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Abstract. In this paper, we investigate the forced waves of a delayed diffusive endemic

model with a shifting transmission rate. Here a forced wave is a traveling wave with wave

speed the same as the environmental shifting speed. By constructing a new pair of upper-

lower solutions, we prove the existence of forced waves for any negative shifting speed which

corresponds the deceased of the disease, regardless of the magnitude of the delay. Moreover,

we also derive the existence of forced waves with small shifting speeds without delay which

signify the disease spread. A non-existence of forced wave when the limiting reproduction

number is less than one is also proven.

1. Introduction

In epidemiology, taking the vital dynamics (births and deaths) into account, the classical

delayed diffusive endemic model is written as
St(x, t) = d1Sxx(x, t) + Λ− µS(x, t)− βS(x,t)I(x,t−τ)

1+αI(x,t−τ)
, x ∈ R, t > 0,

It(x, t) = d2Ixx(x, t) +
βS(x,t)I(x,t−τ)
1+αI(x,t−τ)

− σI(x, t)− γI(x, t), x ∈ R, t > 0,

Rt(x, t) = d3Rxx(x, t) + γI(x, t)− µ̂R(x, t), x ∈ R, t > 0,

(1.1)

where S(x, t), I(x, t), R(x, t) represent the population densities of the susceptible, infective,

removed individuals at position x and time t, respectively. The coefficients di,Λ, µ, β, α, σ, γ, µ̂

are all positive constants, in which di is the spatial motility of each group, i = 1, 2, 3, Λ is the

entering flux of susceptible individuals, µ, σ, µ̂ denote the death rates of susceptible, infective

and removed populations, respectively, γ is the recovery rate of the infective populations, β

is the infective transmission rate and α measures the saturation level ([8, 24]) in the Holling

type II incidence function. The constant τ ≥ 0 is the latency of the infection in vectors.

One of the main concerns of epidemic models is whether the disease can spread. Among

many different approaches, the existence of traveling waves connecting the disease-free state

to the endemic state has been extensively studied. In particular, we refer the reader to the

work [23] for a very nice survey of the literature on (1.1) with/without delay, with/without

vitae dynamics and other types of incidence functions. See also [19].
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On the other hand, it is commonly assumed that the transmission rate β is a constant.

Little is done for the inhomogeneous transmission case. However, it is natural that the

transmission rate depends on both time and spatial position. In regarding of this aspect,

we refer the reader to a very recent work [20]. For a vector-borne disease model [20, system

(25)], the biting rate of the vectors (mosquitoes) and the total number of mosquitoes are

assumed to be periodic in time and monotone in the moving coordinate with a given shifting

speed caused by the climate change.

The main purpose of this paper is to investigate the endemic model (1.1) by taking into

account the shifting effect on the transmission rates. Since the R-equation in (1.1) is decou-

pled from the first two equations, we only need to consider the first two equations in (1.1).

Furthermore, by a suitable scaling (cf. [23]), we may assume that Λ = µ so that the first

two equations in (1.1) with β replaced by β(x− st) are re-written as{
St(x, t) = d1Sxx(x, t) + µ− µS(x, t)− β(x−st)S(x,t)I(x,t−τ)

1+αI(x,t−τ)
, x ∈ R, t > 0,

It(x, t) = d2Ixx(x, t) +
β(x−st)S(x,t)I(x,t−τ)

1+αI(x,t−τ)
− κI(x, t), x ∈ R, t > 0,

(1.2)

where κ := σ + γ and s is a nonzero constant which stands for the shifting speed of the

environment.

In this paper, we shall always assume that β = β(ξ), ξ := x − st, satisfies the following

properties:

(A1) β is a continuous function in R such that β(∞) = 0 ≤ β(ξ) ≤ β0 = β(−∞) for all

ξ ∈ R for some positive constant β0.

(A2) β(ξ) ≤ e−θξ for all ξ ≥ K1 for positive constants θ and K1.

In view of the sign of the shifting speed s, there are two cases for the transmission to

be advantageous (s > 0) or disadvantageous (s < 0). The representative advantageous

examples are mosquito-borne diseases such as dengue fever, malaria, Zika virus, and West

Nile virus. Contrarily, rising temperatures could make the habitat suitability of some tick

species decrease, which affects the related diseases [12]. This is the disadvantageous case

corresponding to s < 0.

Note that there is always the disease-free state (1, 0) of (1.2). We define the (limiting) basic

reproduction number R0 := β0/κ, which is an important threshold value in the epidemic

model determining whether the disease spreads or not. When R0 > 1, i.e., β0 > κ, there is

a unique positive constant equilibrium (S∗, I∗) of the following limiting ODE system{
dS
dt

= µ− µS(t)− β0S(t)I(t−τ)
1+αI(t−τ)

,
dI
dt

= β0S(t)I(t−τ)
1+αI(t−τ)

− κI(t),

where

(S∗, I∗) =
( αµ+ κ

αµ+ β0
,
µ(β0 − κ)

(β0 + αµ)κ

)
.

Note that
β0S

∗

1 + αI∗
= κ, µ− µS∗ − β0S

∗I∗

1 + αI∗
= 0. (1.3)
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We call (S∗, I∗) the endemic state of (1.2). Throughout this paper, a vector-valued function is

positive (nonnegative, resp.) we mean that it is positive (nonnegative, resp.) componentwise.

