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Abstract. We study a predator-prey model with two alien predators and one abo-
rigine prey in which the net growth rates of both predators are negative. We char-
acterize the invading speed of these two predators by the minimal wave speed of
traveling wave solutions connecting the predator-free state to the co-existence state.
The proof of the existence of traveling waves is based on a standard method by con-
structing (generalized) upper-lower-solutions with the help of Schauder’s fixed point
theorem. However, in this three species model, we are able to construct some suitable
pairs of upper-lower-solutions not only for the super-critical speeds but also for the
critical speed. Moreover, a new form of shrinking rectangles is introduced to derive
the right-hand tail limit of wave profile.

1. Introduction

Due to the diversity of ecology, it is very important to understand the interactions
of multiple species. There have been a tremendous works done in the past years for
one or two species ecological systems from both biological and mathematical points of
view. Two typical examples are the competition systems and predator-prey models.
However, the more species involved the more complicated dynamical behaviors are ex-
pected. Recently some three species models have attracted a lot of attention, including
non-cooperative competition systems ([4, 20]), food chain models ([7, 6, 8, 19]) and
predator-prey systems ([9, 15, 16, 3]).

In this paper, we are concerned with some 3-species predator-prey models. There
can be one predator with two preys, or two predators with one prey. There are
aborigine species living in a habitat and we would like to know what happen to the
ecological system if we introduce some alien species into the habitat. Our aim is to
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determine the invading speed of the alien species such that these three species can live
together. Mathematically, there are at least two approaches to answer this question,
namely, to characterize the asymptotic spreading speed(s) and to find the minimal
wave speed of traveling wave solutions connecting an appropriate constant state O to
the co-existence state. The latter approach is taken in this paper.

To describe the interaction of 3 species in a predator-prey system in terms of
traveling wave solutions, there are the following scenarios. In [9, 15, 16], it is assumed
that all three species are alien species so that O = (0, 0, 0). In these works, it is also
assumed that the growth rate of the predator is positive, which is equivalent to that
the predator has other food resources than the prey so that the predator can survive
without the prey. On the other hand, less is known when the (net) growth rate of
predator is negative. In this case, the predator cannot survive without the prey. In
[3], the (net) growth rate of the predator is assumed to be negative. Also, one alien
predator and one alien prey are introduced into the habitat of an aborigine prey so
that O = (0, 0, 1) is taken.

In this paper, we are interested in a predator-prey system with two alien predators
and one aborigine prey in which the (net) growth rates of both predators are negative.
More precisely, we study the following predator-prey system

ut = d1uxx + r1u(−1− u− kv + aw), x ∈ R, t > 0,(1.1)

vt = d2vxx + r2v(−1− hu− v + aw), x ∈ R, t > 0,(1.2)

wt = d3wxx + r3w(1− bu− bv − w), x ∈ R, t > 0,(1.3)

in which u = u(x, t) and v = v(x, t) are the densities of two predators and w = w(x, t)

is the density of the single prey. The parameters are all positive such that

(1.4) a > 1, 0 < h, k < 1, 0 < b <
1

2(a− 1)
.

In system (1.1)-(1.3), d1, d2, d3 are diffusion coefficients of species u, v, w, respec-
tively, the prey w follows the logistic growth with carrying capacity 1 and intrinsic
growth rate r3, both predation rates of predators u and v are equal to r3b and their
biomass conversion rates are assumed to be r1a and r2a (for simplicity). Moreover, the
parameters r1, r2 denote the death rates of predators u, v, respectively, and h, k are
the interspecific competition coefficients (so that two predators are weak competitors,
by (1.4)). Note that, under condition (1.4), there is the unique co-existence (positive)
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state (u∗, v∗, w∗), where

w∗ :=
(1− hk) + b(2− h− k)

(1− hk) + ab(2− h− k)
, v∗ :=

1− h

1− hk
(aw∗ − 1), u∗ :=

1− k

1− hk
(aw∗ − 1).

Also, there is an unstable predator-free state (0, 0, 1). We are concerned with the
invading speeds of two alien predators to the habitat of the aborigine prey.

A solution (u, v, w) of (1.1)-(1.3) is a traveling wave solution if

u(x, t) = ϕ1(x+ st), v(x, t) = ϕ2(x+ st), w(x, t) = ϕ3(x+ st)

for some constant s, the wave speed, and some functions ϕi, i = 1, 2, 3, the wave
profiles. Then (s, ϕ1, ϕ2, ϕ3) satisfies

d1ϕ
′′
1(z)− sϕ′

1(z) + r1ϕ1(z)(−1− ϕ1 − kϕ2 + aϕ3)(z) = 0, z ∈ R,(1.5)

d2ϕ
′′
2(z)− sϕ′

2(z) + r2ϕ2(z)(−1− hϕ1 − ϕ2 + aϕ3)(z) = 0, z ∈ R,(1.6)

d3ϕ
′′
3(z)− sϕ′

3(z) + r3ϕ3(z)(1− bϕ1 − bϕ2 − ϕ3)(z) = 0, z ∈ R.(1.7)

The main purpose of this paper is to study the minimal wave speed of traveling wave
solutions of (1.1)-(1.3) connecting the predator-free state (0, 0, 1) and the co-existence
state (u∗, v∗, w∗). Hence we also imposed the following boundary condition

(1.8) (ϕ1, ϕ2, ϕ3)(−∞) = (0, 0, 1), (ϕ1, ϕ2, ϕ3)(∞) = (u∗, v∗, w∗).

