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Abstract. The aim of this paper is to study the asymptotic behavior of solutions for

some reaction-diffusion systems in biology. First, we establish a Liouville type theorem

for entire solutions of these reaction-diffusion systems. Based on this theorem, we derive

the stabilization of the solutions of the reaction-diffusion system to the unique positive

constant state, under the condition that this positive constant state is globally stable in

the corresponding kinetic systems. Two specific examples about spreading phenomena from

ecology and epidemiology are given to illustrate the application of this theory.

1. Introduction

In this paper, we consider the following reaction-diffusion system

(1.1)
∂ui
∂t

= di∆ui + fi(u), x ∈ RN , t ∈ R, i = 1, · · · ,m,

where m,N ∈ N, di > 0 and fi : Rm → R is a C1 function for i = 1, · · · ,m. System (1.1)

arises in many ecological systems (such as predator-prey systems) and epidemic models. We

refer the reader to [3, 19, 18, 15, 10] and the references cited therein.

Throughout this paper we assume that the corresponding kinetic system of (1.1):

(1.2)
dui
dt

= fi(u), i = 1, · · · ,m

has a unique positive equilibrium u∗ := (u∗1, · · · , u∗m). In the study of biological and/or

epidemiological models, one of the fundamental questions is the long time behavior of their

solutions. In particular, when the unique equilibrium u∗ is globally stable for the kinetic

system and the spatial dependence is taken into account, it is interesting to see whether

u∗ is also stable for the reaction-diffusion system (1.1). Our first challenge of this paper

is to answer this question. We remark that a similar question was addressed in [15] for

reaction-diffusion systems on bounded domains with zero Neumann boundary condition.
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In the following, we give two interesting examples, one in ecology and the other in epi-

demiology, of reaction-diffusion system (1.1).

The first example is the control of introduced rabbits to protect native birds from in-

troduced cat predation in an island. When we consider the case without rabbits and the

control(s), the full 3-species model is reduced to

Bt = db∆B + rb

(
1− B

K

)
B − µC, x ∈ RN , t > 0,(1.3)

Ct = dc∆C + rc

(
1− µ

C

B

)
C, x ∈ RN , t > 0,(1.4)

where db, dc, rb, rc, K, µ are positive constants. In (1.3)-(1.4), the function B (C, resp.)

denotes the population density of birds (cats, resp.), db (dc, resp.) is the diffusion coefficient

of birds (cats, resp.), the parameter µ is the intake of birds per individual cat per unit time

and K is the carrying capacity of the birds. For the detailed biological background of the full

3-species model, we refer the reader to [4, 5]. Since the birds population B(x, t) may reach

zero in a finite time for some point x so that (1.4) becomes singular, we call system (1.3)-

(1.4) a singular predator-prey system. For the recent studies of this singular predator-prey

system, we refer the reader to [13, 9, 11, 12, 2].

The second example is the following epidemic model

St = d1∆S + µ− µS − βSI

1 + αI
, x ∈ RN , t > 0,(1.5)

It = d2∆I +
βSI

1 + αI
− (µ+ σ)I, x ∈ RN , t > 0,(1.6)

from an SIR (susceptible-infective-removed) epidemic model. Here the parameters µ, β, α, σ

are all positive constants in which µ denotes the death rates of susceptible, infective and

removed populations. The parameter σ is the removed/recovery rate, β is the infective

transmission rate and α is the saturation level in the Holling type II incidence function.

Since the equation for the removed population is decoupled from the equations for S and I,

the study of the full SIR model is reduced to system (1.5)-(1.6). We refer to, e.g., [1, 17] for

more description of this SIR model.

We now state the following Liouville-type theorem, one of the main theorems in this paper.

