線性代數 I     Syllabus
教材:"Linear Algebra and Its Applications" (4th ed) by Gilbert Strang
參考書籍:

重要觀念重申   &   指定練習    
(在下一個 link 還沒出現以前,最後一個 link 仍會增修!)


上學期

§1.1 (none)
§1.2 # 1,2,3,5,7,8,9,11,13,16,17,18,20,21,22,23
§1.3 # 1,3,4,6,7,9,10,13,14,15,16,17,19,20,22,23,25,26,27,30,31,32
§1.4 # 3,4,6,9,11,12,13,14,15,19,21,23,26,27,28,30,32,37,38,39,40,41,43,45,48,52,55,57
§1.5 # 2,3,5,6,8,11,13,15,18,19,20,21,24,26,30,32,33,38,41,42,44,46,48
§1.6 # 2,3,6,8,11,13,15,17,19,20,21,22,23,24,25,30,32,41,49,51,57,58,68

§2.1 #1,2,4,6,8,9,10,13,14,16,17,19,25,27,29
§2.2 #3,5,10,14,15,16,19,21,22,27,31,38,41,43,48,52,53,54,56,57,61,64,67
§2.3 #3,5,6,9,10,14,16,17,19,21,25,27,28,30,32,33,36,37,41
§2.4 #4,8,9,10,15,16,17,21,23,25,27,32,37,40
§2.6 #4,5,6,11,13,16,17,23,25,26,28,29,30,31,35,36,40,43,47,48,50

§3.1 #6,12,15,16,19,20,25,26,33,37,38,40,42,43,45,52
§3.2 #2,7,8,13,14,18,20,24,25
§3.3 #7,8,10,14,16,17,21,22,25,27,29,32,33,36
§3.4 #2,3,7,8,12,13,14,17,19,22,24,25,27,28,31

§4.1 (none)
§4.2 #2,8,10,12,14,17,22,29
§4.3 #1,4,6,9,15,20,34,36,39
§4.4 #6,9,10,12,13,15,18,21,22,23,31

§5.1 #6,9,10,14,20,21,27,29,33,34,36,38
§5.2 #1,2,7,10,12,14,17,20,25,27,34,36,38,39,42
§5.3 #2,4,5,6,7,8,9,(10,11,12,13),20,21,22,26(b),27 (比較 #24 和 §5.2 第 249 頁的 5F)。
期末考第五章只出一題,綜合 §5.1、§5.2、§5.3,你必須會算 eigenvalue 和 eigenvector 還有遞迴式。


下學期

§5.4 #10,11,18,22,24,26,29,35,36,39,42,43

上課問的問題: 複數空間 的向量內積為何? 所謂夾角如何定義? 與實際吻合嗎?
(視 )
§5.5 #1,4,5,6,7,9,13,14,15,18,20,22,24,28,32,34,35,36,39,40,41,43,44,46,48,49,50
有關 , 可參見『常微分方程』之 『線性常微分方程組』
§5.6 #4,5,8,11,13,17,18,19,21,22,24,28,32,33,35,40,42
Chapter 5 Review #9,10,13, 14\{(a)}, 15,16(ignore 2 by 2 Q), 17,20, 21(esp.(c)), 24,30
『算一個矩陣的 eigenvalues,以其 eigenvectors/generalized eigenvectors 做為基,將矩陣重新表示』
(即 如何將一矩陣化成 Jordan form)
期中、期末都要考。
§6.1 #5,#9
如何配方? (將二次齊次多項式寫成線性獨立的平方和/平方差,
, 線性獨立)