Set s∗ := max{2
√

r1d1(a− 1), 2
√

r2d2(a− 1)}. Our main result of this paper
reads as follows. It determines the invading speed of these two alien predators.

Theorem 1.1. Under condition (1.4), there is a bounded positive solution (ϕ1, ϕ2, ϕ3)

of (1.5)-(1.7) such that the left-hand boundary condition (ϕ1, ϕ2, ϕ3)(−∞) = (0, 0, 1)

holds, if s ≥ s∗. Moreover, this solution satisfies the right-hand boundary condition
(ϕ1, ϕ2, ϕ3)(∞) = (u∗, v∗, w∗), if we further assume that

(1.9) 0 < b <
1

2a
min{1− h, 1− k}.

On the other hand, there is no positive solution of (1.5)-(1.7) with boundary condition
(1.8), if s < s∗.

Since system (1.1)-(1.3) does not have the comparison principle, the classical
monotone iteration method is not applicable for deriving the existence of traveling wave
solutions. To treat non-monotone systems, the method of applying Schauder’s fixed
point theorem with the help of (generalized) upper-lower-solutions has been proved
to be very successful. Since the works [17] and [18], there have been a lot of works
done for various reaction-diffusion systems in past years. We refer the reader to, for
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examples, [10, 11, 13, 6, 12, 14, 5, 21] for 2-component systems and [9, 15, 20, 16, 3]
for 3-component systems. For 2-species case, there is a nice paper by Zhang and Jin
[21] which contains not only a quite complete collection of literature on the methods
of deriving traveling wave solutions, but also some valuable biological interpretations
of models. Moreover, the advection terms are also taken into consideration in [21].

The main contribution of this paper is the construction of suitable pairs of upper-
lower-solutions for the 3-speices predator-prey model (1.1)-(1.3). Just as the construc-
tion of Lyapunov functional in the study of asymptotic behavior for evolution systems,
if one can find a suitable Lyapunov functional then (plus some a priori estimates) the
asymptotic behavior of solutions can be readily derived. However, the construction
of upper-lower-solutions is by no means trivial in general, as it is well-known that a
Lyapunov functional for a given evolution systems is not always available. In this pa-
per, we are able to derive the existence of traveling wave solutions also for the critical
(minimal) speed based on an idea from [5]. In fact, the critical speed case is left open
in [15, 16, 3] and our method might be applicable for those models.

The traveling waves constructed in this paper are such that two predators propa-
gate simultaneously. Ecologically, this means that these two alien predators invade the
habitat of the aborigine prey with the same speed. This can be visualized by putting
the constructed wave on the negative x-axis and reflecting it on the positive x-axis,
so that an entire (in time) solution with two fronts is formed (formally). However, in
practice, these two predators may have different invading speeds to the habitat of the
prey. To find such traveling waves is a very interesting question. We leave it open
in this paper. On the other hand, as we mentioned earlier, the invading phenomenon
can also be studied by the (asymptotic) spreading speed(s). We provide here some
heuristic observation as follows. Assume that r1d1 > r2d2. At the leading edge of the
invading front, we have w = 1 (i.e., the prey is saturated). Without the predator v,
the predator u should propagate with the speed 2

√
d1r1(a− 1). In fact, this is the

case if the predator v propagate with a slower speed. However, this fact is not easy to
verify rigorously. We also leave this question as another open problem.

The rest of this paper is organized as follows. In section 2, we first give the
definition of upper-lower-solutions for system (1.5)-(1.7). Then we provide a theorem
for deriving the existence of solutions to (1.5)-(1.7) with a outline of its proof. In
section 3, we construct some suitable upper-lower-solutions for system (1.5)-(1.7) for
all speeds s ≥ s∗. This proves the first part of the existence of traveling waves to
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system (1.5)-(1.7) stated in Theorem 1.1. Then, in section 4, using the idea of shrinking
rectangles ([9, 5]) we derive the right-hand tail limit of wave profile obtained in section
3. It is worth to remark that our construction of two end points of these rectangles
is different from that in [9, 5]. Finally, in section 5, we provide a proof for the non-
existence part of Theorem 1.1. Hence the minimal wave speed is determined.

2. General theory

In this section, we shall provide a general framework for deriving the existence of
traveling wave solutions.

We first introduce the following definition of upper-lower-solution to (1.5)-(1.7).

Definition 2.1. Given s > 0. Continuous functions (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) de-

fined on R are called a pair of (generalized) upper-lower-solutions of (1.5)-(1.7) if ϕ
′′
i ,

ϕ′′
i
, ϕ

′
i, ϕ

′
i
, i = 1, 2, 3, are bounded functions such that the following inequalities hold:

U1(z) := d1ϕ
′′
1(z)− sϕ

′
1(z) + r1ϕ1(z)[−1− ϕ1(z)− kϕ

2
(z) + aϕ3(z)] ≤ 0,(2.1)

U2(z) := d2ϕ
′′
2(z)− sϕ

′
2(z) + r2ϕ2(z)[−1− hϕ

1
(z)− ϕ2(z) + aϕ3(z)] ≤ 0,(2.2)