We are interested in the traveling wave of (1.2) in the form

(S, I)(x, t) = (ϕ1, ϕ2)(ξ), ξ := x− st,

connecting the endemic state and the disease-free state. Since the wave speed s is the same

as the environmental shifting speed, we call it a forced wave of (1.2). Therefore, (ϕ1, ϕ2)

satisfies {
d1ϕ

′′
1(ξ) + sϕ′

1(ξ) + µ− µϕ1(ξ)− β(ξ)ϕ1(ξ)ϕ2(ξ+sτ)
1+αϕ2(ξ+sτ)

= 0, ξ ∈ R,
d2ϕ

′′
2(ξ) + sϕ′

2(ξ) +
β(ξ)ϕ1(ξ)ϕ2(ξ+sτ)

1+αϕ2(ξ+sτ)
− κϕ2(ξ) = 0, ξ ∈ R,

(1.4)

and the boundary conditions

(ϕ1, ϕ2)(+∞) = (1, 0), (ϕ1, ϕ2)(−∞) = (S∗, I∗). (1.5)

Note that (1.5) signifies a bistable connection. When s > 0, it corresponds to the disease

spreads. But, the disease is deceased when s < 0.

For the basic reproduction number R0 > 1, our first existence result reads

Theorem 1.1. Given τ ≥ 0. Suppose that R0 > 1 and β(·) satisfies (A1) and (A2). If

α > β0/[µ(R0 − 1)], then (1.4) admits a positive solution (ϕ1, ϕ2) such that (ϕ1, ϕ2)(+∞) =

(1, 0) for any s < 0.

It follows from Theorem 1.1 that, due to (ϕ1, ϕ2)(+∞) = (1, 0), any solution (S, I) of

(1.2) corresponding to a forced wave with s < 0 satisfying I(x, t) → 0 as t → ∞ for all

x ∈ R, regardless of the magnitude of latency period τ , as long as the saturation parameter

α > β0/[µ(R0 − 1)]. This is quite natural, the disease must decease eventually due to the

diminishing of the transmission rate for large times.

We also remark that, for a nonnegative nonconstant bounded solution (ϕ1, ϕ2) of (1.4),

we have 0 < ϕ1 < 1 and ϕ2 > 0 in R. Indeed, if ϕ1(ξ0) = 0, then ϕ′
1(ξ0) = 0 ≤ ϕ′′

1(ξ0) which

is impossible by the ϕ1-equation in (1.4). Similarly, any (local) maximal point ξ0 of ϕ1 must

have value ϕ1(ξ0) ≤ 1. Hence 0 < ϕ1 ≤ 1 in R. Moreover, since ϕ1 satisfies

d1ϕ
′′
1(ξ) + sϕ′

1(ξ) + µ− µϕ1(ξ) ≥ 0, ξ ∈ R,

the strong maximum principle gives that ϕ1 < 1 in R. The same reasoning also implies that

ϕ2 > 0 in R.
Let ϕ∗ = µ/(µ+ β0/α). When the condition α > β0/[µ(R0 − 1)] is enforced, the quantity

s∗ := 2
√
d2(β0ϕ∗ − κ) is well-defined and positive. Then we have the following existence

result for advantageous forced waves.

Theorem 1.2. Assume τ = 0. Suppose that R0 > 1 and β(·) satisfies (A1) and (A2). If

α > β0/[µ(R0 − 1)], then (1.4) admits a positive solution (ϕ1, ϕ2) such that (ϕ1, ϕ2)(+∞) =

(1, 0) for any s ∈ (0, s∗).

The forced waves of (1.2) obtained in Theorems 1.1 and 1.2 have the right-hand tail limit

(ϕ1, ϕ2)(+∞) = (1, 0). If the saturation parameter is larger than a certain value, then we

are able to derive the left-hand tail limit as follows.
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Theorem 1.3. Let (ϕ1, ϕ2) be a positive solution of (1.4) obtained in Theorem 1.1 or The-

orem 1.2. Then there exists α∗ > β0/[µ(R0 − 1)] such that (ϕ1, ϕ2)(−∞) = (S∗, I∗), if

α > α∗.

Lastly, when the basic reproduction number R0 < 1, we obtain the following non-existence

of forced waves.

Theorem 1.4. Let s ̸= 0. If R0 < 1, then there is no nonnegative nonconstant bounded

solution of (1.4).

There are a vast literature on the study of forced waves. For the works on forced waves

for the classical diffusion, we refer the reader to, e.g., [1, 2, 3, 4, 5, 6, 9, 10, 11, 14, 15,

18, 21, 26, 27, 28, 29]. For the works on nonlocal dispersal, we only refer the reader to the

references listed in a recent work [16]. Note that the shifting effect is imposed on the intrinsic

growth term in the above-mentioned works. On the other hand, the model studied in [20] is a

cooperative system so that the classical monotone iteration method can be applied. However,

our system is non-cooperative and so certain difficulties arise in this study. Although the

method of generalized upper-lower solutions with the help of Schauder’s fixed point theorem

is a very powerful method to derive the existence of forced waves for non-cooperative systems,

to find a suitable pair of upper-lower solutions is not always available. This is actually a

nontrivial task in many examples.

