] £
cb] ] £

+ ADD STARTUP

STATUS

alive

alive

alive

alive

alive

alive

alive

alive

alive

Startups (74) | News (11)

MONEY RAISED

$24.1M

$53M

$56.5M

$10M

$160k

$2M
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Financial Technology (Fintech)
Categories

Banking Infrastructure

Business Lending

Consumer and Commercial Banking
Consumer Lending

Consumer Payments

Crowdfunding

Equity Financing

Financial Research and Data
Financial Transaction Security
Institutional Investing

International Money Transfer
Payments Backend and Infrastructure
Personal Finance

Point of Sale Payments

Retail Investing

Small and Medium Business Tools
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FinTech Ecosystem (April 2015)
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—~ Equity
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1,072 Companies

Contact
info@venturescanner.com
to see all companies

——— Payments
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Paypal Payd:afrp AR
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Financial Technology (FinTech)

THE FINTECH ECOSYSTEM

ROBO-ADVISORS & PERSONAL FINANCE BLOCKCHAIN & BITCOIN INSURTECHS
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Fintech Startups WorldWide
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Fintech Startups WorldWide
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Fintech Startups WorldWide
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Fintech Startups WorldWide

KOREAN FINTECH STARTUP MAP
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Smgapore FinTech Landscape

ECFIDI'HDBILE DRAGON m/ C LE%!E-LLS ..: rlpple —<AFundwave bijt ¢

WEALTH

") CODAPAY Jewel DrWealth w Laciorex S TONOMOS @

Yconomus

v » r o Motiie Sooal Tradng -
G fastacash O gswitchiess™ ™

iFAST O m N
goswiff ¢ FUNDtech &5 <! " Traderwave o 33 WD A @ COInarct
OHOMEPAY ’ YT Tembusu
lines., i
3 YuuPay () online moneyj’mort Q WEINVEST f [JCOINHAKO pg

MONEYTHOR

© ¢ G Top.dmo y
APEXPEAK @ ’

IXOTISIGMA smortposo s ‘ .
)Xfers \ZC ) Bk VERMILION , Q‘”(EY DeBuNe sGr X
—J

CapitalMatch
Twwala :: BILLPAY ﬂ jl Aum:us
el 1 frakinvest arhve

mark|t Iﬂdrt 1a

— —_." Inf¥Trie

COMoolahSense

kashml e Aone 5.5 - ERN'




Fintech Startups WorldWide

Blockchain, Bitcoin & Trading & Brokerage
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FinTech Trends

capitaiOne  Mashable

INCIAL TECHNOLOG

PREDICTIONS & TRENDS

More than 50% of respondents predict that by 2030, most payments will
be cashless and non-paper based.

Respondents cited big data analytics and alternative payment forms as the
two innovations that are likely to have the greatest impact on the financial
services space in the next 3-5 years.




FinTech
Big Data Analytics

WHICH INNOVATION WILL HAVE THE GREATEST IMPACT ON THE FINANCIAL
SERVICES SPACE IN THE NEXT 3-5 YEARS?

27% Big data analytics

26% Alternative forms of payments/lending

17%
9%




Blockchain Technology

The blockchain is a
decentralized ledger
of all transactions
across
a peer-to-peer network.



Blockchain Technology

How it works: z
v
o @ Vo @ @

2 requ "‘;

transaction is Validation V
broadcast to a P2P

Someone requests network consisting g The network of nodes

a transaction. of computers, validates the transaction
known as nodes. and the user's status

using known algorithms.

The new block is then added to the
The transaction existing blockchain, i1 2 way that is
Is complete permanent and unalterable.

i
i
0
il
t
i
o

A verified transaction
can invoive

cryptocurrency, e
contracts. records.

or other information.

combined with
other transactions
to create a new o
block of data for
the ledger.
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Blockchain Technology

 senris B trinowns &

Increased _:}__ Complex

@ transparency & technology
Accurate | $ | Regulatory
tracking implications

O Permanent ‘ Implementation
ledger challenges
Cost ¢, Competing

lads reduction LY platforms
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Blockchain Technology
Potential Applications

Automotive

Consumers could use the
blockchain to manage
fractional ownership in
autonomous cars.

o

Financial services

Faster, cheaper settlements
could shave billions of dollars
from transaction costs while
Improving transparency.
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Blockchain Technology
Potential Applications

Voting

UsINg a blockchain code,
constituents could cast
votes via smartphone,
tablet or computer,
resulting in immediately
verifiable results.