U3(z) := d3ϕ
′′
3(z)− sϕ

′
3(z) + r3ϕ3(z)[1− bϕ

1
(z)− bϕ

2
(z)− ϕ3(z)] ≤ 0,(2.3)

L1(z) := d1ϕ
′′
1
(z)− sϕ′

1
(z) + r1ϕ1

(z)[−1− ϕ
1
(z)− kϕ2(z) + aϕ

3
(z)] ≥ 0,(2.4)

L2(z) := d2ϕ
′′
2
(z)− sϕ′

2
(z) + r2ϕ2

(z)[−1− hϕ1(z)− ϕ
2
(z) + aϕ

3
(z)] ≥ 0,(2.5)

L3(z) := d3ϕ
′′
3
(z)− sϕ′

3
(z) + r3ϕ3

(z)[1− bϕ1(z)− bϕ2(z)− ϕ
3
(z)] ≥ 0,(2.6)

for z ∈ R\E with some finite set E = {z1, z2, . . . , zm}.

Then a standard argument (cf., e.g., [17, 18, 9]) gives the following proposition
for the existence of solution to system (1.5)-(1.7).

Proposition 2.2. Given s > 0. Suppose that system (1.5)-(1.7) has a pair of upper-
lower-solutions (ϕ1, ϕ2, ϕ3) and (ϕ

1
, ϕ

2
, ϕ

3
) such that

ϕ
i
(z) ≤ ϕi(z), ∀ z ∈ R, i = 1, 2, 3,(2.7)

lim
z→z+j

ϕ
′
i(z) ≤ lim

z→z−j

ϕ
′
i(z), lim

z→z−j

ϕ′
i
(z) ≤ lim

z→z+j

ϕ′
i
(z), ∀ zj ∈ E, i = 1, 2, 3.(2.8)

Then system (1.5)-(1.7) has a solution (ϕ1, ϕ2, ϕ3) such that ϕ
i
≤ ϕi ≤ ϕi, i = 1, 2, 3.

Since the proof is by now very standard, we safely omit it. In fact, there are the
following major steps to derive the above existence theory.
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First, we transform the differential system to an integral system with operator P
so that the existence of a solution to the differential system is reduced to a fixed point
of P . Indeed, take a constant κ such that

κ > max{r1[1 + (2 + k)(a− 1)], r2[1 + (2 + h)(a− 1)], r3[1 + 2b(a− 1)]},

so that the function fi(y1, y2, y3) is non-decreasing in yi, i = 1, 2, 3, for (y1, y2, y3) ∈
[0, a− 1]× [0, a− 1]× [0, 1], where

f1(y1, y2, y3) := κy1 + r1y1(−1− y1 − ky2 + ay3),

f2(y1, y2, y3) := κy2 + r2y2(−1− hy1 − y2 + ay3),

f3(y1, y2, y3) := κy3 + r3y3(1− by1 − by2 − y3).

Then the operator P := (P1, P2, P3) is defined by

Pi(ϕ1, ϕ2, ϕ3)(z) :=
1

di(λi2 − λi1)

{∫ z

−∞
eλi1(z−s)fi(ϕ1(s), ϕ2(s), ϕ3(s))ds

+

∫ ∞

z

eλi2(z−s)fi(ϕ1(s), ϕ2(s), ϕ3(s))ds
}
, i = 1, 2, 3,

for z ∈ R, where λi1 < 0 < λi2 are roots to

diλ
2 − sλ− κ = 0, i = 1, 2, 3.

Secondly, using the pair of upper-lower-solutions, we define the set

Σ := {(ϕ1, ϕ2, ϕ3) | ϕi
≤ ϕi ≤ ϕi, i = 1, 2, 3}

and show that P maps Σ into itself. Indeed, this follows from the definition of upper-
lower-solutions and the choice of P .

Thirdly, we show that the operator P is completely continuous with respect to a
suitable complete weighted normed space on the nonempty bounded closed convex set
Σ. Then we are done, since Schauder’s fixed point theorem gives a fixed point of P in
Σ. For more details, we refer the reader to [9].

3. Upper-lower-solutions

This section is devoted to the construction of suitable upper-lower-solutions.

For s > s∗, we define λi to be the smaller positive root of gi(λ) = 0, where

(3.1) gi(λ) := diλ
2 − sλ+ ri(a− 1),
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for i = 1, 2. We also denote the larger positive root of gi(λ) = 0 by λ̂i, i = 1, 2.
Moreover, we let λ3 be the unique positive root of

d3λ
2 − sλ− r3 = 0.

Now, we introduce the following continuous functions

ϕ1(z) := min{β1e
λ1z, β1}, ϕ

1
(z) := β1max{eλ1z − q1e

µ1λ1z, 0},(3.2)

ϕ2(z) := min{β2e
λ2z, β2}, ϕ

2
(z) := β2max{eλ2z − q2e

µ2λ2z, 0},(3.3)

ϕ3(z) :≡ 1, ϕ
3
(z) := max{1− (eλ3z + peαλ3z), 1− aβ},(3.4)

where parameters β1 = β2 = a− 1, β ∈ [2b(a− 1)/a, 1/a), and µi > 1, qi > 1, i = 1, 2,
p > 0, α ∈ (0, 1) are positive constants to be determined. Note that the constant β is
admissible due to the last condition in (1.4).

