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Abstract. We study the structure of stationary solutions of a micro-electro mechanical

system with fringing field. It is known that there is a positive critical value such that no

stationary solutions exist for the applied voltage beyond this critical value, at least two

stationary solutions exist for the applied voltage below this critical value and there is a

unique stationary solution at this critical value. In this paper, we verify that there are

exactly two solutions below this critical value analytically. Moreover, the stability of the

smaller stationary solutions is derived.

1. Introduction

In this paper, we are concerned with the dynamic deflection of an elastic membrane inside

a micro-electro mechanical system (MEMS). We consider the case when the distance between

the plate and the membrane is relative small compared to the length of the device. In the case

when we ignore the inertia, the device embedded in an electric circuit without a capacitor,

and the system is with the fringing field, the equation describing the operation of the MEMS

is reduced to the following single parabolic equation

(1.1) ut = ∆u+ λ
1 + δ|∇u|2

(1− u)2
, x ∈ Ω ⊂ RN , t > 0,

where λ and δ are positive constants, λ is proportional to the square of the applied voltage,

δ|∇u|2 describes the fringing field, Ω is the domain of the plate and u = u(x, t) denotes the

deflation of the membrane. Here we normalized the gap between the membrane and the

plate on the boundary to be 1. Since the edge of the membrane is kept fixed, we have the

zero Dirichlet boundary condition for u on the boundary of Ω.

For the physical background of MEMS, we refer the reader to, e.g., [22, 23, 24, 18]. There

were extensive works on the analysis of MEMS model, we refer the reader to [13, 3, 6, 8,
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4, 5, 14, 9, 16, 15, 10, 11] for model without fringing field, and [26, 1, 20, 25, 7, 19, 21] for

model with fringing field. However, there are still many interesting mathematical questions

open, especially for model with fringing field (see, e.g., [26]).

In this paper, we are mainly interested in the stationary solutions of (1.1) with zero

Dirichlet boundary condition. For this aspect, we refer to the earlier works [17, 12, 8]. We

recall from [17] that, when δ = 0 and N = 1, there is a positive finite critical value λ∗

such that there are exactly two stationary solutions to (1.1) with zero Dirichlet boundary

condition when λ ∈ (0, λ∗); exactly one solution when λ = λ∗ and no solutions for λ > λ∗.

For (1.1), we shall only focus on the case when Ω is of one-dimensional and without loss of

generality we assume that δ = 1 and Ω = (−1, 1). Then it is reduced to study the following

boundary value problem (BVP) for u = u(x):

−uxx = λ
1 + u2

x

(1− u)2
, x ∈ (−1, 1),(1.2)

u(±1) = 0.(1.3)

Recall from [26] that problem (1.2)-(1.3) has no solution for λ > λ∗, a unique solution for

λ = λ∗, and at least 2 solutions for λ ∈ (0, λ∗) for a finite λ∗ > 0. However, the exact number

of solutions for λ ∈ (0, λ∗) remains open.

On of the main purposes of this paper is to prove that there are exactly 2 solutions to (1.2)-

(1.3) for each λ ∈ (0, λ∗). At a first glance, this question seems a simple-looking standard

problem. In fact, there is a well-known method in dealing with this problem which consists of

two steps, namely, first we transform (BVP) to an algebraic equation describing the relation

between the maximum, say η, of a solution and the parameter λ of (BVP), then we analyze

the derived algebraic equation to obtain our solution structure. This method is proved to

be very effective for many problems, even for nonlocal problem (cf., e.g., [2, 12, 9, 15, 10]).

Depending on problems, there are different functions in the algebraic equation. The success

of the above mentioned method is because an explicit formula, such as λ = Λ(η) for some

function Λ, can be derived, although the function Λ(η) might be very complicated. However,

due to the gradient term in (1.2), we are unable to find an explicit formula Λ(η) for λ to

(BVP). This is one of the major difficulties in dealing with this exact multiplicity problem,

but we are able to derive an implicit relation for λ and η (see (2.7) below). Furthermore,

to deal with the singularity of the integrand in (2.7), we successfully transfer (2.7) to an

equivalent (implicit) relation of λ and η in which only proper integral is involved (see (3.3)

below).