In this paper, we investigate the existence and non-existence of positive solutions to (1.4),

and obtain the asymptotic boundary values for wave tails. Our main contribution of this

work is the construction of a pair of upper-lower solutions, in particular, the lower solution

for the case s > 0 is new and nontrivial. Moreover, the monotonicity condition on the

transmission rate β is not imposed here. Unfortunately, we were unable to find a suitable

lower solution for the advantageous forced waves when a time delay is taken into account.

Also, we are not sure whether forced waves exist for s ≥ s∗. We leave these two questions

as open problems for future studies.

The rest of this paper is organized as follows. In §2, some preliminaries are given.

In particular, a non-existence of forced waves for R0 < 1 and the right-hand tail limit

(ϕ1, ϕ2)(+∞) = (1, 0) for any solution of (1.4) are proven. The existence of forced waves,

Theorems 1.1 and 1.2, are proved in §3. Then, under a more stronger restriction on the

saturation parameter, by adopting the method of contracting rectangles (cf., e.g., [22, 7, 17])

a proof for the left-hand tail limit of forced waves is given in §4. Finally, we give a brief

discussion in §5. This includes some numerical simulations in order to provide some hints of

two above-mentioned open questions.

2. Preliminaries

First, we introduce the following notion of (generalized) upper-lower solutions of (1.4).
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Definition 2.1. Continuous functions (ϕ1, ϕ2) and (ϕ
1
, ϕ

2
) are called a pair of upper and

lower solutions of (1.4) if ϕ1 ≥ ϕ
1
, ϕ2 ≥ ϕ

2
, and the following inequalities

U1(ξ) := d1ϕ
′′
1(ξ) + sϕ

′
1(ξ) + µ− µϕ1(ξ)−

β(ξ)ϕ1(ξ)ϕ2
(ξ + sτ)

1 + αϕ
2
(ξ + sτ)

≤ 0, (2.1)

U2(ξ) := d2ϕ
′′
2(ξ) + sϕ

′
2(ξ) +

β(ξ)ϕ1(ξ)ϕ2(ξ + sτ)

1 + αϕ2(ξ + sτ)
− κϕ2(ξ) ≤ 0, (2.2)

L1(ξ) := d1ϕ
′′
1
(ξ) + sϕ′

1
(ξ) + µ− µϕ

1
(ξ)−

β(ξ)ϕ
1
(ξ)ϕ2(ξ + sτ)

1 + αϕ2(ξ + sτ)
≥ 0, (2.3)

L2(ξ) := d2ϕ
′′
2
(ξ) + sϕ′

2
(ξ) +

β(ξ)ϕ
1
(ξ)ϕ

2
(ξ + sτ)

1 + αϕ
2
(ξ + sτ)

− κϕ
2
(ξ) ≥ 0, (2.4)

hold for all ξ ∈ R \ E for some finite subset E of R.

Then we have the following lemma for the existence of solution to (1.4).

Lemma 2.1. Let s ̸= 0 be given. Let (ϕ1, ϕ2) and (ϕ
1
, ϕ

2
) be a pair of upper and lower

solutions of (1.4) satisfying{
ϕ
′
1(ξ−) ≥ ϕ

′
1(ξ+), ϕ′

1
(ξ−) ≤ ϕ′

1
(ξ+), ∀ ξ ∈ E,

ϕ
′
2(ξ−) ≥ ϕ

′
2(ξ+), ϕ′

2
(ξ−) ≤ ϕ′

2
(ξ+), ∀ ξ ∈ E.

(2.5)

Then (1.4) admits a solution (ϕ1, ϕ2) such that ϕ
1
(ξ) ≤ ϕ1(ξ) ≤ ϕ1(ξ) and ϕ2

(ξ) ≤ ϕ2(ξ) ≤
ϕ2(ξ) for all ξ ∈ R.

Proof. The proof of this lemma can be carried out in almost the same manner as that in

[23]. For the reader’s convenience, we present an outline of the proof as follows.

First, we define the set

Γ = {(ϕ1, ϕ1) ∈ C0(R)× C0(R) : ϕ
1
≤ ϕ1 ≤ ϕ1, ϕ2

≤ ϕ2 ≤ ϕ2}.

For (ϕ1, ϕ2), consider

F1(ϕ1, ϕ2)(ξ) = ηϕ1(ξ) + µ− µϕ1(ξ)−
β(ξ)ϕ1(ξ)ϕ2(ξ + sτ)

1 + αϕ2(ξ + sτ)
, ξ ∈ R

F2(ϕ1, ϕ2)(ξ) = ηϕ2(ξ) +
β(ξ)ϕ1(ξ)ϕ2(ξ + sτ)

1 + αϕ2(ξ + sτ)
− κϕ2(ξ), ξ ∈ R

where η is a large constant such that Fi is monotone increasing in ϕi for i = 1, 2. Define an

integral operator P = (P1, P2) by

P1(ϕ1, ϕ2)(ξ) :=
1

d1(λ
+
1 − λ−1 )

[ ∫ ξ

−∞
eλ

−
1 (ξ−y) +

∫ +∞

ξ

eλ
+
1 (ξ−y)

]
F1(ϕ1, ϕ2)(y)dy,

P2(ϕ1, ϕ2)(ξ) :=
1

d2(λ
+
2 − λ−2 )

[ ∫ ξ

−∞
eλ

−
2 (ξ−y) +

∫ +∞

ξ

eλ
+
2 (ξ−y)

]
F2(ϕ1, ϕ2)(y)dy,
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where λ±1 and λ±2 are defined by

λ±1 =
−s±

√
s2 + 4ηd1
2d1

, λ±2 =
−s±

√
s2 + 4ηd2
2d2

.