é

Healthcare

Patients' encrypted
health information could
PEe Shnarlt (1 wWIith mit J|‘ Die

providers without the risk
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Financial
Sentiment
Analysis




Big Data Approach to Combining

INTERNAL DATA SOURCES

CRM
Loans
Insurance
Datawarehouse
AML/BO
Bad reputation
Referential

EXTERNAL SOURCES

InfoGreffe
Bq de France
Factiva
Linkedin
Reuters
LexisNexis
WorldCheck
Dun & Bradstreet
http://eur-lex.europa.eu*
Dark Web search*

Key

/ indicators

Rules

execution

Internal and External Data

Big Data engine:
* Storage,
+ Text mining
* Machine learning

Key indicators

Audit

Internal and regulatory
processes

Rules engine

/N

Source: Susanne Chishti and Janos Barberis,
The FINTECH Book: The Financial Technology Handbook for Investors, Entrepreneurs and Visionaries, Wiley, 2016 79



Ultra-Fast Text Analytics in
Trading Strategies
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TWITTER INC,
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Internet Evolution

Internet of People (lIoP): Social Media
Internet of Things (loT): Machine to Machine

N Internet of Internet of Internet of Internet of
“Human to human” é “Www” ¢ “Web 2.0" é “Social media” é “Machine to machine”

« Fixed and mobile « e-mail « e-productivity « Skype « |dentification, tracking,
telephony  Information - e-commerce « Facebook monitoring, metering, ...
« SMS « Entertainment . « YouTube « Automation, actuation,
. . payment, ...
+smart +smart +smart +smart +smart
networks IT platforms phones and devices, Data and
and services applications objects, data ambient context

Source: Marc Jadoul (2015), The loT: The next step in internet evolution, March 11, 2015
http://www?2.alcatel-lucent.com/techzine/iot-internet-of-things-next-step-evolution/ 81




Social Media
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Emotions

o j 0 )

Anger

Source: Bing Liu (2011) , “Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,” Springer, 2nd Edition, 83




o0 Example of Opinion: X
review segment on iPhone ‘

“I bought an iPhone a few days ago.
It was such a nice phone.

The touch screen was really cool.
The voice quality was clear too.

However, my mother was mad with me as | did not tell
her before | bought it.

She also thought the phone was too expensive, and
wanted me to return it to the shop. ...”
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Example of Opinion:
review segment on iPhone

“(1) | bought an iPhone a few days ago.

(2) It was such a nice phone.

® 0 +Positive
(3) The touch screen was really cool. /) Opinior

(4) The voice quality was clear too.

(5) However, my mother was mad with me as | did not
tell her before | bought it.

(6) She also thought the phone was too expensive, and

wanted me to return it to the shop. ... B ncoative
P Opinion

Source: Bing Liu (2011) , “Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,” Springer, 2nd Edition, 85



How consumers
think, feel, and act



Emotions

o j 0 )

Anger

Source: Bing Liu (2011) , “Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,” Springer, 2nd Edition, 87




Maslow’s Hierarchy of Needs

Source: Philip Kotler & Kevin Lane Keller, Marketing Management, 14th ed., Pearson, 2012
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Maslow’s hierarchy of human needs
(Maslow, 1943)

Self-
actualization

Esteem \

Lo \

Saiey \
/ Survival \

Source: Backer & Saren (2009), Marketing Theory: A Student Text, 2" Edition, Sage
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Maslow’s Hierarchy of Needs

Self-fulfillment
needs

Psychological
needs

Belongingness and love needs:
intimate relationships, friends

Source: http://sixstoriesup.com/social-psyche-what-makes-us-go-social/
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Social Media Hierarchy of Needs

Hierarchy of Needs

Social Media
Self Optimization &
CO Actualization Monetization
Personal
- “mg
Love &
Belonging

Safety &
Security

Y
&
&
o
Physiological

Social Media Hierarchy of Needs - by John Antonios

Maslow’s

Community
Building

-*'“““"
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Social Media Hierarchy of Needs

Self actualization /@)N"O’MW & sense-making

Esteem / U \spod ool et

: s/
Safety / ﬁ
PhysiologicV
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The Social Feedback Cycle
Consumer Behavior on Social Media

Marketer-Generated User-Generated

. - Form
Awareness |Consideration Opinion

/

)

Source: Evans et al. (2010), Social Media Marketing: The Next Generation of Business Engagement
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The New Customer Influence Path

Awareness

4 (11 Tube)

- o A
LINE
Consideration a ~

S\
oy ’/

~~——_'

Source: Evans et al. (2010), Social Media Marketing: The Next Generation of Business Engagement
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Architectures
of
Sentiment
Analytics




Bing Liu (2015),
Sentiment Analysis:
Mining Opinions, Sentiments, and Emotions,
Cambridge University Press

SENTIMENT
ANALYSIS

Mining Opamons Sentlments and Emotions

BING LIU

http://www.amazon.com/Sentiment-Analysis-Opinions-Sentiments-Emotions/dp/1107017890
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Sentiment Analysis and
Opinion Mining
 Computational study of

opinions,

sentiments,

subjectivity,

evaluations,

attitudes,

appraisal,

affects,

views,

emotions,

ets., expressed in text.

