Definition K: closed & convex. $N(x) \stackrel{\text{def}}{=} P_K^{-1}(x) - x$ is called the *normal cone* of K at x. Let σ be a cone with apex 0. $\check{\sigma} \stackrel{\text{def}}{=} \{x : \langle q, x \rangle \geq 0 \ \forall q \in \sigma\}$ is called the *dual cone* of σ .

Lemma 4.10 Let σ be a cone with apex 0, then the normal cone of σ at 0: $N(0) = -\check{\sigma}$ ($\check{\sigma}$ reflected in 0).

(pf.) $N(0) \subset -\check{\sigma} : u \in N(0), \iff u \in P_{\sigma}^{-1}(0) - 0, \iff P_{\sigma}(u) = 0,$ $\Rightarrow H := \{x : \langle x, u \rangle = 0\}$ is a supporting hyperplane of σ at 0 with $\sigma \in H^{-}$ by Lemma 3.5, i.e. $\langle q, u \rangle \leq 0 \ \forall q \in \sigma, \iff \langle q, -u \rangle \geq 0 \ \forall q \in \sigma,$ $\iff -u \in \check{\sigma}, \iff u \in -\check{\sigma}.$ Hence, $N(0) \subset -\check{\sigma}.$

 $-\check{\sigma} \subset N(0) : u \in -\check{\sigma} \iff \langle q, u \rangle \leq 0 \ \forall q \in \sigma.$ Then $H := \{x : \langle x, u \rangle = 0\}$ is a supporting hyperplane with $\sigma \in H^-$ and $\sigma \cap H = \{0\}$ since 0 is the apex of σ . Then, u is an outer normal of σ and $P_{\sigma}(u) = 0$, $\iff u \in P_{\sigma}^{-1}(0) - 0 = N(0)$. Hence, $-\check{\sigma} \subset N(0)$.

The definition of apex is important on the second part.