Then we check that the above functions is a pair of upper-lower-solutions.

First, for z > 0, ϕ1(z) = β1, since ϕ
2
= 0 and ϕ3 ≡ 1 we have

U1(z) = r1β1(−1− β1 + a) = 0,

since β1 = a− 1. For z < 0, ϕ1(z) = β1e
λ1z gives

U1(z) = β1e
λ1z{d1λ2

1 − sλ1}+ r1β1e
λ1z{−1− β1e

λ1z + a− kϕ
2
(z)}

= −r1β1e
λ1z{β1e

λ1z + kϕ
2
(z)} ≤ 0,

using g1(λ1) = 0. Hence U1(z) ≤ 0 for all z ̸= 0.

Similarly, we can easily check that U2(z) ≤ 0 for all z ̸= 0.

For (2.3), since ϕ3 ≡ 1, we have

U3(z) = −r3b[ϕ1
(z) + ϕ

2
(z)] ≤ 0

for all z ∈ R.

Next, we claim that L3(z) ≥ 0 for all z ̸= z3, where z3 is defined by

eλ3z3 + peαλ3z3 = aβ.

Note that z3 < 0, since aβ < 1. For z > z3, ϕ3
(z) = 1 − aβ. Then, using ϕi(z) ≤ βi,

i = 1, 2, we obtain

L3(z) ≥ r3(1− aβ){aβ − b(β1 + β2)} ≥ 0,

since β ≥ 2b(a− 1)/a.
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For z < z3 < 0, we have

ϕ
3
(z) = 1− (eλ3z + peαλ3z), ϕi(z) = βie

λiz, i = 1, 2.

Hence we have

L3(z) = −eλ3z{d3λ2
3 − sλ3} − peαλ3z{d3(αλ3)

2 − s(αλ3)}

+r3{1− (eλ3z + peαλ3z)}{(eλ3z + peαλ3z)− bβ1e
λ1z − bβ2e

λ2z}

≥ −eλ3z{d3λ2
3 − sλ3 − r3} − peαλ3z{d3(αλ3)

2 − s(αλ3)− r3}

−r3{(eλ3z + peαλ3z)2 + bβ1e
λ1z + bβ2e

λ2z}

≥ eαλ3z
(
p{−[d3(αλ3)

2 − s(αλ3)− r3]}

−r3{aβe(1−α)λ3z + aβp+ bβ1e
(λ1−αλ3)z + bβ2e

(λ2−αλ3)z}
)

:= eαλ3zl3(z)

using (eλ3z + peαλ3z) ≤ aβ for all z < z3. Now, choosing a constant α such that

(3.5) 0 < α < min{λ1/λ3, λ2/λ3, α0},

where α0 is the positive constant such that

d3(α0λ3)
2 − s(α0λ3)− (1− aβ)r3 = 0.

Note that, by the definition of λ3, α0 < 1. Hence

d3(αλ3)
2 − s(αλ3)− (1− aβ)r3 < 0.

On the other hand, due to z3 < 0 and (3.5), we conclude that

l3(z) ≥ p{−[d3(αλ3)
2 − s(αλ3)− (1− aβ)r3]} − r3(aβ + bβ1 + bβ2) ≥ 0

for all z < z3, provided that

(3.6) p >
r3(aβ + bβ1 + bβ2)

−[d3(αλ3)2 − s(αλ3)− (1− aβ)r3]
.

Finally, set zi, i = 1, 2, to be the unique point such that Qi(zi) = 0, where

Qi(z) := eλiz − qie
µiλiz.

Note that zi < 0 and Qi(z) > 0 for z < zi, due to µi > 1 and qi > 1, for i = 1, 2.

For z > z1, ϕ1
(z) = 0 and so it is easy to see that L1(z) = 0. For z < z1, we have

ϕ
1
(z) = β1(e

λ1z − q1e
µ1λ1z), ϕ2(z) = β2e

λ2z, ϕ
3
(z) ≥ 1− (eλ3z + peαλ3z).
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Hence

L1(z)

≥ β1e
λ1z{d1λ2

1 − sλ1} − q1β1e
µ1λ1z{d1(µ1λ1)

2 − s(µ1λ1)}+ r1β1(e
λ1z − q1e

µ1λ1z) ·

{−1− β1(e
λ1z − q1e

µ1λ1z)− kβ2e
λ2z + a− a(eλ3z + peαλ3z)}

= β1e
λ1z{d1λ2

1 − sλ1 + r1(a− 1)} − q1β1e
µ1λ1z{d1(µ1λ1)

2 − s(µ1λ1) + r1(a− 1)}

−r1β1(e
λ1z − q1e

µ1λ1z){β1(e
λ1z − q1e

µ1λ1z) + kβ2e
λ2z + a(eλ3z + peαλ3z)}

≥ −q1β1e
µ1λ1z{d1(µ1λ1)

2 − s(µ1λ1) + r1(a− 1)}

−r1β1{β1e
2λ1z + kβ2e

(λ1+λ2)z + a(e(λ1+λ3)z + pe(λ1+αλ3)z)}

= β1e
µ1λ1z

(
q1{−[d1(µ1λ1)

2 − s(µ1λ1) + r1(a− 1)]} − r1 ·

{β1e
(2λ1−µ1λ1)z + kβ2e

(λ1+λ2−µ1λ1)z + a(e(λ1+λ3−µ1λ1)z + pe(λ1+αλ3−µ1λ1)z)}
)

:= β1e
µ1λ1zl1(z).