— Reviews, blogs, discussions, news, comments, feedback, or any other
documents

Source: Bing Liu (2011) , “Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,” Springer, 2nd Edition, 97



Research Area of Opinion Mining

* Many names and tasks with difference
objective and models
— Sentiment analysis
— Opinion mining
— Sentiment mining
— Subjectivity analysis
— Affect analysis
— Emotion detection

— Opinion spam detection

Source: Bing Liu (2011) , “Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,” Springer, 2nd Edition, 98



Sentiment Analysis

e Sentiment

— A thought, view, or attitude, especially one based
mainly on emotion instead of reason

e Sentiment Analysis
— opinion mining
— use of natural language processing (NLP) and
computational techniques to automate the
extraction or classification of sentiment from
typically unstructured text
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Applications of Sentiment Analysis

 Consumer information
— Product reviews
 Marketing
— Consumer attitudes
— Trends
* Politics
— Politicians want to know voters’ views

— Voters want to know policitians’ stances and who
else supports them

 Social

— Find like-minded individuals or communities
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Sentiment detection

 How to interpret features for sentiment
detection?

— Bag of words (IR)
— Annotated lexicons (WordNet, SentiWordNet)
— Syntactic patterns
* Which features to use?
— Words (unigrams)
— Phrases/n-grams
— Sentences
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Problem statement of
Opinion Mining
 Two aspects of abstraction
— Opinion definition
* What is an opinion?
 What is the structured definition of opinion?
— Opinion summarization

e Opinion are subjective

—An opinion from a single person (unless a VIP)
is often not sufficient for action

* We need opinions from many people,
and thus opinion summarization.
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What is an opinion?

e |d: Abcl23 on 5-1-2008 “/ bought an iPhone a few days ago. It is
such a nice phone. The touch screen is really cool. The voice
quality is clear too. It is much better than my old Blackberry,
which was a terrible phone and so difficult to type with its tiny
keys. However, my mother was mad with me as | did not tell her
before | bought the phone. She also thought the phone was too

expensive, ...”

* One can look at this review/blog at the
— Document level
* Is this review + or -?
— Sentence level
* |s each sentence + or -?
— Entity and feature/aspect level
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Entity and aspect/feature level

Id: Abc123 on 5-1-2008 “/ bought an iPhone a few days ago. It is
such a nice phone. The touch screen is really cool. The voice
quality is clear too. It is much better than my old Blackberry,
which was a terrible phone and so difficult to type with its tiny
keys. However, my mother was mad with me as | did not tell her
before | bought the phone. She also thought the phone was too

expensive, ...”

What do we see?
— Opinion targets: entities and their features/aspects
— Sentiments: positive and negative
— Opinion holders: persons who hold the opinions

— Time: when opinion are expressed
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Two main types of opinions

* Regular opinions: Sentiment/Opinion expressions on some

target entities
— Direct opinions: sentiment expressions on one object:
* “The touch screen is really cool”
* “The picture quality of this camera is great”

— Indirect opinions: comparisons, relations expressing
similarities or differences (objective or subjective) of more
than one object

* “phone X is cheaper than phone Y.” (objective)
* “phone X is better than phone Y.” (subjective)
* Comparative opinions: comparisons of more than one entity.
— “IPhone is better than Blackberry.”
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Subjective and Objective

* Objective

— An objective sentence expresses some factual information
about the world.

— “l returned the phone yesterday.”
— Objective sentences can implicitly indicate opinions
* “The earphone broke in two days.”
e Subjective

— A subjective sentence expresses some personal feelings or
beliefs.

— “The voice on my phone was not so clear”
— Not every subjective sentence contains an opinion
* “I wanted a phone with good voice quality”
e =>» Subjective analysis
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Sentiment Analysis
VS.
Subjectivity Analysis

Sentiment Subjectivity
Analysis Analysis
Positive
Subjective
Negative

Neutral Objective
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A (regular) opinion

e Opinion (a restricted definition)

— An opinion (regular opinion) is simply a positive or
negative sentiment, view, attitude, emotion, or
appraisal about an entity or an aspect of the entity
from an opinion holder.

e Sentiment orientation of an opinion

— Positive, negative, or neutral (no opinion)
— Also called:

* Opinion orientation
e Semantic orientation

* Sentiment polarity
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Entity and aspect

* Definition of Entity:

— An entity e is a product, person, event,
organization, or topic.

— e is represented as
* A hierarchy of components, sub-components.

* Each node represents a components and is associated
with a set of attributes of the components

* An opinion can be expressed on any node or
attribute of the node

* Aspects(features)
— represent both components and attribute
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Opinion Definition
* An opinion is a quintuple
(e, Ay, SO, hy t)
where
— e; Is a target entity.
— a; is an aspect/feature of the entity e; .

— S0, is the sentiment value of the opinion from the
opinion holder on feature of entity at time.
50y Is +ve, -ve, or neu, or more granular ratings

— h;is an opinion holder.

— t,is the time when the opinion is expressed.

* (e, a;) is also called opinion target
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Terminologies

* Entity: object

* Aspect: feature, attribute, facet
* Opinion holder: opinion source
* Topic: entity, aspect

* Product features, political issues

Source: Bing Liu (2011) , “Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,” Springer, 2nd Edition, 111



Subjectivity and Emotion

* Sentence subjectivity

— An objective sentence presents some factual
information, while a subjective sentence
expresses some personal feelings, views,
emotions, or beliefs.