Note that P (ϕ1, ϕ2) satisfies{
d1[P1(ϕ1, ϕ2)]

′′(ξ) + s[P1(ϕ1, ϕ2)]
′(ξ)− η[P1(ϕ1, ϕ2)](ξ) + F1(ϕ1, ϕ2)(ξ) = 0, z ∈ R,

d2[P2(ϕ1, ϕ2)]
′′(ξ) + s[P2(ϕ1, ϕ2)]

′(ξ)− η[P2(ϕ1, ϕ2)](ξ) + F2(ϕ1, ϕ2)(ξ) = 0, z ∈ R.

By a standard process using (2.1)-(2.4) and (2.5), we can show that P maps Γ into Γ, and

P : Γ → Γ is completely continuous with respect to the norm | · |ν , where

|(ϕ1, ϕ2)|ν = sup
ξ∈R

{max(|ϕ1(ξ)|, |ϕ2(ξ)|)e−ν|ξ|}, (ϕ1, ϕ2) ∈ Γ,

with ν < min{−λ−1 ,−λ−2 }. Then, by the Schauder’s fixed point theorem, we obtain that P

has a fixed-point (ϕ1, ϕ2) ∈ Γ, and thus the system (1.4) has a solution (ϕ1, ϕ2) ∈ Γ. □

Next, we provide a universal property for any nonnegative solution (ϕ1, ϕ2) of (1.4).

Proposition 2.2. Suppose that β(∞) = 0. Let (ϕ1, ϕ2) be a nonnegative bounded solution

of (1.4) for a given s ̸= 0. Then (ϕ1, ϕ2)(∞) = (1, 0).

Proof. First, we prove that ϕ2(∞) = 0.

For contradiction, we suppose that ϕ+
2 := lim supξ→∞ ϕ2(ξ) > 0. If ϕ2 is oscillatory near

ξ = +∞, we can choose a sequence of maximal points {ξn} such that ξn → +∞ and

ϕ2(ξn) → ϕ+
2 as n → ∞. Since ξn is a maximal point, ϕ′

2(ξn) = 0 and d2ϕ
′′
2(ξn) ≤ 0. Then,

from β(∞) = 0, we have

0 = lim sup
n→∞

{
d2ϕ

′′
2(ξn) + sϕ′

2(ξn) +
β(ξn)ϕ1(ξn)ϕ2(ξn + sτ)

1 + αϕ2(ξn + sτ)
− κϕ2(ξn)

}
≤ −κϕ+

2 < 0,

a contradiction.

On the other hand, we assume that ϕ2 is monotone ultimately at ξ = +∞. Then

limξ→+∞ ϕ2(ξ) = ϕ+
2 > 0 and we can find a sequence {ξn} such that ξn → ∞ and ϕ′

2(ξn) → 0

as n→ ∞. Integrating the ϕ2-equation in (1.4) from 0 to ξn, we obtain

d2[ϕ
′
2(0)− ϕ′

2(ξn)] + s[ϕ2(0)− ϕ2(ξn)] =

∫ ξn

0

(β(y)ϕ1(y)ϕ2(y + sτ)

1 + αϕ2(y + sτ)
− κϕ2(y)

)
dy. (2.6)

Note that the left hand side of (2.6) is uniformly bounded with respect to n. Since β(∞) = 0,

and ϕ1 and ϕ2 are bounded, we can choose K ≫ 1 such that

ϕ2(y) ≥
ϕ+
2

2
,
β(y)ϕ1(y)ϕ2(y + sτ)

κ[1 + αϕ2(y + sτ)]
≤ ϕ+

2

4
for y ≥ K.

Then, we have
β(y)ϕ1(y)ϕ2(y + sτ)

1 + αϕ2(y + sτ)
− κϕ2(y) ≤ −ϕ

+
2

4
κ for y ≥ K,

and thus, the integral ∫ ∞

0

(β(y)ϕ1(y)ϕ2(y + sτ)

1 + αϕ2(y + sτ)
− κϕ2(y)

)
dy



EPIDEMIC MODEL WITH SHIFTING TRANSMISSION RATE (June 3, 2024) 7

diverges. Hence, we have a contradiction. This proves that ϕ2(∞) = 0.

Next, we show that ϕ1(∞) = 1. Otherwise, suppose that lim infξ→∞ ϕ1(ξ) < 1. Then,

using

lim
y→∞

β(y)ϕ1(y)ϕ2(y + sτ)

1 + αϕ2(y + sτ)
= 0,

due to β(∞) = ϕ2(∞) = 0, we reach a contradiction by a similar argument as that for

ϕ2(∞) = 0. This proves ϕ1(∞) = 1 and the proposition follows. □

In the following, we show the non-existence of forced waves when R0 < 1.

Proof of Theorem 1.4. The proof is motivated by that of [23, Theorem 4.3]. Suppose that

(1.4) has a nonnegative nonconstant bounded solution (ϕ1, ϕ2). Set v(x, t) := ϕ2(x − st).