On the other hand, our exact multiplicity problem is equivalent to the uniqueness of

critical points of λ (as a function of η), since λ(η) = 0 when η = 0, 1. One of standard ways

to derive this uniqueness is to prove that λ′′(η) < 0 whenever λ′(η) = 0. However, both
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derivatives of λ are implicitly defined in terms of λ. This is actually the major difficulty of

this work. To overcome this difficulty, we derive some more accurate estimation for λ (see

Lemmas 2.4 and 2.5 in §2), by introducing a higher order interpolation (see (2.11) below).

Moreover, λ′′(η) > 0 when η is close to 1, by our numerical simulation, and we do not know

where the target critical point is, a good a priori estimate for the location of critical points

is needed (see Lemma 3.2 in §3). Combining these two points, the whole proving process of

the uniqueness of λ′(η) is carried out with a quite involved analysis.

The rest of this paper is organized as follows. In §2, we first derive an implicit formula

for λ and η (the maximum of a solution to (1.2)-(1.3)). Then we give some upper and lower

bounds estimation for λ(η). Next, §3 is devoted to the proof of the uniqueness of critical

points of λ(η). Finally, in §4, we prove the stability of the smaller stationary solutions for

λ ∈ (0, λ∗). Moreover, for reader’s convenience, we provide in Appendix the derivation of

some non-standard integrals used in this paper.

2. Preliminaries

In the sequel, we let u = u(x;λ) be a (classical) solution of (1.2)-(1.3) for a given λ > 0.

Our question is to determine the number of solutions of (1.2)-(1.3) for a given λ ∈ (0, λ∗). In

this section, we first derive a relation between λ and the maximum of u, i.e., u(0;λ). Then

we shall provide some estimates needed for the later purposes.

First, using a transformation introduced by Wei and Ye ([26])

(2.1) v(x) = v(x;λ) :=

∫ u(x)

0

eλ/(1−s)ds,

problem (1.2)-(1.3) is transformed into

−vxx = λ
eλ/(1−u)

(1− u)2
, x ∈ (−1, 1),(2.2)

v(±1) = 0.(2.3)

Note that any solution u of problem (1.2)-(1.3) is strictly concave and symmetric (with

respect to x = 0). Hence v is also strictly concave and symmetric.

Next, using (2.1) and (2.2), we rewrite (1.2) as

(2.4) −(e
λ

1−uu′)′ =
λe

λ
1−u

(1− u)2
, u′ := ux.

Multiplying both sides of (2.4) by e
λ

1−uu′ (which is v′), we have

−(e
λ

1−uu′)′(e
λ

1−uu′) =
λe

λ
1−u

(1− u)2
(e

λ
1−uu′),
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then integrating it from 0 to x > 0 gives

−(e
λ

1−uu′)2

2
=

e
2λ
1−u − e

2λ
1−η

2
,

hereafter, η := u(0;λ). It follows that

e
λ

1−uu′ = −
√

e
2λ
1−η − e

2λ
1−u

and so

(2.5) e
λ

1−u (e
2λ
1−η − e

2λ
1−u )−1/2u′ = −1.

By integrating (2.5) from 1 to x ∈ [0, 1), we obtain∫ u(x)

0

e
λ

1−s

(
e

2λ
1−η − e

2λ
1−s

)−1/2

ds = 1− x

and this gives

(2.6)

∫ u(x)

0

(
e2λ(

1
1−η

− 1
1−s

) − 1
)−1/2

ds = 1− x.

It follows that

(2.7)

∫ η

0

(
e2λ(

1
1−η

− 1
1−s

) − 1
)−1/2

ds = 1,

which is an implicit relation between λ and η.

Lemma 2.1. For each η ∈ (0, 1), λ = λ(η) is defined uniquely such that (2.7) holds.

Proof. Given η ∈ (0, 1). Let

I(η, a) :=

∫ η

0

(
e2a(

1
1−η

− 1
1−s

) − 1
)−1/2

ds.

It is clearly that I(η, a) is continuous and decreasing in a. Since I(η, a) → ∞ as a → 0+,

and I(η, a) → 0 as a → ∞, there is a unique positive λ such that I(η, λ) = 1. Hence (2.7)

is satisfied uniquely by this λ for the given η. �
From Lemma 2.1 it follows that the corresponding solution u(x) of (1.2)-(1.3) can be

determined from (2.6) for a given η ∈ (0, 1) with u(0) = η and λ = λ(η).