* Emotion

—Emotions are people’s subjective feelings
and thoughts.
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Classification Based on
Supervised Learning

e Sentiment classification
— Supervised learning Problem

— Three classes
* Positive
* Negative
* Neutral

Source: Bing Liu (2011) , “Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data,” Springer, 2nd Edition, 113



Opinion words in
Sentiment classification

* topic-based classification
— topic-related words are important
* e.g., politics, sciences, sports
* Sentiment classification
— topic-related words are unimportant

— opinion words (also called sentiment words)

 that indicate positive or negative opinions are
important,
e.g., great, excellent, amazing, horrible, bad, worst
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Features in Opinion Mining

Terms and their frequency
— TF-IDF

Part of speech (POS)
— Adjectives

Opinion words and phrases

— beautiful, wonderful, good, and amazing are positive opinion
words

— bad, poor, and terrible are negative opinion words.

— opinion phrases and idioms,
e.g., cost someone an arm and a leg

Rules of opinions
Negations
Syntactic dependency
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Sentiment Analysis Architecture

Positive Negative )
tweets tweets

[ Classifier ]4 -<—-

Vishal Kharde and Sheetal Sonawane (2016), "Sentiment Analysis of Twitter Data: A Survey of Techniques,"
International Journal of Computer Applications, Vol 139, No. 11, 2016. pp.5-15 116




Sentiment Classification Based on Emoticons

[ Tweeter ]

[ Tweeter Streaming APl 1.1 ]

—

Based on Positive Emotions

Tweet preprocessing \

Based on Negative Emotions

W

Generate Training Dataset for Tweet

«— |

Positive tweets

—

Training Dataset

.

N

Negative tweets]

\ 4

>[ Classifier }7 Feature Extraction
I

\ 4 4

Positive

Negative @~
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Lexicon-Based Model

|

Preassembled ]
Word Lists J

|

(

\_

Merged
Lexicon

\

J

|

Generic
Word Lists

|

]
)

Vs

Tokenized
Document
Collection

'

[

\

Sentiment Scoring
and Classification:

Polarity
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Sentiment Analysis Tasks

Opinionated
Document

Subjectivity
LCIassificationJ

,  extraction

Opmlon holder |
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Sentiment Analysis
VS.
Subjectivity Analysis

Sentiment Subjectivity
Analysis Analysis
Positive
Subjective
Negative

Neutral Objective
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Levels of Sentiment Analysis

Sentiment Analysis

Word Sentence g Document Feature
level level level level
SRS BRER N R BRE =l
Analysis Analysis Analysis Analysis

Vishal Kharde and Sheetal Sonawane (2016), "Sentiment Analysis of Twitter Data: A Survey of Techniques,"
International Journal of Computer Applications, Vol 139, No. 11, 2016. pp.5-15 121



Sentiment
Analysis

_—_—_—q

h-—|_

\__________________

gl HII EII BN S I I S - -

Sentiment Analysis

Subjectivity
Classification

Sentiment
Classification

Review
Usefulness
L Measurement )

Opinion Spam
Detection

. J

( )

Lexicon
Creation

Aspect
Extraction

—— o —

Polarity
Determination

p
Vagueness

resolution in

opinionated

. text

rMuIti- & Cross-w
Lingual SC

. J

Cross-domain

Y
|

SC

Approaches

—_—

Ontology based

Non-Ontology
based

122



Sentiment Classification Techniques

. Decision Tree

Sentiment
Analysis

>

4 )
Machine

Learning

Approach
\_ J
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Lexicon-
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A Brief Summary of Sentiment Analysis Methods

Study Analysis Sentiment Identification Sentiment Aggregation Nature of
Task Method Level Method Level Measure

Hu and L1, 2011 Polanty | ML (Probabilistic model) Snippet Valence
Liand Wu, 2010 Polanity | Lexicon/Rule Phrase Sum Snippet | Valence
Thelwall etal . 2010 Polanty | Lexicon/Rule Sentence | Max & Min Snippet | Range

Bo1y and Moens, 2009 Both ML (Cascade ensemble) Sentence Valence
Chung 2009 Polanity | Lexicon Phrase Average Sentence | Valence
Wilson, Wiebe, and Hoffmann, 2009 | Both ML (SVM. AdaBoost. Rule_ etc.) | Phrase Valence
Zhang et al.. 2009 Polanity | Lexicon/Rule Sentence | Weighted average | Snippet | Valence
Abbasi, Chen. and Salem. 2008 Polanity | ML (GA + feature selection) Snippet Valence
Subrahmanian and Reforgiato. 2008 | Polanity | Lexicon/Rule Phrase Rule Snippet | Valence
Tan and Zhang 2008 Polanity | ML (SVM, Winnow. NB, etc.) Snippet Valence
Auiroldi, Bai. and Padman. 2007 Polanity | ML (Markov Blanket) Snippet Valence
Das and Chen, 2007 Polanity | ML (Bayesian. Discriminate, etc.) | Snippet | Average Daily Valence
L etal.. 2007 Polanity | ML (PLSA) Snippet Valence
Kennedy and Inkpen. 2006 Polanty | Lexicon/Rule, ML (SVM) Phrase Count Snippet | Valence
Mishne 2006 Polanity | Lexicon Phrase Average Snippet | Valence
Liuetal.. 2005 Polanty | Lexicon/Rule Phrase Distribution Object Range