Then v satisfies

vt(x, t) ≤ d2vxx(x, t) + β0v(x, t− τ)− κv(x, t), x ∈ R, t > 0,

using β(ξ) ≤ β0 for all ξ ∈ R, ϕ1 < 1 in R and ϕ2 ≥ 0. Suppose that ϕ2 ≤ L < ∞ in R.
Then, by comparing with the ODE

V ′(t) = β0V (t− τ)− κV (t), t > 0, V (t) = Leλ0t, t ∈ [−τ, 0],

we obtain that

v(x, t) ≤ Leλ0t, x ∈ R, t > 0, (2.7)

where λ0 < 0 satisfies λ0 = β0e
−λ0τ − κ, due to β0 < κ. Now, given ξ ∈ R. It follows from

(2.7) that

ϕ2(ξ) = v(ξ + st, t) ≤ Leλ0t, ∀ t > 0. (2.8)

Letting t→ ∞ in (2.8), we obtain that ϕ2(ξ) ≤ 0 and so ϕ2(ξ) = 0. This proves that ϕ2 ≡ 0,

which is a contradiction to ϕ2 is nonconstant. Thus Theorem 1.4 is proved. □

3. Existence of forced waves

This section is devoted to the proofs of the existence of forced waves.

3.1. Forced waves for s < 0 for any τ ≥ 0.

Proof of Theorem 1.1. Fixed τ ≥ 0 and α > β0/[µ(R0 − 1)]. Consider the following positive

constants

ϕ∗ =
µ

µ+ β0/α
, ψ∗ =

β0 − κ

ακ
.

Note that 0 < ϕ∗ < 1, ψ∗ > I∗ and

β0ψ
∗

1 + αψ∗ − κψ∗ = 0. (3.1)

We also recall from (A2) that there exists θ and K1 such that β(ξ) ≤ e−θξ when ξ > K1.

Since α > β0

µ(R0−1)
is equivalent to β0ϕ

∗ > κ, we can choose small positive constants ε and δ

such that
(β0 − ε)ϕ∗

1 + αδ
− κ > 0. (3.2)
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Then we define

ϕ1(ξ) = 1, ϕ2(ξ) = ψ∗, ϕ
1
(ξ) = max

{
1− ρ1e

−σξ, ϕ∗
}
, (3.3)

ϕ
2
(ξ) = max{δ(1− ρ2e

− s
d2

ξ
), 0}, (3.4)

where σ ∈ (0, θ) is a fixed small positive constant satisfying −d1σ2 + sσ + µ > 0, and ρ1, ρ2
are positive constants to be chosen later.

Now we show (ϕ1, ϕ2) and (ϕ
1
, ϕ

2
) satisfy (2.1)-(2.4). First, from β ≤ β0 and (3.1), (2.1)

and (2.2) immediately hold for all ξ ∈ R.
For (2.3), there exists ξ1= ξ1(ρ1) ∈ R such that ϕ

1
(ξ) = ϕ∗ for ξ ≤ ξ1, and ϕ

1
(ξ) =

1− ρ1e
−σξ for ξ > ξ1. Next we choose ρ1 large enough so that ξ1 > K1 > 0 and

ρ1 ≥
1

α(−d1σ2 + sσ + µ)
(3.5)

Note that

µ− µϕ
1
(ξ)−

β(ξ)ϕ
1
(ξ)ϕ2(ξ + sτ)

1 + αϕ2(ξ + sτ)
≥ µ− µϕ

1
(ξ)− β0

α
ϕ
1
(ξ) = 0, ξ < ξ1,

using ϕ
1
(ξ) = ϕ∗ = µ

µ+β0/α
and y/(1 + αy) ≤ 1/α for y ≥ 0. Thus, (2.3) holds for ξ < ξ1.

For ξ > ξ1, ϕ1
(ξ) = 1− ρ1e

−σξ. Since ϕ
1
(ξ) ≤ 1 and β(ξ) ≤ e−θξ for ξ > ξ1, we compute

L1(ξ) ≥ ρ1(−d1σ2 + sσ + µ)e−σξ − 1

α
e−θξ

≥ e−σξ
[
ρ1(−d1σ2 + sσ + µ)− 1

α

]
≥ 0, ξ < ξ1,

by the choice of ρ1 in (3.5) and σ ∈ (0, θ). Thus, (2.3) holds for ξ ̸= ξ1.

Finally, for (2.4), we let ξ2 :=
d2
s
ln ρ2 < 0 for ρ2 > 1. Note that s < 0. Moreover, we can

choose ρ2 large so that β(ξ) ≥ β0 − ε for ξ < ξ2 < 0. We only need to show that (2.4) holds

for ξ < ξ2. Note that ϕ
1
(ξ) = ϕ∗ for ξ < ξ2 and ϕ

2
(ξ) ≤ ϕ

2
(ξ + sτ) ≤ δ for all ξ ∈ R. Then,

by using the monotone increasing property of the function

y

1 + αy
=

1

α

{
1− 1

1 + αy

}
, y ≥ 0,

we deduce that

β(ξ)ϕ
1
(ξ)ϕ

2
(ξ + sτ)

1 + αϕ
2
(ξ + sτ)

≥
ϕ∗(β0 − ε)ϕ

2
(ξ)

1 + αϕ
2
(ξ)

≥ ϕ∗(β0 − ε)

1 + αδ
ϕ
2
(ξ), ∀ ξ < ξ2.