Theorem 1.1. Let u = (u1, · · · , um) be an entire solution of the reaction-diffusion sys-

tem (1.1) such that ci ≤ ui ≤ Ci on RN × R for some positive constants ci and Ci for

i = 1, · · · ,m. Assume further that the kinetic system (1.2) admits a nonnegative bounded

Lyapunov functional of the form:

F (u) =
m∑
i=1

Fi(ui), u ∈ Rm
+ ,



STABILIZATION OF REACTION-DIFFUSION SYSTEMS 3

where Fi : [ci, Ci] → [0,+∞) is a strictly convex C2 function with Fi(u
∗
i ) = 0 for each i such

that

(1.7)
m∑
i=1

F ′
i (ui)fi(u) ≤ −νF (u), u ∈

m∏
i=1

[ci, Ci],

for some positive constant ν. Then u ≡ u∗.

One of the typical examples of Lyapunov functional (cf. [6, 9, 7]) is

Fi(ui) := aig(ui/u
∗
i ), g(z) := z − 1− ln(z),

for some positive constant ai, i = 1, · · · ,m. Here an entire solution is defined to be a classical

solution which exists for all t ∈ R.
The main idea of the proof of Theorem 1.1 is to find a suitable Lyapunov functional

for the reaction-diffusion system (1.1) with a Lyapunov functional of the kinetic system

(1.2) at hand. For a reaction-diffusion system on a bounded domain with zero Neumann

boundary condition, in [15], the authors take the integral of a Lyapunov functional for the

kinetic system (1.2) over the spatial domain to obtain a Lyapunov functional of the original

reaction-diffusion system. However, such construction is impossible for the Cauchy problem,

since a Lyapunov functional for the kinetic system is not integrable on the whole space.

Hence it is natural to put a suitable weight (or, cut-off) function so that the Lyapunov

functional is integrable over the whole space and becomes a Lyapunov functional of the

reaction-diffusion system. Such an idea was used in, e.g., [9, 8, 7]. The innovative feature

of Theorem 1.1 is that it holds for any spatial dimension N and without any restrictions on

the diffusion coefficients.

Remark 1.2. As a consequence, the restriction N ≤ 2 in [9, Theorem 1.5(ii)] can be

removed. Hence Theorem 1.5 in [9] holds for all k ∈ (0, 1/s0) in which s0 ∈ (1/5, 1/4) is the

unique positive root of the polynomial 32s2+16s2−s−1. Also, the equal diffusion condition

in [8, Theorem 2.6] is not needed. Furthermore, most results of [7] for one spatial dimension

can be extended to general N dimension. To see this, first we note that [7, Lemmas 4.1-4.3]

hold for any spatial dimension N . Secondly, [7, Lemma 3.2] (one of the key lemmas) can be

proved by the same argument along any direction e (as that in [8]) so that it holds for any

dimension N . Thirdly, other results in section 3 of [7] can be easily extended to general N

dimension. Hence Theorems 2.1-2.3 and 2.5 in [7] hold for general N dimension. Note that

Theorem 2.4 of [7] holds (with the same proof) for any spatial dimension.

For the above mentioned singular predator-prey system (1.3)-(1.4) and epidemic model

(1.5)-(1.6), we immediately obtain two new results by applying Theorem 1.1.

For the singular predator-prey system, we have
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Theorem 1.3. Suppose that rb ≥ 4. Let (B,C) be the solution of (1.3)-(1.4) supplemented

with the initial condition

(1.8) B(x, 0) = B0(x)∈ [BK,K], C(x, 0) = C0(x) ≤ K/µ, x ∈ RN ,

where B := 1/2 −
√

1/4− 1/rb > 0 and C0(x) is a nonnegative continuous function with

nonempty support. Then, for any c ∈ (0, c∗),

(1.9) lim
t→∞

sup
|x|≤ct

{|B(x, t)−B∗|+ |C(x, t)− C∗|} = 0,

where c∗ := 2
√
dcrc and (B∗, C∗) := (K(1− 1/rb), K(1− 1/rb)/µ).