Mishne 2005 Polanity | ML (SVM) Snippet Valence
Popescu and Etzioni1 2005 Polanty | Lexicon/Rule Phrase Valence
Efron 2004 Polanty | ML (SVN. NB) Snippet Valence
Wilson, Wiebe. and Hwa. 2004 Both ML (SVM. AdaBoost, Rule, etc.) | Sentence Valence
Nigam and Hurst 2004 Polanity | Lexicon/Rule Chunk Rule Sentence | Valence
Dave. Lawrence, and Pennock. 2003 | Polanty | ML (SVM. Rainbow. etc.) Snippet Valence
Nasukawa and Y1 2003 Polanty | Lexicon/Rule Phrase Rule Sentence | Valence
Yietal. 2003 Polanty | Lexicon/Rule Phrase Rule Sentence | Valence
Yu and Hatzivassiloglou 2003 Both ML (NB) + Lexicon/Rule Phrase Average Sentence | Valence
Pang. Lee. and Vaithyanathan 2002 | Polannty | ML (SVM. MaxEnt. NB) Snippet Valence
Subasic and Huettner 2001 Polanty | Lexicon/Fuzzy logic Phrase Average Snippet | Valence
Turney 2001 Polanity | Lexicon/Rule Phrase Average Snippet | Valence

(Both = Subjectivity and Polanty; ML= Machine Learning; Lexicon/Rule= Lexicon enhanced by linguistic rules)
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Word-of-Mouth (WOM)

* “This book is the best written documentary
thus far, yet sadly, there is no soft cover
edition.”

* “This book is the best written documentary
thus far, yet sadly, there is no soft cover
edition.”
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This
book
IS

the
best
written
documentary
thus
far

yet
sadly

there
is

no
soft
cover
edition

Word POS
This DT
book NN
is VBZ
the DT
best JJS
written VBN
documentary NN
thus RB
far RB
yet RB
sadly RB
there EX
is VBZ
no DT
soft JJ
cover NN
edition NN

126



Conversion of text representation

Word Vector Polarity Score Vector Microstate Sequence
(Wv) pscore nscore (PSV) (MS)
This 0 0 Neutral (0) 0
book 0 0 Neutral (0) 0
is 0 0 Neutral (0) 0 Probability
the 0 0 Neutral (0) 0 Distribution
best 0.75 0 Positive (0.75) 1 (P)
written 0 0 Neutral (0) 0
documentary 0 0 Neutral (0) 0
thus 0.375 0 Positive (0.375) 1 P(“1”)=3/17
far SentiWordNet 0.375 0 Positive (0.375) | Microstate 1 Probability

Mapping P(“-1")=3/17

’ Lookup Mapping
yet 0 0.125 | Negative (0.125)
sadly 0.25 . Negative (0.25)

-1 P(“0")=11/17
0.5 -1
there 0 0 Neutral (0) 0
is 0 0 Neutral (0) 0
no 0 0.75 Negative (0.75) -1
soft 0 0 Neutral (0) 0
cover 0 0 Neutral (0) 0
edition 0 0 Neutral (0) 0

Source: Zhang, Z., Li, X., and Chen, Y. (2012), "Deciphering word-of-mouth in social media: Text-based metrics of consumer reviews,"
ACM Trans. Manage. Inf. Syst. (3:1) 2012, pp 1-23., 127



Example of SentiWordNet

POS ID PosScore NegScore SynsetTerms Gloss

00217728 0.75 0 beautiful#l delighting the senses or
exciting intellectual or emotional admiration; "a beautiful child";
"beautiful country"”; "a beautiful painting"; "a beautiful theory";
beautiful party”

00227507 0.75 0 best#1 (superlative of ‘good') having the
most positive qualities; "the best film of the year"; "the best solution”;
"the best time for planting”; "wore his best suit”

00042614 0 0.625  unhappily#2 sadly#1 in an
unfortunate way; "sadly he died before he could see his grandchild”
00093270 0 0.875  woefully#1 sadly#3 lamentably#1

deplorably#1 in an unfortunate or deplorable manner; "he was sadly
neglected"; "it was woefully inadequate”

00404501 0 0.25 sadly#2 with sadness; in a sad manner;
""She died last night,' he said sadly"
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ke

SenticNet E

The car is very old but it is rather not expensive.

The car is very old but it is rather not expensive.