Then we obtain from (3.2) that

L2(ξ) =
β(ξ)ϕ

1
(ξ)ϕ

2
(ξ + sτ)

1 + αϕ
2
(ξ + sτ)

− κϕ
2
(ξ) ≥ ϕ

2
(ξ)

[ϕ∗(β0 − ε)

1 + αδ
− κ

]
≥ 0, ∀ ξ < ξ2.

Clearly, L2(ξ) ≥ 0 for ξ > ξ2. This implies that (2.4) holds for all ξ ̸= ξ2. We conclude that

(ϕ1, ϕ2) and (ϕ
1
, ϕ

2
) are a pair of upper and lower solutions of (1.4) for any s < 0, when

R0 > 1 and α > β0

µ(R0−1)
. Therefore, the existence of a solution (ϕ1, ϕ2) of (1.4) follows by

applying Lemma 2.1. Since both ϕ1 and ϕ2 are nonnegative and nonconstant, we see that

both ϕ1 and ϕ2 are positive.
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The right-hand tail limit of a wave profile follows immediately from Proposition 2.2 and

Theorem 1.1 is proved. □

3.2. Forced waves for s > 0 with τ = 0.

Proof of Theorem 1.2. Recall (3.3). Given a fixed s ∈ (0, s∗). Then we can check that

(2.1),(2.2) and (2.3) hold for any s > 0 as that in the proof for case s < 0.

For (2.4), we consider the function

ψ(z) := e
− s

2d2
z
cos(ωz +

π

2
),

where ω is a positive constant to be determined later. Then it is easy to check that

d2ψ
′′(z) + sψ′(z) = −

(
s2

4d2
+ d2ω

2

)
ψ(z), z ∈ R. (3.6)

Moreover, ψ(−π/ω) = ψ(0) = 0 and the maximum of ψ for z ∈ (−π/ω, 0) is given by

M := e
− s

2d2
z∗ 2d2ω√

4d22ω
2 + s2

,

where z∗ is the unique maximal point in (−π/ω, 0) defined by

tan(ωz∗ +
π

2
) =

−s
2d2ω

.

Next, since s < s∗, we have

s2

4d2
< β0ϕ

∗ − κ.

we can choose positive constants ε, δ, ω small enough such that

(β0 − ε)ϕ∗

1 + αδ
> κ+

s2

4d2
+ d2ω

2. (3.7)

With these constants, we now replace ϕ
2
in (3.4) by

ϕ
2
(ξ) =


δ, ξ ≤ ξ2 + z∗,
δ
M
ψ(ξ − ξ2), ξ ∈ (ξ2 + z∗, ξ2),

0, ξ ≥ ξ2,

(3.8)

where ξ2 is chosen so that β(ξ) ≥ β0 − ε for all ξ ≤ ξ2. It is important to remark that (2.5)

holds for this ϕ
2
and ϕ

2
≤ δ in R. Then one can check that

L2(ξ) ≥
{
−
(
s2

4d2
+ d2ω

2

)
+

(β0 − ε)ϕ∗

1 + αδ
− κ

}
ϕ
2
(ξ) ≥ 0

for ξ ∈ (ξ2 + z∗, ξ2), due to (3.7). It is clear that L2(ξ) ≥ 0 for all ξ < ξ2 + z∗ and ξ > ξ2.

Hence L2(ξ) ≥ 0 for all ξ ̸= ξ2+z∗, ξ2. Therefore, we have verified that the functions defined

in (3.3) and (3.8) are a pair of upper-lower solutions of (1.4) for s ∈ (0, s∗) such that ϕ
1
≤ ϕ1,

ϕ
2
≤ ϕ2 and condition (2.5) holds. Therefore, for α > β0/[µ(R0 − 1)] and s ∈ (0, s∗), the

existence of a positive solution (ϕ1, ϕ2) of (1.4) such that (ϕ1, ϕ2)(+∞) = (1, 0) follows by

applying Lemma 2.1 and Proposition 2.2. Theorem 1.2 is thereby proved. □



10 W. CHOI, J.-S. GUO, AND C.-C. WU

4. Left-hand tail limit

In this section, we derive the left-hand tail limit of forced waves when the saturation

parameter is large enough.

Proof of Theorem 1.3. First, from the construction of upper solution, ϕ1(ξ) ≤ 1 and ϕ2(ξ) ≤
ψ∗ for ξ ∈ R. Also, by the construction of lower solution (ϕ

1
, ϕ

2
), we have

ϕ−
1 := lim inf

ξ→−∞
ϕ1(ξ) ≥ ϕ∗ > 0, ϕ−

2 := lim inf
ξ→−∞

ϕ2(ξ) ≥ δ > 0.

Set

ϕ+
1 := lim sup

ξ→−∞
ϕ1(ξ), ϕ+

2 := lim sup
ξ→−∞

ϕ2(ξ).

We consider the following functions for ν ∈ [0, 1]

m1(ν) := νS∗, M1(ν) := νS∗ + (1− ν)(1 + A),

m2(ν) := νI∗ + (1− ν)

(
− 1

α

)
, M2(ν) := νI∗ + (1− ν)(ψ∗ +B),

where A = kβ0S∗

αµ(1+αI∗)
and B = kA(1+αI∗)

αS∗ = k2β0

α2µ
for some constant k with 0 < k − 1 ≪ 1.