The singularity of the integrand in (2.7) occurs at s = η, using the Taylor expansion of

the integrand about s = η, we have that

(2.8)

∫ η

0

(
1− η√

2λ
(η − s)−1/2 +

1− λ
1−η

2
√
2λ

(η − s)1/2 +O((η − s)3/2)

)
ds = 1.

Therefore,

2(1− η)√
2λ

(η)1/2 +
1− λ

1−η

3
√
2λ

(η)3/2 +O(η5/2) = 1.
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The leading term implies that λ = 2η + o(η) as η → 0+. Hence λ(η) has a simple zero at

η = 0. Furthermore, λ = 2η − 10
3
η2 + o(η2) as η → 0+.

On the other hand, applying the transformation s = ηt to (2.7) for t ∈ [0, 1], we have

(2.9) η

∫ 1

0

(
e2λ(

1
1−η

− 1
1−ηt

) − 1
)−1/2

dt = 1.

It is easy to see from (2.9) that λ(η) → 0 as η → 1−. Otherwise, if lim infη→1− λ(η) > 0,

then there is a sequence ηk ↑ 1 with λ(ηk) → α as k → ∞ for some positive constant α. This

implies that the left-hand side of (2.9) with η = ηk tends to 0 as k → ∞, a contradiction.

Hence λ(1−) = 0.

Since λ has two zeros at η = 0, 1, we may assume λ has the form λ(η) = η(1 − η)λ̂(η),

where λ̂(η) is positive for η ∈ [0, 1). Note that λ̂(0) = 2. Applying this transformation to

(2.7), we have ∫ η

0

(
e2λ̂η(

η−s
1−s

) − 1
)−1/2

ds = 1.

At η = 1, it is easy to compute that λ̂(1) = ln(
√
2). Hence λ(η) also has a simple zero at

η = 1.

In fact, we have the following upper and lower bounds of λ(η) in terms of the quadratic

polynomial η(1− η).

Lemma 2.2. It holds c1η(1 − η) ≤ λ(η) ≤ c2η(1 − η) for all η ∈ (0, 1), where c1 = ln(
√
2)

and c2 = 2.

Proof. First, we show the upper bound for λ as follows. For a positive constant C, we

compute

I(η, C) :=

∫ η

0

1√
e2Cη(1−η)[1/(1−η)−1/(1−s)] − 1

ds

≤
∫ η

0

1√
2Cη(η − s)/(1− s)

ds

≤ 1√
2Cη

∫ η

0

1√
η − s

ds =

√
2

C
,

using ex − 1 ≥ x for all x > 0 and 1 − s ≤ 1 for all s ∈ (0, η). Therefore, by (2.7) and a

contradiction argument, we deduce that λ(η) ≤ 2η(1− η) for any η ∈ (0, 1).

For the lower bound estimate, we also argue by a contradiction and assume that there is

an η ∈ (0, 1) such that (ln
√
2)η(1− η) > λ(η). Then, by (2.7), we have I(η, ln

√
2) ≤ 1. On
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the other hand, we observe that

I(η, ln
√
2) =

∫ η

0

1√
e2(ln

√
2)η(1−η)[1/(1−η)−1/(1−s)] − 1

ds

=

∫ η

0

1√
2η(

η−s
1−s

) − 1

ds ≥
∫ η

0

1√
2η2 − 1

ds =
η√

2η2 − 1
> 1,

a contradiction. Here we have used 0 < 2x
2 − 1 < x2 for all x ∈ (0, 1). This can be checked

by observing that there is a unique critical point for the function g(x) := 2x
2 − x2 − 1 in

(0, 1) such that its second derivative is positive at this unique critical point. Notice that

g(0) = g(1) = 0. Hence the lower bound estimation of λ(η) is proved. �
Notice that the best estimated value of c1 is ln(

√
2), because λ(1) = 0 and λ′(1) =

− ln(
√
2). Similarly, c2 = 2 is the best estimation.

Corollary 2.3. It holds λ(η) ≤ 1/2 for all η ∈ (0, 1).

Proof. By Lemma 2.2, λ(η) ≤ 2η(1− η). Since 2η(1− η) ≤ 1/2 for all η ∈ [0, 1]. Hence the

corollary follows. �
Now, we derive an implicit form of λ′(η) as follows. Set

f(η, t) := exp{2λg(η, t)} − 1, g(η, t) :=
1

1− η
− 1

1− ηt
.