Now, we choose a constant µ1 such that

(3.7) 1 < µ1 < min{λ̂1/λ1, 2, 1 + λ2/λ1, 1 + αλ3/λ1}.

Due to z1 < 0 (using q1 > 1), we deduce that

l1(z) ≥ q1{−[d1(µ1λ1)
2 − s(µ1λ1) + r1(a− 1)]} − r1(β1 + kβ2 + a+ ap) ≥ 0

for all z < z1, provided that

(3.8) q1 > max

{
1,

r1(β1 + kβ2 + a+ ap)

−[d1(µ1λ1)2 − s(µ1λ1) + r1(a− 1)]

}
.

Similarly, we can show that L2(z) ≥ 0 for all z ̸= z2, provided that

1 < µ2 < min{λ̂2/λ2, 2, 1 + λ1/λ2, 1 + αλ3/λ2},(3.9)

q2 > max

{
1,

r2(hβ1 + β2 + a+ ap)

−[d2(µ2λ2)2 − s(µ2λ2) + r2(a− 1)]

}
.(3.10)

We summarize the above discussions as the following lemma.

Lemma 3.1. For s > max{2
√

r1d1(a− 1), 2
√

r2d2(a− 1)}, the functions (ϕ1, ϕ2, ϕ3)

and (ϕ
1
, ϕ

2
, ϕ

3
) defined by (3.2)-(3.4) are a pair of upper-lower-solutions of system

(1.5)-(1.7), provided that parameters α, p, µ1, q1, µ2, q2 are chosen such that conditions
(3.5)-(3.10) hold.

Next, we consider the critical speed case when s = s∗. In the sequel, without loss
of generality we may assume that r1d1 ≥ r2d2 so that s∗ = 2

√
r1d1(a− 1).
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We divide our discussions into two cases.

Case 1. r1d1 > r2d2. In this case, we have s = 2
√
r1d1(a− 1) and s > 2

√
r2d2(a− 1)

when s = s∗. Hence g1(λ) = 0 has a positive double root λ1 and g2(λ) = 0 has two
positive roots λ2, λ̂2 with λ2 < λ̂2. Following [5], we replace the functions in (3.2) by
(3.11)

ϕ1(z) :=

{
h1(−z)eλ1z, z ≤ z10,
β1, z ≥ z10,

ϕ
1
(z) :=

{
[h1(−z)− q1(−z)1/2]eλ1z, z ≤ z01,
0, z ≥ z01,

where h1 := β1λ1e, z10 := −1/λ1, z01 := −(q1/h1)
2 and q1 > 1 is a constant to

be determined. Also, s = 2d1λ1, due to that λ1 is a double root of g1(λ) = 0.
Similar to the above calculations, we can easily check that the functions (ϕ1, ϕ2, ϕ3)

and (ϕ
1
, ϕ

2
, ϕ

3
) defined by (3.11), (3.3) and (3.4) are a pair of upper-lower-solutions

of (1.5)-(1.7), provided that α, p, µ2, q2, q1 satisfy conditions to be specified below.

For reader’s convenience, we provide some necessary details as follows. First, it
is easy to see that

sup
z≤0

{(−z)νeγz} =

(
ν

γe

)ν

for any given positive constants ν and γ.

That U1(z) ≤ 0 for all z ̸= z10, U2(z) ≤ 0 for all z ̸= 0 and U3(z) ≤ 0 for all z ∈ R
are obtained by direct calculations.

For L3, as before, we have L3(z) ≥ 0 for all z > z3. For z < z3, we first choose
the constant α (instead of (3.5)) such that

(3.12) 0 < α < min{λ1/(2λ3), λ2/λ3, α0}.

Also, to make sure z3 < z10, we also choose p > aβ
√
e. Then the term (appeared

in l3(z) above) bβ1e
(λ1−αλ3)z becomes bh1(−z)e(λ1−αλ3)z. So, due to α < λ1/(2λ3), we

have the estimate

bh1(−z)e(λ1−αλ3)z ≤ bh1(−z)eαλ3z ≤ bh1

αλ3e
, ∀ z ≤ 0.

Then we choose p such that

(3.13) p > max

{
aβ

√
e,

r3[aβ + bh1/(αλ3e) + bβ2]

−[d3(αλ3)2 − s(αλ3)− (1− aβ)r3]

}
to conclude that L3(z) ≥ 0 for all z < z3.

Similar argument as for L3 and using

h1(−z)e(λ1+λ2−µ2λ2)z ≤ h1(−z)eµ2λ2z ≤ h1/(µ2λ2e),
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by choosing µ2 satisfying

(3.14) 1 < µ2 < min{λ̂2/λ2, 2, (1 + λ1/λ2)/2, 1 + αλ3/λ2}

and q2 satisfying

(3.15) q2 > max

{
1,

r2(β2 + hh1/(µ2λ2e) + a+ ap)

−[d2(µ2λ2)2 − s(µ2λ2) + r2(a− 1)]

}
,

we obtain that L2(z) ≥ 0 for all z < z2 and so L2(z) ≥ 0 for all z ̸= z2.