Next, it is easy to see that the disease-free state (1, 0) is a constant state of (1.5)-(1.6). If

we further assume that

(1.10) β > µ+ σ=: θ,

then there is the unique positive equilibrium state (S∗, I∗), where

S∗ :=
θ + αµ

β + αµ
, I∗ :=

µ

θ
(1− S∗).

We have the following theorem on the asymptotic behavior of system (1.5)-(1.6).

Theorem 1.4. Let the condition (1.10) be enforced and let c∗ := 2
√
d2(β − θ). Then for

any solution (S, I) of (1.5)-(1.6) with the initial condition

(1.11) S(x, 0) = S0(x)∈ [S, 1], I(x, 0) = I0(x) ≤ κ :=
β − θ

αθ
, x ∈ RN ,

for some positive constant S ∈ (0, 1), where I0(x) is a non-negative continuous function with

nonempty support, we have

(1.12) lim
t→∞

sup
|x|≤ct

{|S(x, t)− S∗|+ |I(x, t)− I∗|} = 0

for any c ∈ (0, c∗).

The rest of this paper is organized as follows. We first give a proof of Theorem 1.1

in section 2. Then we study the singular predator-prey system (1.3)-(1.4) in section 3 to

prove Theorem 1.3, and the epidemic model (1.5)-(1.6) in section 4 to prove Theorem 1.4,

respectively. Finally, in section 5, we provide a detailed proof of (4.2) (below in §4).
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2. Proof of Theorem 1.1

Proof. For a given R > 0, motivated by the proof of [7, Lemma 4.1], we introduce the

functional

(2.1) FR(t) = FR[u](t) :=

∫
RN

ρ(x)F (u(x, t))dx,

where

ρ(x) := exp
(
− (1 + |x|2)1/2

R

)
, x ∈ RN .

It is easy to check that

(2.2) max
RN

ρ = e−1/R < 1, ∆ρ ≤ ρ

R2
.

Since F is nonnegative and bounded on
∏m

i=1[ci, Ci], the functional FR(t) is well-defined,

nonnegative and uniformly bounded.

We compute the time derivative of (2.1) and substitute (1.1) to obtain

d

dt
FR(t) =

m∑
i=1

∫
RN

ρ(x)[diF
′
i (ui)∆ui] dx+

m∑
i=1

∫
RN

ρ(x)F ′
i (ui)fi(u) dx.

Note that, since ci ≤ ui ≤ Ci for 1 ≤ i ≤ m, by the parabolic regularity theory we obtain

that {∇ui | 1 ≤ i ≤ m} are uniformly bounded in RN for all t ∈ R. Then, using the

integration by parts and the exponential decay of ρ and ∇ρ, we obtain

d

dt

∫
RN

ρ(x)F (u(x, t)) dx+
m∑
i=1

∫
RN

ρ(x)diF
′′
i (ui)|∇ui|2 dx

= −
m∑
i=1

∫
RN

di∇ρ(x) · ∇Fi(ui) dx+
m∑
i=1

∫
RN

ρ(x)F ′
i (ui)fi(u) dx

=
m∑
i=1

∫
RN

[di∆ρ(x)]Fi(ui) dx+
m∑
i=1

∫
RN

ρ(x)F ′
i (ui)fi(u) dx

≤ −
(
ν − max{di}

R2

)∫
RN

ρ(x)F (u(x, t)) dx,

by (1.7) and (2.2). It follows from F ′′
i ≥ 0 for all i that

(2.3)
d

dt
FR(t) ≤ −ν

2
FR(t), ∀ t ∈ R,

if we choose R sufficiently large. It follows from (2.3) that FR(t)e
νt/2 is non-increasing in

t ∈ R. Since FR(t) ≥ 0 for all t and FR(t)e
νt/2 → 0 as t → −∞ due to the uniform

boundedness of FR, we obtain

(2.4) FR(t) = 0, ∀ t ∈ R, ∀R ≫ 1.