The car is very old but it Is rather not expensive.
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Polarity Detection with SenticNet

o 0

car 1is

very

root
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|

expensive

The car is very old but it is rather not expensive.
The car is very old but it Is rather not expensive.
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Polarity Detection with SenticNet

expensnve . }
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Polarity Detection with SenticNet
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Polarity Detection with SenticNet
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Evaluation of
Text Mining and Sentiment Analysis

* Evaluation of Information Retrieval

* Evaluation of Classification Model (Prediction)
— Accuracy
— Precision

— Recall

— F-score
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Deep Learning
for
Sentiment
Analytics



Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank

Recursive Deep Models for Semantic Compositionality
Over a Sentiment Treebank

Richard Socher, Alex Perelygin, Jean Y. Wu, Jason Chuang,
Christopher D. Manning, Andrew Y. Ng and Christopher Potts
Stanford University, Stanford, CA 94305, USA
richard@socher.org, {aperelyg, jcchuang, ang}@cs.stanford.edu
{jeaneis,manning,cgpotts}@stanford.edu

Abstract

Semantic word spaces have been very use-
ful but cannot express the meaning of longer
phrases in a principled way. Further progress
towards understanding compositionality in
tasks such as sentiment detection requires
richer supervised training and evaluation re-
sources and more powerful models of com-
position. To remedy this, we introduce a
Sentiment Treebank. It includes fine grained
sentiment labels for 215,154 phrases in the
parse trees of 11,855 sentences and presents
new challenges for sentiment composition-

cleverness ° other kind intelligent humor

Figure 1: Example of the Recursive Neural Tensor Net-
work accurately predicting 5 sentiment classes, very neg-

ality. To address them, we introduce the ative to very posmve.(— -0+, * +), at every node of'a
Recursive Neural Tensor Network. When parse tree and capturing the negation and its scope in this
) sentence.

trained on the new treebank, this model out-
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Recursive Neural Tensor Network (RNTN)

@
(©) @
(© O <) (©
This film :
) (0)
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does n’t care 0 ©
about © ©
& O @ ©
§ ©0°F & ofi§©
o ) wit any o © of © o

cleverness other kind intelligent humor
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Recursive Neural Network (RNN)
models for sentiment

Gco P2 = g(a,pi1)

not very good...
a b C



Recursive Neural Tensor Network

Neural Tensor Layer
Slices of Standard
Tensor Layer Layer
[ (= — — — — — \ h
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Roger Dodger is one of the most
compelling variations on this
theme.

Roger Dodger is one of the least
compelling variations on this
theme.



RNTN for Sentiment Analysis

+ +

O - O .
Roger Dodger & O
O (& '
1S (0) (¥
one O ©
of © O
O & oo

the © ) On
variations OO
(o) S this theme

most compelling
Roger Dodger is one of the most compelling variations on this theme.
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RNTN for Sentiment Analysis
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Roger Dodger is one of the least compelling variations on this theme.
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Accuracy for fine grained (5-class)
and binary predictions
at the sentence level (root) and for all nodes

Model Fine-grained Positive/Negative
All Root All Root
NB 67.2 41.0 82.6 81.8
SVM 64.3 40.7 84.6 79.4
BiNB 71.0 41.9 82.7 83.1
VecAvg 73.3 32.7 85.1 80.1
RNN 79.0 43.2 86.1 82.4
MV-RNN 18.7 444 86.8 82.9
RNTN 80.7 45.7 87.6 85.4
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Accuracy of negation detection

Model Accuracy
Negated Positive  Negated Negative
biNB 19.0 27.3
RNN 33.3 45.5
MV-RNN 52.4 54.6

RNTN 71.4 31.8
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Long Short-Term Memory (LSTM)

N/ Nty
Input Gate @
N\
Ti— [ » hy
2
that movie was reat <\s>
\ f f '} L

LSTM |[+| LSTM |-| LSTM |»| LSTM |-=| LSTM
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Deep Learning

for Sentiment Analysis

CNN RNTN LSTM

Model

Fine (5-class) Binary

DCNN (Blunsom, et al. 2014) 0.485 0.868
RNTN (Socher, et al. 2013) 0.457 0.854
CNN-non-static (Kim, 2014) 0.480 0.872
CNN-multi-channel (Kim, 2014) 0.474 0.881
DRNN w. pretrained word-embeddings (Irsoy and Cardie, 2014) 0.498 0.866
Paragraph Vector (Le and Mikolov. 2014) 0.487 0.878
Dependency Tree-LSTM (Tai, et al, 2015) 0.484 0.857
Constituency Tree-LSTM (Tai, et al, 2015) 0.439 0.820
Constituency Tree-LSTM (Glove vectors) (Tai, et al, 2015) 0.510 0.880
Paragraph Vector 0.391 0.798
LSTM 0.456 0.843
Deep Recursive-NN 0.469 0.847
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Performance Comparison of
Sentiment Analysis Methods

Method Data Set | Acc. Author
Machine | SVM Movie 86.40% | Pang.
Leaming reviews Lee[23]
CoTraining | Twitter | 82.52% | Liu[14]
SVM
Stanford
Deep Sentimen | 80.70% | Richard[18]
learning t
Treebank
Lexical Product Turkey
based Corpus feViews 74.00%
Amazon™ | --- Taboada[20]
Dictionary | s
Mechani
cal Turk
Ensemble Amazon | 81.00% | Wan.X[16]
Cross-
ngual e | Amazon, | 81.30% | Wan. X [16]
ITI68
IMDb >90% Abbast.A.
EWGA movie
review
CLMM MPQAN | 83.02% | Mengi
TCIR.ISI
Active Book, 80% L1 S
Cross- Leaming DVD. (avg)
domain Electroni Bollegala[22
Thesaurus s, ]
SFA Kitchen Pan S J[15]
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Resources of
Opinion Mining