Finally, for L1, it is evident that L1(z) ≥ 0 for all z > z01. For z < z01, after a
simple computation, we end up with

L1(z) ≥ (−z)−3/2eλ1z
{1

4
d1q1 − r1(−z)3/2[h1(−z)− q1(−z)1/2]2eλ1z

−r1kβ2h1(−z)5/2eλ2z − r1ah1(−z)5/2(eλ3z + peαλ3z)
}

≥ (−z)−3/2eλ1z
{1

4
d1q1 − r1h

2
1(−z)7/2eλ1z

−r1kβ2h1(−z)5/2eλ2z − r1ah1(−z)5/2(eλ3z + peαλ3z)
}

≥ (−z)−3/2eλ1z
{1

4
d1q1 − r1h

2
1

(
7

2λ1e

)7/2

− r1kβ2h1

(
5

2λ2e

)5/2

−r1ah1

(
5

2λ3e

)5/2

− r1ah1p

(
5

2αλ3e

)5/2 }
≥ 0,

if we choose q1 > 1 such that

(3.16) q1 >
4r1h1

d1

[
h1

(
7

2λ1e

)7/2

+kβ2

(
5

2λ2e

)5/2

+a

(
5

2λ3e

)5/2

+ap

(
5

2αλ3e

)5/2 ]
.

We conclude that the functions defined by (3.11), (3.3) and (3.4) are a pair of upper-
lower-solutions of (1.5)-(1.7), provided that (3.12)-(3.16) hold.

Case 2. r1d1 = r2d2. In this case, we have s = 2
√
r1d1(a− 1) = s

√
r2d2(a− 1)

when s = s∗. Hence gi(λ) = 0 has a positive double root λi, i = 1, 2. Note that
s = 2d1λ1 = 2d2λ2. Then we replace the functions in (3.3) by
(3.17)

ϕ2(z) :=

{
h2(−z)eλ2z, z ≤ z20,
β2, z ≥ z20,

ϕ
2
(z) :=

{
[h2(−z)− q2(−z)1/2]eλ2z, z ≤ z02,
0, z ≥ z02,

where h2 := β2λ2e, z20 := −1/λ2, z02 := −(q2/h2)
2 and q2 > 1 is a constant to be

determined.

As in Case 1, we can verify that the functions (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) defined

by (3.11), (3.17) and (3.4) are a pair of upper-lower-solutions of (1.5)-(1.7), provided
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that α, p, q2 > 1 and q1 > 1 satisfy conditions

0 < α < min{λ1/(2λ3), λ2/(2λ3), α0},

p > max

{
aβ

√
e,

r3[aβ + bh1/(αλ3e) + bh2/(αλ3e)]

−[d3(αλ3)2 − s(αλ3)− (1− aβ)r3]

}
,

q2 >
4r2h2

d2

[
hh1

(
7

2λ1e

)7/2

+ h2

(
7

2λ2e

)7/2

+ a

(
5

2λ3e

)5/2

+ ap

(
5

2αλ3e

)5/2 ]
,

q1 >
4r1h1

d1

[
h1

(
7

2λ1e

)7/2

+ kh2

(
7

2λ2e

)7/2

+ a

(
5

2λ3e

)5/2

+ ap

(
5

2αλ3e

)5/2 ]
.

Combining this with Lemma 3.1 and Proposition 2.2, we conclude this section
with

Theorem 3.2. Under condition (1.4), for each s ≥ s∗, there is a bounded positive
solution (ϕ1, ϕ2, ϕ3) to system (1.5)-(1.7) such that (ϕ1, ϕ2, ϕ3)(−∞) = (0, 0, 1).

Indeed, the existence of a solution (ϕ1, ϕ2, ϕ3) to system (1.5)-(1.7) follows from
Proposition 2.2 and clearly this solution is nonnegative and bounded in R, due to
the properties of our constructed upper-lower-solutions. Moreover, it follows from the
strong maximum principle for scalar equation that each component of the solution is
positive in R. Hence Theorem 3.2 follows.

4. Existence of traveling wave solutions

To derive the existence of traveling wave connecting (0, 0, 1) and (u∗, v∗, w∗), it
suffices to derive the right-hand tail limit of (ϕ1, ϕ2, ϕ3) such that

(4.1) (ϕ1, ϕ2, ϕ3)(∞) = (u∗, v∗, w∗)

for solution (ϕ1, ϕ2, ϕ3) obtained in Theorem 3.2.

To derive the right-hand tail limit of wave profile, we need to make the further
restriction (1.9) on b. Moreover, we change the range of β from [2b(a − 1)/a, 1/a)

to (2b(a − 1)/a,min{1 − h, 1 − k}(a − 1)/a2). Note that, under condition (1.9), it is
evident that

∅ ̸= (2b(a− 1)/a,min{1− h, 1− k}(a− 1)/a2) ⊂ [2b(a− 1)/a, 1/a).

With this choice, the functions, (3.2)-(3.4), (3.11), (3.17), constructed before are also
upper-lower-solutions. Also, we have w∗ > 1− aβ.
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To proceed further, we set

ϕ−
i := lim inf

z→∞
ϕi(z), ϕ

+
i := lim sup

z→∞
ϕi(z), i = 1, 2, 3.

First, we prepare a lemma as follows.

