
Cubic Spline

Given data points (x0, y0), · · · , (xn, yn), define a corresponding interpolating function S(x) satisfying the

following conditions:
• Sj(x) := S(x)|[xj,xj+1] ∈ Π3 ∀j = 0, . . . , n − 1;
• S(x), S ′(x), S ′′(x) are all continuous;

Let hj := xj+1 − xj , and Mj := S ′′(xj) be the 2nd derivative evaluated at xj. Then S ′′
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(x − xj) by point-slope formula, ⇒ the continuity of S ′′ is

automatically satisfied.

By the continuity of S, we can derive Sj(x) formula in the form aj +bj(x−xj)+cj(x−xj)
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Sj(xj) = yj =⇒ aj = yj,
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By the continuity of S ′, we can derive a relationship among Mj−1, Mj, and Mj+1:

From (1)
d

dx=⇒ S ′
j(x) = (
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2 .

S ′(x−
j ) = S ′(x+

j ), i.e. S ′
j−1(xj) = S ′

j(xj), j = 1, · · · , n − 1,
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(2), plus two additional boundary conditions (eg. free B.C.(S ′′(x0) = S ′′(xn) = 0), or, clamped
B.C.(assign S ′(x0) and S ′(xn)), etc.), becomes a square system(n + 1 eqn’s and n + 1 Mj ’s). Then
we can solve for M0, · · · , Mn easily.

with free B.C. :
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with clamped B.C. :
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.

Tension Spline (Fun!) : A spline that satisfies the ordinary differential equation

S(4)(x) − τ 2S ′′(x) = 0

on each [xj , xj+1] with continuous S(4)(x). Obviously, for τ ≈ 0, S(x) is almost a 3-spline. For large τ ,
the differential equation is almost like S ′′(x) ≈ 0, therefore the solution S(x) is almost a 1-spline but
with degree 4 smoothness.
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