Then

h(η, t) :=
∂g(η, t)

∂η
=

1

(1− η)2
− t

(1− ηt)2
.

fη(η, t) :=
∂f(η, t)

∂η
= (f + 1) [2λ′g(η, t) + 2λh(η, t)] ,

Differentiating (2.9) with respect to η, we obtain

(2.10) λ′(η) =
1− η2λ

∫ 1

0
(f+1)h

f3/2 dt

η2
∫ 1

0
(f+1)g

f3/2 dt
.

Using (2.10), we are able to plot the curves of λ and λ′, see Fig. 1. We observe from these

curves that there is exactly one critical value λ∗ in (0, 1). Therefore, we can expect that

(1.2)-(1.3) has no solutions for λ > λ∗, two solutions for λ < λ∗, and exactly one solution

when λ = λ∗, where the critical value

λ∗ ≈ 0.32302 45671 at η = η∗ ≈ 0.35329 45430.

Our aim, as indicated in the introduction, is to derive the exact number of solutions of

problem (1.2)-(1.3) for any given λ > 0. One way to reach this goal is to prove that λ′′(η) < 0

whenever λ′(η) = 0. However, this is not the case from the numerical simulation (as in Fig. 1)



MEMS WITH FRINGING FIELD 7

0 0.2 *0.4 0.6 0.8 1

  =u(0)

0

0.05

0.1

0.15

0.2

0.25

0.3

*

0.35

  
(

)

0 0.2 *0.4 0.6 0.8 1

  =u(0)

-1

-0.5
-ln(2)/2

0

0.5

1

1.5

2

  
'(

)

Figure 1. (Left) Curve of λ(η) derived from (2.7). (Right) Curve of λ′(η)

from the implicit relation in (2.10).

when η is close to 1. Due to this difficulty, we need to derive a more precise estimate for the

range of η such that λ′(η) = 0.

For this purpose, we shall establish a better bound estimation of λ in terms of the following

cubic polynomial

(2.11) H(η) := [(ln
√
2)η + 2(1− η)]η(1− η).

In the sequel, we let c3 be the positive root of the quadratic equation

(2.12)
4(ln 2)(eM − 1−M)

(4− ln 2)M2
x2 + (ln 2)x− 1 = 0, M := 0.86 · 256

27(4− ln 2)2
.

Note that c3 =
− ln(2)+

√
(ln(2))2+4m

2m
≈ 0.8599799, where m := 4(ln 2)(eM−1−M)

(4−ln 2)M2 .

Lemma 2.4. It holds λ(η) ≥ c3H(η) for all η ∈ (0, 1).

Proof. For 0 < s < η < 1, let

a(η, s) := 2c3H(η)[
1

1− η
− 1

1− s
] = 2C[ln(

√
2)η + 2(1− η)]η

η − s

1− s
> 0,

where C = c3. Since

0 < 2[ln(
√
2)η + 2(1− η)]η2 ≤ 256

27(4− ln 2)2
, ∀ η ∈ (0, 1),

we obtain that

0 < a(η, s) ≤ 2C[ln(
√
2)η + 2(1− η)]η2 ≤ 0.86 · 256

27(4− ln 2)2
= M.

We also observe the inequality

ex − 1 ≤ x+
eM − 1−M

M2
x2, ∀x ∈ [0,M ].
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This inequality can be seen by observing that (ex − 1)/x is a convex function for x ∈ (0,∞)

and so the inequality

ex − 1

x
≤ 1 +

eM − 1−M

M2
x

holds for x ∈ (0,M ].

It is clear that

0 < [ln(2)x+ 4(1− x)]x ≤ 4

4− ln(2)
for x ∈ (0, 1).

Then we obtain∫ η

0

1√
ea − 1

ds ≥
∫ η

0

1√
a+ eM−1−M

M2 a2
ds

≥ 1√
C(ln(2)η + 4(1− η))η

∫ η

0

1√
η−s
1−s

+ eM−1−M
M2 C 4

4−ln(2)

(
η−s
1−s

)2ds(2.13)

:=
1√

C(ln(2)η + 4(1− η))η
I(η),

where

I(η) :=

∫ η

0

1√(
η−s
1−s

)
+D

(
η−s
1−s

)2 ds
and the constant D := C eM−1−M

M2
4

4−ln(2)
≈ 0.67759.

By Property 5.4 (in Appendix), we have

I(η) =

(
− ln (1− η) + 2 ln(

√
Dη + 1 +

√
Dη + η)

)
(D + 1

2
)(1− η)

(D + 1)3/2

+

√
(Dη + 1)(Dη + η)

(D + 1)3/2
.