Lemma 4.1. Let

(4.2) b1 ∈ (0, (a− 1)(1− k)− a2β], b2 ∈ (0, (a− 1)(1− h)− a2β].

Then ϕ−
i ≥ bi > 0, i = 1, 2.

Proof. We first consider (1.1) with (u, v, w)(x, t) = (ϕ1, ϕ2, ϕ3)(x + st). Using w =

ϕ3 ≥ 1− aβ and v = ϕ2 ≤ β2, it follows from (1.1) that u = ϕ1 satisfies

ut ≥ d1uxx + r1u{−1− kβ2 + a(1− aβ)− u}, x ∈ R, t > 0,

along with u(x, 0) = ϕ1(x). We compute that

−1− kβ2 + a(1− aβ) = (a− 1)(1− k)− a2β ≥ b1.

Recall that u(x, t) = ϕ1(x + st) for s ≥ s∗ > 0. Therefore, it follows from [1, 2] and
the comparison principle that

ϕ−
1 = lim inf

z→∞
ϕ1(z) = lim inf

z→∞
u(0, z/s) ≥ b1 > 0.

Similarly, we can derive that ϕ−
2 ≥ b2 > 0 and the lemma follows. �

Next, we follow a method used in [5] (see also [9]) by constructing a sequence of
shrinking rectangles as follows. For θ ∈ [0, 1], we define

m1(θ) := θu∗ + (1− θ)(b1 − ε), M1(θ) := (1− θ)(β1 + ε) + θu∗,

m2(θ) := θv∗ + (1− θ)(b2 − ε), M2(θ) := (1− θ)(β2 + ε) + θv∗,

m3(θ) := θw∗ + (1− θ)(b3 − ε2), M3(θ) := (1− θ)(β3 + ε2) + θw∗,

where β1 = β2 = a− 1, β3 := 1, b1 and b2 are defined by (4.2), b3 := 1− aβ and ε is a
small positive constant such that

(4.3) ε < min

{
1− h

a
,
1− k

a
,
aβ − 2b(a− 1)

2b
,
b1 + b2

2

}
.

One should note that the above choices of left and right endpoints of rectangles are
different from the ones in [9, 5].

It is clear that β1 > u∗, β2 > v∗ and β3 > w∗. By choosing b1 and b2 smaller,
if it is necessary, we can ensure that Lemma 4.1 holds such that 0 < b1 < u∗ and
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0 < b2 < v∗. Then, since w∗ > b3, we see that mi(θ) (resp. −Mi(θ)) is a monotone
increasing function of θ ∈ [0, 1], i = 1, 2, 3, such that

(m1,m2,m3)(1) = (M1,M2,M3)(1) = (u∗, v∗, w∗).

Then it suffices to show that the set

B := {θ ∈ [0, 1) | mi(θ) < ϕ−
i ≤ ϕ+

i < Mi(θ), i = 1, 2, 3.}

is nonempty and supB = 1.

Clearly, B is nonempty, since 0 ∈ B. Indeed, it follows from Lemma 4.1 and the
definitions of upper-lower-solutions that

m1(0) = b1 − ε < b1 ≤ ϕ−
1 ≤ ϕ+

1 ≤ β1 < β1 + ε = M1(0),

m2(0) = b2 − ε < b2 ≤ ϕ−
2 ≤ ϕ+

2 ≤ β2 < β2 + ε = M2(0),

m3(0) = b3 − ε2 < b3 ≤ ϕ−
3 ≤ ϕ+

3 ≤ β3 < β3 + ε2 = M3(0).

Hence 0 ∈ B and B ̸= ∅.

To show supB = 1, we argue by a contradiction and assume that supB = θ0 ∈
(0, 1). For notational simplicity, we omit the index and let θ = supB ∈ (0, 1). We
also set li = li(θ) and ri = ri(θ), i = 1, 2, 3, by

l1 := −1−m1(θ)− kM2(θ) + am3(θ), r1 := −1−M1(θ)− km2(θ) + aM3(θ),

l2 := −1− hM1(θ)−m2(θ) + am3(θ), r2 := −1− hm1(θ)−M2(θ) + aM3(θ),

l3 := 1− bM1(θ)− bM2(θ)−m3(θ), r3 := 1− bm1(θ)− bm2(θ)−M3(θ).

Then it is easy to verify, using condition (4.3), that

l1 ≥(1− θ)[ε(1− k − aε)] > 0, r1 = −(1− θ)[kb2 + ε(1− k − aε)] < 0,

l2 ≥(1− θ)[ε(1− h− aε)] > 0, r2 = −(1− θ)[hb1 + ε(1− h− aε)] < 0,

l3 = (1− θ){[aβ − 2b(a− 1)]− ε(2b− ε)} > 0,

r3 = −(1− θ)[b(b1 + b2 − 2ε) + ε2] < 0.

Now, by passing to the limit, we have

mi(θ) ≤ ϕ−
i ≤ ϕ+

i ≤ Mi(θ), i = 1, 2, 3,

for θ = supB. Then one of the following equalities must hold

ϕ−
i = mi(θ), ϕ

+
i = Mi(θ), i = 1, 2, 3,

since θ ̸∈ B.
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Finally, we derive a contradiction as follows. We only treat the case that ϕ−
1 =

m1(θ), since the other five cases are similar. Suppose that ϕ−
1 = m1(θ). If ϕ1 is

ultimately monotone, then ϕ1(∞) = m1(θ). By integrating (1.5) from 0 to n for any
n ∈ N, we obtain

(4.4) −d1ϕ
′
1(n)+d1ϕ

′
1(0)+sϕ1(n)−sϕ1(0) = r1

∫ n

0

ϕ1(z)(−1−ϕ1−kϕ2+aϕ3)(z)dz.