Note that

mi(ν) < ϕ−
i ≤ ϕ+

i < Mi(ν), i = 1, 2, (4.1)

holds for ν = 0. Hence the quantity

ν0 := sup{ν ∈ [0, 1) : (4.1) holds}

is well-defined.

Note that mi(ν) is an increasing function and Mi(ν) is a decreasing function of ν ∈ [0, 1]

for i = 1, 2. Since m1(1) = M1(1) = S∗ and m2(1) = M2(1) = I∗, the proof is done if we

can prove ν0 = 1. Thus, for contradiction, we assume that ν0 < 1. Then, by passing to the

limit, we have

mi(ν0) ≤ ϕ−
i ≤ ϕ+

i ≤Mi(ν0).

But, by the definition of ν0 and the continuity of mi(ν) and Mi(ν), at least one of the

following equalities holds:

ϕ−
i = mi(ν0), ϕ

+
i =Mi(ν0), i = 1, 2.

(i) Suppose that ϕ−
1 = m1(ν0). If ϕ1 is oscillatory at −∞, then we can choose a sequence

{ξn} of minimal points of ϕ1 such that ξn → −∞ and limn→∞ ϕ1(ξn) = m1(ν0). Note that

lim sup
n→∞

ϕ2(ξn + sτ) ≤M2(ν0).

Since ϕ′
1(ξn) = 0, ϕ′′

1(ξn) ≥ 0 for n ∈ N and using

1 + α[ν0I
∗ + (1− ν0)(ψ

∗ +B)] ≥ ν0(1 + αI∗),
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we obtain from (1.3) that

0 = lim inf
n→∞

{
d1ϕ

′′
1(ξn) + sϕ′

1(ξn) + µ− µϕ1(ξn)−
β(ξn)ϕ1(ξn)ϕ2(ξn + sτ)

1 + αϕ2(ξn + sτ)

}
≥ µ− µν0S

∗ − β0ν0S
∗[ν0I

∗ + (1− ν0)(ψ
∗ +B)]

1 + α[ν0I∗ + (1− ν0)(ψ∗ +B)]

≥ (1− ν0)µ+ ν0(µ− µS∗)− β0ν
2
0S

∗I∗

ν0(1 + αI∗)
− β0ν0(1− ν0)S

∗(ψ∗ +B)

ν0(1 + αI∗)

= (1− ν0)
[
µ− κ(ψ∗ +B)

]
:= ω1.

Since ψ∗ + B is a decreasing function of α such that it tends to zero as α → ∞, we can

choose α large enough such that ω1 > 0. Hence, we have a contradiction.

Next, we assume that ϕ1 is eventually monotone. Then there exists a sequence {ξn} such

that ξn → −∞ as n→ ∞, limn→∞ ϕ′
1(ξn) = 0 and limn→∞ ϕ1(ξn) = m1(ν0). Similarly to the

above, we have

lim inf
n→∞

{
µ− µϕ1(ξn)−

β(ξn)ϕ1(ξn)ϕ2(ξn + sτ)

1 + αϕ2(ξn + sτ)

}
> 0.

By integrating the ϕ1-equation of (1.4) from 0 to ξn, we have

d1ϕ
′
1(ξn)− ϕ′

1(0) + s(ϕ1(ξn)− ϕ1(0)) = −
∫ ξn

0

[
µ− µϕ1(ξ)−

β(ξ)ϕ1(ξ)ϕ2(ξ + sτ)

1 + αϕ2(ξ + sτ)

]
dξ. (4.2)

Since the left-hand side of (4.2) is bounded uniformly for all n, but the right-hand side of

(4.2) goes to −∞ as n→ ∞, it is a contradiction. Hence, ϕ−
1 = m1(ν0) cannot happen.

We can treat the other cases similarly using the following inequalities:

(ii) ϕ+
1 =M1(ν0): it follows from lim infn→∞ ϕ2(ξn + sτ) ≥ m2(ν0) that

lim sup
n→∞

{
µ− µϕ1(ξn)−

β(ξn)ϕ1(ξn)ϕ2(ξn + sτ)

1 + αϕ2(ξn + sτ)

}
≤ µ− µ[ν0S

∗ + (1− ν0)(1 + A)]− β0ν0S
∗[ν0I

∗ − (1− ν0)/α]

ν0(1 + αI∗)

= (1− ν0)
[
− µA+

β0S
∗

α(1 + αI∗)

]
< 0,

by (1.3) and the choice of A.

(iii) ϕ−
2 = m2(ν0): in this case, we may assume that ϕ−

1 > m1(ν0). Otherwise, it can be

reduced to case (i). Then

lim inf
n→∞

{β(ξn)ϕ1(ξn)ϕ2(ξn + sτ)

1 + αϕ2(ξn + sτ)
− κϕ2(ξn)

}
> m2(ν0)

{ β0m1(ν0)

1 + αm2(ν0)
− κ

}
= m2(ν0)

{ β0S
∗

1 + αI∗
− κ

}
= 0,

using (1.3).
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(iv) ϕ+
2 =M2(ν0): Note that a direct calculation gives 1−S∗ = α(S∗ψ∗−I∗). Then, using

(1.3) and by the choice of B, we compute

lim sup
n→∞

{β(ξn)ϕ1(ξn)ϕ2(ξn + sτ)

1 + αϕ2(ξn + sτ)
− κϕ2(ξn)

}
≤ β0M2(ν0)

{ ν0S
∗ + (1− ν0)(1 + A)

1 + α[ν0I∗ + (1− ν0)(ψ∗ +B)]
− S∗

1 + αI∗

}
=

β0M2(ν0)(1− ν0)

(1 + αI∗){1 + α[ν0I∗ + (1− ν0)(ψ∗ +B)]}

{
A(1 + αI∗)− αS∗B

}
< 0.