Datasets of Opinion Mining

Blog06
— 25GB TREC test collection

— http://ir.dcs.gla.ac.uk/test collections/access to data.html

Cornell movie-review datasets

— http://www.cs.cornell.edu/people/pabo/movie-review-data/

Customer review datasets
— http://www.cs.uic.edu/~liub/FBS/CustomerReviewData.zip

Multiple-aspect restaurant reviews
— http://people.csail.mit.edu/bsnyder/naacl07

NTCIR multilingual corpus
— NTCIR Multilingual Opinion-Analysis Task (MOAT)
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Lexical Resources of Opinion Mining

* SentiWordnet
— http://sentiwordnet.isti.cnr.it/

* General Inquirer

— http://www.wjh.harvard.edu/~inquirer/

* OpinionFinder’s Subjectivity Lexicon
— http://www.cs.pitt.edu/mpga/
 NTU Sentiment Dictionary (NTUSD)
— http://nlgl8.csie.ntu.edu.tw:8080/opinion/
* Hownet Sentiment
http://www.keenage.com/html/c_bulletin_2007.htm
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Example of SentiWordNet

POS ID PosScore NegScore SynsetTerms Gloss

00217728 0.75 0 beautiful#l delighting the senses or
exciting intellectual or emotional admiration; "a beautiful child";
"beautiful country"”; "a beautiful painting"; "a beautiful theory";
beautiful party”

00227507 0.75 0 best#1 (superlative of ‘good') having the
most positive qualities; "the best film of the year"; "the best solution”;
"the best time for planting”; "wore his best suit”

00042614 0 0.625  unhappily#2 sadly#1 in an
unfortunate way; "sadly he died before he could see his grandchild”
00093270 0 0.875  woefully#1 sadly#3 lamentably#1

deplorably#1 in an unfortunate or deplorable manner; "he was sadly
neglected"; "it was woefully inadequate”

00404501 0 0.25 sadly#2 with sadness; in a sad manner;
""She died last night,' he said sadly"
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Financial Sentiment Analysis
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Motivation

* |nvestors have always been interested in
stock price forecasting.

* The rapid development of electronic media,
the big data of financial news are released on
different media every day.
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Research Gap

* Few research involved the discussion on
whether using different media could affect
forecasting results.

* Financial sentiment analysis is an important
research area of financial technology

(FinTech).
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Highlights

* This research focuses on investigating the
influence of using different financial resources
to investment and how to improve the
accuracy of forecasting through deep learning.

* The experimental result shows various
financial resources have significantly different
effects to investors and their investments,
while the accuracy of news categorization
could be improved through deep learning.
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The relationship between Events, News
and Markets (price) through Information.

4 N 4 N 4 N
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Event > News > :
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Financial Sentiment Analysis
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System Architecture



Text Processing Module Tick Data Processing Module
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Finance News Data

NowNews AppleDaily

D Mrews e o all 1|
o a e g— Y
BE. mE. WM. T3. UR. ND. WM. WA. ®. Be. 2xm. B [EETTIIN  GETTITN RO T
AOX4sHROENNS
et -
= L HRAn U EAnd
EMBARA SR mvsoaoed X0 OO
CTPALATL - SR LFuN L2 2 )
Daes) - A B REN] BExSx
M) SAORAIRLE BARLN OR . 2008 PLAAAMERI IR WEA -

AREEDS - RAKERAYS T
RO #2050 MRLRICH TRisRers ALEe (2l ¥

=N

somamasaee N
L L

ABH - AvRSaATREDe LR L
LU L 2ol el

MREDARN T -man
= LT LY .

A @

BTACHANREAREN @A  BRYEERANNSOOIAN  ARN0E - ANTR
TEZEA - sAancexameine

HEASASEan sy
ANKALS  SeRSSES W) e

2 ° MARN TANEL TIMES  peal )l MRES  AS

ey RN DONRR. G fe 3CME vess AT M)

W) RO N LT SRR AL (3008) - 4718 y 4
e L % SHHS 0
FRAMETE - AXSTHRN  ATRRANE YRS AN L4 Racm s P44
toamm i -
LR _FAAEANAN LEYRERS CRIAN S

EWRE 060800 0530 KT HEA WS

| wev sHmaewy

WEEL e | EEEn ASSAARA IR (00 ERUEATA] APBRAR HES | EARLD A eLEIIRE

VRSB A M LURLESIRTHE FMRLNED  KIHSTEADT SRR W - QLT NEN

1 We) ™M AMYRH 0 LS BN
BANGA BHTRY  BREATAYL - AT RERARSLUTY - S LA - HEARS et e
. IR LA UM I w SRCONER YINEIs *OUs
) L L LT zRem
ST MMM | BB ImA LMY MUIOCENS =i.. AZATANSRRRG WS - TEDE - AZSATE S IRATE ARG LR - 59