Since

lim inf
z→∞

{ϕ1(z)(−1− ϕ1 − kϕ2 + aϕ3)(z)} ≥ m1(θ)l1(θ) > 0,

the right-hand side of (4.4) tends to infinity as n → ∞. But, the left-hand side of
(4.4) is bounded uniformly for all n ∈ N, a contradiction.

On the other hand, suppose that ϕ1(z) is oscillatory as z → ∞. We then choose
a sequence of local minimal points {zn} of ϕ1 such that zn → ∞ and ϕ1(zn) → m1(θ)

as n → ∞. Note that d1ϕ
′′
1(zn)− sϕ′

1(zn) ≥ 0 for all n. But,

lim inf
n→∞

{ϕ1(zn)(−1− ϕ1 − kϕ2 + aϕ3)(zn)} ≥ m1(θ)l1(θ) > 0,

again a contradiction. We conclude that supB = 1 and so (4.1) is proved.

5. Determination of the minimal wave speed

In this section, we show that there are no traveling wave solutions with speed
s < s∗ connecting (0, 0, 1) to (u∗, v∗, w∗) for system (1.1)-(1.3). Hence we conclude
that s∗ is the minimal speed for traveling waves connecting (0, 0, 1) and (u∗, v∗, w∗).

Proposition 5.1. For s < s∗, system (1.5)-(1.7) has no positive solution such that
(1.8) holds.

Proof. For contradiction, suppose that there is a traveling wave solution of (1.1)-(1.3)
with speed s < s∗ = max{2

√
r1d1(a− 1), 2

√
r2d2(a− 1)}. Without loss of generality

we may assume that r1d1 ≥ r2d2. Hence s < 2
√

r1d1(a− 1).

First, we claim that s > 0. Indeed, since (ϕ1, ϕ2, ϕ3)(−∞) = (0, 0, 1) and a−1 > 0,
there is a sufficiently large constant R > 0 such that

−1− ϕ1(y)− kϕ2(y) + aϕ3(y) ≥ (a− 1)/2, ∀ y ≤ −R.
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By integrating (1.5) from −∞ to any z ≤ −R, we obtain

r1(a− 1)

2

∫ z

−∞
ϕ1(y)dy ≤ r1

∫ z

−∞
{ϕ1(−1− ϕ1 − kϕ2 + aϕ3)}(y)dy

= −d1ϕ
′
1(z) + sϕ1(z) ≤ −d1ϕ

′
1(z),

if s ≤ 0. Integrating over z from −∞ to any −R, we deduce that

r1(a− 1)

2

∫ −R

−∞

∫ z

−∞
ϕ1(y)dydz ≤ −d1ϕ1(−R) < 0,

a contradiction. This shows that s > 0.

Then the proposition can be proved as that of [5, Theorem 2.6] with the help of
the spreading property for logistic parabolic scalar equation derived by [1, 2].

For reader’s convenience, we provide some details as follows. First, we choose a
positive constant ϵ such that δ := a(1− ϵ)− kϵ− 1 > 0 and s < 2

√
r1d1δ. Note that

the function (u, v, w)(x, t) = (ϕ1, ϕ2, ϕ3)(x+ st) satisfies

(5.1) ut = d1uxx + r1u(−1− u− kv + aw), x ∈ R, t > 0,

such that u(x, 0) = ϕ1(x).

Next, due to (1.8), we can find two positive constants K1 and K2 such that

(5.2) (K1u+ w)(z) ≥ 1− ϵ, v(z) ≤ K2u(z) + ϵ, ∀z ∈ R.

Indeed, (5.2) can be easily seen by using (1.8), a positive lower bound for u in compact
interval, the positivity of w and the boundedness of v. It follows (5.1) and (5.2) that
u satisfies the inequality

ut ≥ d1uxx + r1u{δ − (1 + aK1 + kK2)u}, x ∈ R, t > 0.

Finally, setting y(t) := −(2
√
r1d1δ+s)t/2, we obtain from [1] and the comparison

principle that

lim inf
t→∞

u(y(t), t) ≥ a(1− ϵ)− kϵ− 1

1 + aK1 + kK2

> 0,

since |y(t)| < 2
√
r1d1δt for all t > 0 (using s > 0 and s < 2

√
r1d1δ). However, since

y(t) + st =
s− 2

√
r1d1δ

2
t → −∞ as t → ∞,

we have u(y(t), t) = ϕ1(y(t) + st) → 0 as t → ∞, a contradiction. This proves the
proposition. �
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Remark 5.2. We remark that the non-existence result also holds under a weaker
assumption on the right asymptotics than in (1.8), for example,

lim inf
z→∞

ϕ1(z) > 0, 0 < lim inf
z→∞

ϕ2(z) ≤ lim sup
z→∞

ϕ2(z) < ∞, lim inf
z→∞

ϕ3(z) > 0.

Indeed, (5.2) holds under the above weaker condition and so Proposition 5.1 follows.
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