Consequently, F (u(x, t)) = 0 for all x ∈ RN , t ∈ R. Hence the theorem is proved. �
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3. The singular predator-prey system

In this section, we study the singular predator-prey system and prove Theorem 1.3. In

the sequel, for notational simplicity (with a suitable scaling), we set

db = d > 0, dc = 1, K = 1, µ = 1

in (1.3)-(1.4). Then system (1.3)-(1.4) is reduced to

(3.1)

Bt = d∆B + rb (1−B)B − C, x ∈ RN , t > 0,

Ct = ∆C + rc (1− C/B)C, x ∈ RN , t > 0.

Suppose that rb ≥ 4. Let (B,C) be a solution of system (3.1) with the initial condition

B(x, 0) = B0(x)∈ [B, 1], C(x, 0) = C0(x) ≤ 1, x ∈ RN ,

where the function C0(x) is a nonnegative continuous function with non-empty compact

support. Then the solution (B,C) exists globally in time and satisfies (cf. [2])

(3.2) B ≤ B(x, t) ≤ 1, 0 ≤ C(x, t) ≤ 1, x ∈ RN , t > 0.

Moreover, we have the following spreading property for the predator from [2, Theorem 2.1]:

(3.3) lim inf
t→∞

inf
|x|≤ct

C(x, t) ≥ B, ∀ c ∈ (0, c∗),

where c∗ = 2
√
rc. One may notice that it only requires the condition that B0(x) ∈ [B, 1] in

the proof of [2, Theorem 2.1].

In order to apply Theorem 1.1, we first verify condition (1.7) in the following lemma.

Lemma 3.1. The associated kinetic system of (3.1) admits a Lyapunov functional F such

that condition (1.7) holds for (B,C) ∈ [B, 1]× [m, 1] for some positive constant ν, where m

is a positive constant in (0, 1).

Proof. Consider the function F = F (B,C) (cf. [6, 10]) defined by

F (B,C) := F1(B) + F2(C), B ∈ [B, 1], C ∈ [m, 1],

where

F1(B) := rc

[
(B −B∗)−B∗ ln

( B
B∗

)]
, F2(C) := (C − C∗)− C∗ ln

( C
C∗

)
.

Then the directional derivative of F along the vector (rbB(1−B)−C, rcC(1−C/B)), denoted

by X F , is calculated as

(X F )(B,C) = rc(B −B∗)
{
rb(1−B)− C

B

}
+ rc(C − C∗)

(
1− C

B

)
.
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Note that

rb(1−B)− C

B
= −

(
rb −

1

B

)
(B −B∗)− C − C∗

B
,

(C − C∗)
(
1− C

B

)
=

(C − C∗)(B −B∗)

B
− (C − C∗)2

B
,

using B∗ = C∗ = 1− 1/rb. Thus

(3.4) (X F )(B,C) = −rc
(
rb −

1

B

)
(B −B∗)2 − rc

B
(C − C∗)2.

Since B ≥ B, we have

rb −
1

B
≥ rb −

1

B
=

1

B
(rbB − 1) > 0.

It follows from (3.4) that

(3.5) (X F )(B,C) ≤ −rc
B
(rbB − 1)(B −B∗)2 − rc(C − C∗)2, ∀ (B,C) ∈ [B, 1]× [m, 1].

Using (3.5), we claim that there exists a sufficiently small positive constant ν such that

(3.6) X F (B,C) ≤ −νF (B,C), ∀ (B,C) ∈ [B, 1]× [m, 1].

Indeed, given γ and Γ such that 0 < γ < 1 < Γ <∞. Then for any positive constant a there is

a small enough positive constant b = b(a, γ) such that h(x) := −a(x−1)2+b[(x−1)−lnx] ≤ 0

for all x ∈ [γ,Γ]. This follows from h(0+) = ∞, h(1) = h′(1) = h′(b/(2a)) = 0 and h′′(1) < 0,

if b is chosen so that b < 2aγ. Hence, for

γ := B/B∗,Γ := 1/B∗, a :=
rc(B

∗)2

B
(rbB − 1), b ∈ (0, 2aγ),

we obtain

−a
(
B

B∗ − 1

)2

≤ −b
[(

B

B∗ − 1

)
− ln

(
B

B∗

)]
, ∀B ∈ [B, 1].