Therefore, Theorem 1.3 is proved. □

5. Discussion

In this section, we give some concluding remarks for this work. First, for the Cauchy

problem of system (1.2) with the initial condition

S(x, 0) = S0(x), x ∈ R, I(x, t) = I0(x, t), x ∈ R, t ∈ [−τ, 0], (5.1)

where τ is a nonnegative constant, the existence of solutions in a certain function space can

be derived by using, e.g., semigroup theory approach (cf. [25, 13]). In particular, our forced

wave solutions derived in Theorems 1.1 and 1.2 along with Theorem 1.3 provide a class of

solutions of (1.2) with the boundary condition

S(−∞, t) = (S∗, I∗), S(∞, t) = (1, 0), t > 0.

Since the main purpose of this paper is to address the existence vs nonexistence of forced

waves, we shall not go into more details in the issue on the existence of solutions for the

Cauchy problem.

Instead, we present some results on the numerical simulations to give some information

on the two open questions mentioned in the Introduction section. For our simulations, we

choose the initial functions in (5.1): S0 = 1 and I0(x, t) ≡ I0(x) for x ∈ R, t ∈ [−τ, 0], where
I0 is chosen appropriately as follows to produce forced waves (if any). For the disadvantage

case s < 0, we choose the initial function I0 by

I0(x) =


I∗ for x < 0,

I∗ exp
(
1− 1

1−(x/50)2

)
for 0 ≤ x ≤ 50,

0 for x > 50,

while, a continuous function with compact support given by

I0(x) =

I∗ exp
(
1− 1

1−|x/50|2

)
for |x| ≤ 50,

0 otherwise,
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is chosen for the advantageous case s > 0. Moreover, the following parameters and the

function β are set in the simulations:

d1 = d2 = 1; µ = 1; α = 1.5; κ = 0.5;

β(x− st) =
1

π
arctan (−(x− st)) + 0.5.

In the setting of parameters, α satisfies α > β0/[µ(R0 − 1)] = 1. Also, we have the

(limiting) basic reproduction number R0 = 2 and the quantity s∗ ≈ 0.6325 in Theorem 1.2.

In the following figures, the solid curve is the density of susceptible population and the dash

curve corresponds to the density of infective population.

Figure 1. Numerical solutions for the disadvantageous case s < 0 with a

time delay τ = 0.5 (Theorem 1.1). The arrow indicates the wave moving

direction.

In Figure 1, the graphs are the solutions at three different times, T = 300, 400, 500, for

the shifting speeds s = −0.5, s = −1.0 and s = −2.0, respectively. The spatial distances

with time length 100 are approximately 50.01, 100.01, and 200.02 for s = −0.5, s = −1.0

and s = −2.0, respectively. Hence each solution moves with the shifting speed |s| for the

disadvantageous case s < 0. This can be seen as a numerical verification for the existence of

forced waves stated in Theorem 1.1.

In Figure 2, the graphs are the solutions at three different times, T = 400, 500, 600, for

the shifting speeds s = 0.5, s = 1.0 and s = 2.0, respectively. The spatial distances with

time length 100 are approximately 50.0, 100.01, and 140.4 for s = 0.5, s = 1.0 and s = 2.0,

respectively. Therefore, we may interpret numerically the existence of forced waves for the

shifting speeds s = 0.5 and s = 1.0, but not for s = 2.0. Notice that numerically forced

waves exist for s = 1.0 in which s > s∗(≈ 0.6325). We conjecture that for the existence of

forced waves the critical upper bound for the shifting speeds is s∗ = 2
√
d2(β0 − κ) ≈ 1.414.

However, due to some technical difficulties, we are unable to verify this conjecture rigorously

in this paper.

Finally, it is interesting to see whether advantageous forced waves exist when a time delay

is taken into account. Figure 3 represents the numerical solutions for the advantageous case
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Figure 2. Numerical solutions for the advantageous case s > 0 without time

delay (τ = 0). The arrow indicates the moving direction of each solution.

(a) slow shifting speed with T = 300, 400, 500

(b) fast shifting speed with T = 800, 900, 1000

Figure 3. Numerical solutions for the advantageous case s > 0 with a time

delay τ = 0.5. The arrow indicates the moving direction of each solution.
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s > 0 with a time delay τ = 0.5. In Figure 3(a), the spatial distances with time length 100

are approximately 40, 60.01, and 80.01 for s = 0.4, s = 0.6 and s = 0.8, respectively. This

represents numerically that forced waves exist when the shifting speeds are small enough. On

the other hand, in Figure 3(b), the spatial distances with time length 100 are approximately

99.4, 99.8 and 99.6 for s = 1.5, s = 2.0 and s = 2.5, respectively. From our numerical

simulations, we conjecture that for the existence of forced waves the critical upper bound for

the shifting speeds is s∗τ ≈ 0.99, where s∗τ is the smallest s > 0 such that λ2−sλ+β0e−τsλ−κ =

0 has a positive solution λ. However, this is a very difficult problem to be verified and we

leave it as an open question.
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