~ LTSRN B

FRATEONE LR TR - PARRSINEEL - KT - YNaZRELenS Ot - Kol
azes 1R SRS T 2P0 AR - SRS TEL - ST A LR
LR e LR

171



Feature used for financial sentiment

analysis

NewsCharacters
VP NewsTokens
VEN NTUSD_Positive
VIZI NTUSD_Negative

m NTUSD_PNDiff

m HowNet_Positive
HowNet_Negative

m HowNet_ PNDiff

FinanceSD_PNDiff

Total word number of news text

Number of news words

NTUSD positive word

NTUSD negative word

NTUSD difference of positive and negative
word

HowNet positive sentiment word

HowNet negative sentiment word

HowNet difference of positive and negative
word

NTUFSD+iMFinanceSD positive word
NTUFSD+iMFinanceSD negative word
NTUFSD+iMFinanceSD difference of positive
and negative word
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Example of feature used for
Financial Sentiment Analysis

D0O0001, 516, 185, 3, 8, -5, 0, 1, -1, 14, 8, 6, 3008, 2013-01-04
D00002, 534, 185, 4, 2,2,0,0,0, 13, 2, 11, 3008, 2013-01-07
D0O0003, 846, 296, 6,9, -3, 0, 1, -1, 25, 15, 10, 3008, 2013-01-09
D00004, 1495, 489, 55, 19, 36, 3,0, 3, 23, 16, 7, 3008, 2013-01-10
D0O0005, 872, 282, 3,5,-2,0,0,0, 12,17, -5, 3008, 2013-01-14
D0000s6, 573, 183, 2,5,-3,0,0,0, 8, 9, -1, 3008, 2013-01-21
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Deep Learning and Neural Network



Deep Learning and
Neural Networks

Input Layer Hidden Layer Output Layer
(X) (H) (Y)

X1

X2
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Deep Learning and

Neural Networks

Input Layer Hidden Layer Output Layer
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Deep Learning and
Neural Networks

Input Layer Hidden Layers Output Layer
(X) (H) (Y)
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Deep Learning
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Deep Neural Networks

Input Layer Hidden Layer t -+ -----#Hidden Layer N Output Layer




Construction flow chart of deep learning prediction

—_— e ——

Training mod e I

D0O001.245, -...3,8,5

D0001.,24532,._...3.8.5

D0001.24532,....3.8.5

D0001.24532.....3.8.5

D0001.24532...._.3.8.5

32,5
D0002,245.32,.....3.8,5

D0002,24532,.....3.8.5

D0002.245,32,..._3.8.5

D0002.,245.32,.....3.8.5

D0002.245,32...._.3.8.5

Dnnnn,245,32,.....3,8,5

Dnnnn,245.32,.....3.8,5

Dnnnn,245,32,.....3.8,5

Dnnnn 245,32......

38,5

Dnnnn,245,32,.....3,8,5

Y

SYIOMIN [RmaN doaa

1042’ ppy

Rising

Falling

Save Model

Drop Model

L ——

179



Comparison of editorial team and
contents of news providers

Electronic media  Comprehensive Owned

Electronic

. Comprehensive Owned
media/newspaper

AppleDaily

LTN I?Iectronlc Comprehensive Owned
media/newspaper

MoneyDJ Electronic media Finance Owned
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Developing
Finance Sentiment Dictionary

NTUSD
HowNet-VSA
NTUFSD
IMFinanceSD
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Sample iMFinanceSD opinion words

(be no slouch)

Word No

THTRRE ]
(break through)

=k ,

(stabilize)

BE 5

(inject)

E 5 57 ,
(Historical high)

ESCES c

Word
=
(shock)
B9
(less then)
JBG%
(slowdown)
AR
(slowly)
RIMEAR AL
(Stabbed sharply)
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Experimental Results and
Discussion

183



Total news of each news provider
for Financial Sentiment Analysis
(Text Data)
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ROI of 5 days trading with
Deep Learning predicting stock price trend
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ROI of 20 days trading with
Deep Learning predicting stock price trend
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ROI of 60 days trading with
Deep Learning predicting stock price trend
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Lexicon-based Trading
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ROI Heatmap of Lexicon-base Trading
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ROI Heatmap of Trading with
Deep Learning Approach
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Comparison of ROl Heatmap
from Various Finance News Media
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Conclusions



Findings

* We proposed analytical methods with deep
learning in financial news sources on the stock
price trend forecasts.

* The results showed that the source of
financial news media for the exclusive domain
of Finance and Economics, revealed its
investment information representing a
reference value.
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Contributions

e The different news media release financial
news different from its reference value level

messages containing investment, as investors
choose finance message referenced sources.

* The prediction accuracy will be improved via a
prediction model of the deep learning.
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Managerial Implications

e Different news media with their own
characteristics and specializations.
* The values of the financial information may be
different due to the following reasons:
— Company’s business principles.
— Edition team’s specializations and their knowledge

of industry.
— Journalist’s habits and preferences in wording.

— Sensitivity of financial market trends of the Media.
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Summary

* Big Data Analytics
* FinTech
* Financial Sentiment Analysis
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