Similarly, for

γ1 := min{1/2,m/C∗},Γ1 := 1/C∗, a1 := rc(C
∗)2, b1 ∈ (0, 2a1γ1),

we have

−a1
(
C

C∗ − 1

)2

≤ −b1
[(

C

C∗ − 1

)
− ln

(
C

C∗

)]
, ∀C ∈ [m, 1].

Hence (3.6) holds if the constant ν is chosen so that

0 < ν < min {2(rbB − 1), 2min{C∗/2,m}rc} .

Hence (1.7) is deduced and the lemma is proved. �

Now we are ready to apply Theorem 1.1 to prove Theorem 1.3.
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Proof of Theorem 1.3. We use a contradiction argument. Suppose that there exist c0 ∈
(0, c∗), δ > 0 and a sequence {(xk, tk)} ⊂ RN × (0,∞) with tk → ∞ and |xk| ≤ c0tk such

that

(3.7) |B(xk, tk)−B∗|+ |C(xk, tk)− C∗| ≥ δ, ∀ k ∈ N.

Consider the sequence of functions

Bk(x, t) := B(x+ xk, t+ tk), Ck(x, t) := C(x+ xk, t+ tk).

By (3.3) with c ∈ (c0, c
∗), there exists a positive constant τ large enough such that

(3.8) B/2 ≤ Ck(x, t) ≤ 1, if |x+ xk| ≤ c(t+ tk) and t+ tk ≥ τ .

Then, using (3.2), (3.8) and the standard parabolic estimates, there is a subsequence of

{(Bk, Ck)}, still denoted by {(Bk, Ck)}, such that

(Bk, Ck) → (B∞, C∞) as k → ∞

locally uniformly on RN × R, where (B∞, C∞) is an entire solution of (3.1) such that B ≤
B∞ ≤ 1 and B/2 ≤ C∞ ≤ 1. Hence (B∞, C∞) ≡ (B∗, C∗), by Lemma 3.1 and Theorem 1.1.

This contradicts (3.7) and so we finish the proof. �

4. The epidemic model (1.5)-(1.6)

In this section, we study the epidemic model and prove Theorem 1.4. Let (S, I) be a

solution of (1.5)-(1.6) with the initial condition (1.11). Then we have

(4.1) κ1 ≤ S(x, t) ≤ 1, 0 ≤ I(x, t) ≤ κ, x ∈ RN , t ≥ 0,

for some positive constant κ1 := min{S, αµ/(β+αµ)}. Indeed, the lower bound of S follows

from the fact that the constant κ1 is a subsolution (for any I ≥ 0) of (1.5). The others can

be seen by the comparison principle (cf. [14]).

When S0 ≡ 1, as noted in [14, section 4], we have

(4.2) lim inf
t→∞

inf
|x|≤ct

I(x, t) > 0, ∀ c ∈ (0, c∗),

where c∗ = 2
√
d2(β − θ). In fact, (4.2) holds for any initial data satisfying the condition in

(1.11) by an argument used in [7, 8]. For the reader’s convenience, we provide the detailed

proof of (4.2) in the next section.

Now, we check that the associated kinetic system of (1.5)-(1.6) has a Lyapunov functional

F (S, I) := (1 + αI∗)[(S − S∗)− S∗ ln(S/S∗)] + [(I − I∗)− I∗ ln(I/I∗)],
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such that the property (1.7) holds for (S, I) ∈ [ε, 1]× [ε, κ] for any small ε > 0 (see also [16]).

To see this, we first compute the directional derivative of F along the vector

(µ− µS − βSI/(1 + αI), βSI/(1 + αI)− (µ+ σ)I),

denoted by X F , as follows

X F (S, I)

= (1 + αI∗)
1

S
(S − S∗)

{
µ(1− S)− βSI

1 + αI

}
+

1

I
(I − I∗)

{
βSI

1 + αI
− (µ+ σ)I

}
= (1 + αI∗)

1

S
(S − S∗)

{
µ(S∗ − S) +

βS∗I∗

1 + αI∗
− βSI

1 + αI

}
+
1

I
(I − I∗)

{
βSI

1 + αI
− βS∗I∗

1 + αI∗
− (µ+ σ)(I − I∗)

}
= −(1 + αI∗)

[
µ

S
+

βI∗

(1 + αI∗)S

]
(S − S∗)2 −

[
µ+ σ

I
− βS∗

(1 + αI∗)I

]
(I − I∗)2

+(1 + αI∗)

(
βI∗

1 + αI∗
− βI

1 + αI

)
(S − S∗) +

(
βS

1 + αI
− βS∗

1 + αI∗

)
(I − I∗).

Moreover, since µ+ σ = βS∗/(1 + αI∗) and

(1 + αI∗)

(
βI∗

1 + αI∗
− βI

1 + αI

)
(S − S∗) +

(
βS

1 + αI
− βS∗

1 + αI∗

)
(I − I∗)

=

{
− β

1 + αI
+

β

1 + αI∗

}
(S − S∗)(I − I∗)− αβS

(1 + αI)(1 + αI∗)
(I − I∗)2

=
αβ(S − S∗)

(1 + αI)(1 + αI∗)
(I − I∗)2 − αβS

(1 + αI)(1 + αI∗)
(I − I∗)2

= − αβS∗

(1 + αI)(1 + αI∗)
(I − I∗)2,

we obtain

(4.3) X F (S, I) = −
[
µ(1 + αI∗)

S
+
βI∗

S

]
(S − S∗)2 − αβS∗

(1 + αI)(1 + αI∗)
(I − I∗)2.

Using (4.3) and following the same proof as that in Lemma 3.1, we can find a positive

constant ν (depending on ε) such that condition (1.7) holds.

We are ready to give a proof of Theorem 1.4 as follows.

Proof of Theorem 1.4. We repeat the proof of Theorem 1.3. Suppose, on the contrary, that

there exist c0 ∈ (0, c∗), δ > 0 and a sequence {(xk, tk)} ⊂ RN × (0,∞) with tk → ∞ and

|xk| ≤ c0tk such that

|S(xk, tk)− S∗|+ |I(xk, tk)− I∗| ≥ δ, ∀ k ∈ N.
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Then the sequence {(Sk, Ik)}, defined by

Sk(x, t) := S(x+ xk, t+ tk), Ik(x, t) := I(x+ xk, t+ tk),

has a subsequence, still denoted by {(Sk, Ik)}, such that

(Sk, Ik) → (S∞, I∞) as k → ∞

locally uniformly on RN × R. Then, by (4.1), (S∞, I∞) is a nonnegative bounded entire

solution of (1.5)-(1.6) such that κ1 ≤ S∞ ≤ 1 and 0 ≤ I∞ ≤ κ. Also, by (4.2) with

c ∈ (c0, c∗), there exists a positive constant ε0 > 0 such that I∞(x, t) ≥ ε0 for all x ∈ RN

and t ∈ R. Therefore, Theorem 1.4 follows by applying Theorem 1.1. �

5. Proof of (4.2)

In this section, we provide a proof of the property (4.2) when the initial data (S0, I0)

satisfying the condition in (1.11). The idea of the proof is motivated by [7, 8]. We only

present here the case when N = 1. The general higher dimensional case can be proved by

taking all possible directions e ∈ SN−1 as that in [8].

We divide our discussion into the following three steps.

Step 1. claim that for any c ∈ [0, c∗) there exists a positive constant δ1(c), independent

of (S0, I0), such that

(5.1) lim sup
t→∞

I(ct, t) ≥ δ1(c).

For contradiction, we assume that there are sequences {(S0,n, I0,n)} and {tn} with tn → ∞
as n→ ∞ such that

lim
n→∞

sup
t≥tn

In(ct, t) = 0,

where (Sn, In) is the corresponding solution of (1.5)-(1.6) with initial datum (S0,n, I0,n). For

any R > 0, by passing to the limit as n → ∞ and applying the strong maximum principle,

we obtain

(5.2) lim sup
n→∞

{ sup
t≥tn,|x−ct|≤R

In(x, t)} = 0.

Next, for any xn ∈ [ct−R, ct+R], by extracting a subsequence with the help of standard

parabolic estimates, the limit

(S∞, I∞)(x, t) := lim
n→∞

(Sn, In)(x+ xn, t+ tn), x ∈ R, t ∈ R,

exists and is an entire solution of (1.5)-(1.6). Since I∞(0, t) = 0 for all t > 0 due to (5.2),

I∞ ≡ 0 by the strong maximum principle. Hence S∞ satisfies

(S∞)t = d1∆S∞ + µ− µS∞, x ∈ R, t ∈ R.
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Note that 1 ≥ S∞ ≥ κ1 in R× R, by (4.1). Hence S∞ ≡ 1. This proves that

(5.3) lim sup
n→∞

{ sup
|x−ct|≤R,t≥tn

Sn(x, t)} = 1.

Now, due to c < c∗, there is a small positive constant η such that

c2

4d2
< β(1− 3η)− (µ+ σ).

Also, there is R large enough such that

λ1
R2

< (θ1 − βη)− c2

4d2
, θ1 := β(1− 2η)− (µ+ σ),

where λ1 > 0 is the principal eigenvalue of the eigenvalue problem

(5.4) −d2∆ϕ(x) = λ1ϕ(x), |x| < 1, ϕ(x) = 0, |x| = 1.

Hereafter we fix an eigenfunction ϕ so that∫
|x|≤1

ϕ(x)dx = 1.

Then for a fixed sufficiently large n it follows from (1.5), (5.2) and (5.3) that

(In)t(x, t) ≥ d2∆In(x, t) + β(1− η)
In(x, t)

1 + η
− (µ+ σ)In(x, t)

for all x ∈ (ct−R, ct+R), t ≥ tn. Note that (1− η)/(1 + η) > 1− 2η for any η > 0. Hence

the function În(x, t) := In(x+ ct, t) satisfies

(În)t(x, t) ≥ d2∆În(x, t) + c(În)x(x, t) + θ1În(x, t), |x| < R, t ≥ tn.

On the other hand, it follows from (5.4) that the function ψ(x) := e
− cx

2d2 ϕ (x/R) satisfies

−d2∆ψ(x)− cψx =

(
λ1
R2

+
c2

4d2

)
ψ, |x| < R, ψ(x) = 0, |x| = R.

Then, by comparison, we obtain that

(5.5) În(x, t) ≥ Aeβηte
− cx

2d2 ϕ
( x
R

)
, |x| ≤ R, t ≥ tn,

if the positive constant A is chosen small enough such that

În(x, tn) ≥ Aeβηtne
− cx

2d2 ϕ
( x
R

)
, |x| ≤ R.

Putting x = 0 in (5.5), we obtain

lim
t→∞

In(ct, t) = lim
t→∞

În(0, t) = ∞,

which is a contradiction to the boundedness of In. Hence the claim (5.1) is proved.

Step 2. claim that for any c ∈ [0, c∗) there exists a positive constant δ2(c), independent

of (S0, I0), such that

(5.6) lim inf
t→∞

I(ct, t) ≥ δ2(c).
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To this aim, we follow the proof of [7, Lemma 3.2]. Proceed by a contradiction and assume

that there are sequences {(S0,n, I0,n)} and {tn} with tn → ∞ as n→ ∞ such that

(5.7) lim
n→∞

In(ctn, tn) = 0,

where (Sn, In) is the solution of (1.5)-(1.6) with initial datum (S0,n, I0,n). On the other hand,

by (5.1), we can choose a time sequence {t′n} with t′n < tn for all n, t′n → ∞ as n→ ∞ and

In(ct
′
n, t

′
n) ≥

δ1(c)

2
, ∀n.

Then we define

τn := sup{t ≥ t′n | In(ct, t) ≥ δ1(c)/2}.

It easy to see that

(5.8) In(cτn, τn) = δ1(c)/2, In(ct, t) ≤ δ1(c)/2, ∀ t ∈ (τn, tn).

Next, up to extraction of a subsequence, we have

(Sn, In)(x+ cτn, t+ τn) → (S∞, I∞)(x, t) as n→ ∞

locally uniform in R × R, where (S∞, I∞) is an entire solution of (1.5)-(1.6). Note that

tn − τn → ∞ as n → ∞. Otherwise, if (up to extraction of a subsequence) {tn − τn}
converges to a finite limit τ0, then

I∞(cτ0, τ0) = lim
n→∞

In(c(tn − τn) + cτn, (tn − τn) + τn) = lim
n→∞

In(ctn, tn) = 0,

by (5.7). It follows from the strong maximum principle that I∞ ≡ 0, which contradicts with

I∞(0, 0) = δ1(c)/2 due to (5.8). Hence tn − τn → ∞ as n → ∞. This together with (5.8)

also implies that

I∞(ct, t) ≤ δ1(c)/2, ∀ t ≥ 0,

a contradiction to (5.1). Therefore, claim (5.6) is proved.

Step 3. we derive (4.2) by a contradiction argument. We only consider the case x ∈ [0, ct].

The case for x ∈ [−ct, 0] can be done similarly.

For a contradiction, we assume that there are sequences {(S0,n, I0,n)} and {(cn, tn)} with

tn → ∞ as n→ ∞ and cn ∈ [0, c] for all n such that

(5.9) lim
n→∞

In(cntn, tn) = 0.

Without loss of generality, we may assume that cn → ĉ ∈ [0, c]. Set

t′n := cntn/c0, c0 := (ĉ+ c∗)/2 ∈ (ĉ, c∗).
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Then {t′n} has no bounded subsequences. Otherwise, up to extraction of a subsequence,

suppose that cntn → x0 ∈ R as n → ∞ for some x0 ∈ R. Note that, up to extraction of a

subsequence, the limit function

(S∞, I∞)(x, t) := lim
n→∞

(Sn, In)(x+ cntn, t+ tn)

is an entire solution of (1.5)-(1.6) such that I∞(0, 0) = 0 and so, by the strong maximum

principle, I∞ ≡ 0. However, as n→ ∞ we have

In(0, tn) = In(−cntn + cntn, tn) → I∞(−x0, 0) = 0,

which contradicts (5.6) with c = 0. Hence we may assume without loss of generality that

t′n → ∞ as n→ ∞.

Next, by (5.6), we have

lim inf
t→∞

In(c0t, t) ≥ δ2(c0) for all n.

It follows from the fact t′n → ∞ as n→ ∞ that

t′n < tn, In(cntn, t
′
n) = In(c0t

′
n, t

′
n) ≥ δ2(c0)/2, ∀n≫ 1.

Then we introduce

τn := sup{t ≥ t′n | In(cntn, t) ≥ δ0}, δ0 := min{δ2(c0)/2, δ1(0)/2}.

Note that In(cntn, τn) = δ0 for all n large due to (5.9). As before, we have tn − τn → ∞ as

n → ∞, by a limiting argument with the help of the strong maximum principle. It follows

that, up to extraction of a subsequence,

(Sn, In)(x+ cntn, t+ τn) → (S∞, I∞)(x, t) as n→ ∞

locally uniform in R× R, where (S∞, I∞) is an entire solution of (1.5)-(1.6) such that

I∞(0, 0) = δ0, I∞(0, t) ≤ δ0, ∀ t ≥ 0.

This contradicts (5.1) with c = 0. The proof is thereby complete. �
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