Let

G(η) :=
(D + 1)3/2I(η)√

(ln(2)η + 4(1− η))η
.

Then

G(η) =

(
− ln (1− η) + 2 ln(

√
Dη + 1 +

√
Dη + η)

)
(D + 1

2
)(1− η)√

(ln(2)η + 4(1− η))η

+

√
(Dη + 1)(Dη + η)√
(ln(2)η + 4(1− η))η

.

We shall show that G(η) is decreasing on (0, 1).
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For this, we first compute

G′(η) =
(
− ln (1− η) + 2 ln(

√
Dη + 1 +

√
Dη + η)

)( (D + 1
2
)(1− η)√

(ln(2)η + 4(1− η))η

)′

+
(
− ln (1− η) + 2 ln(

√
Dη + 1 +

√
Dη + η)

)′ (D + 1
2
)(1− η)√

(ln(2)η + 4(1− η))η

+

( √
(Dη + 1)(Dη + η)√
(ln(2)η + 4(1− η))η

)′

= −
(D + 1

2
)
(
− ln (1− η) + 2 ln(

√
Dη + 1 +

√
Dη + η

)
((ln(2)− 2)η + 2)

((ln(2)η + 4(1− η))η)3/2

+
√

Dη + η
D(ln(2)− 2)η + (4D + 2)√

Dη + 1((ln(2)η + 4(1− η))η)3/2
.

To show G′ > 0, we consider the function

k(η) := −((ln(2)η + 4(1− η))η)3/2

((ln(2)− 2)η + 2)
G′(η).

Then

k(η) = (D +
1

2
)
(
− ln (1− η) + 2 ln(

√
Dη + 1 +

√
Dη + η

)
−
√

Dη + η
D(ln(2)− 2)η + (4D + 2)

((ln(2)− 2)η + 2)
√
Dη + 1

,∀η ∈ (0, 1),

and G′(η) < 0 is equivalent to k(η) > 0.

To show k > 0, we compute

k′(η) =
D + 1

2

1− η

D + 1√
Dη + 1

√
Dη + η

−
√
D + 1

4(2D + 1) + 2(1−D)(2− ln(2))η +D(2− ln(2))(4D − ln(2) + 6)η2

2
√
η(Dη + 1)3/2((ln(2)− 2)η + 2)2

=
(D + 1)3/2η(a0 + a1η + a2η

2)

2(1− η)(Dη + 1)3/2
√
η((ln(2)− 2)η + 2)2

,

where

a0 := 8D + 6 ln(2)− 8 ≈ 1.57962,

a1 := (12 ln 2− 24)D + 8− 6 ln 2 + (ln 2)2 ≈ −6.30458,

a2 := [2(ln(2))2 − 12 ln(2) + 16]D ≈ 5.85652.

On (0, 1), k′(η) = 0 only at η =
−a1±

√
a21−4a2a0

2a2
≈ 0.39684, 0.67966. It follows that

k(η) is decreasing on (
−a1−

√
a21−4a2a0

2a2
,
−a1+

√
a21−4a2a0

2a2
) and increasing on (0,

−a1−
√

a21−4a2a0

2a2
),
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(
−a1+

√
a21−4a2a0

2a2
, 1). Since k(0) = 0 and k(

−a1+
√

a21−4a2a0

2a2
) ≈ 0.01271 > 0, we deduce that

k(η) > 0 for all η ∈ (0, 1). Hence G′(η) < 0 for all η ∈ (0, 1).

Then we have G(η) ≥ G(1). From (2.13) and (2.12), it follows that∫ η

0

1√
ea − 1

ds ≥ 1√
C(D + 1)3/2

G(1) =
1√

C(D + 1) ln(2)

=

(
C(C

eM − 1−M

M2

4

4− ln(2)
+ 1) ln(2)

)−1/2

=

(
4 ln(2)(eM − 1−M)

(4− ln(2))M2
C2 + ln(2)C

)−1/2

= 1.

Therefore, by (2.7), the lower estimation is derived. �
The following lemma is one of the crucial estimates in this paper. If we only require a

coarser bound (a larger constant c4), then the proof can be much simpler.

Lemma 2.5. It holds λ(η) ≤ c4H(η) for all η ∈ (0, 1), where c4 = 1.1.

Proof. As before, for 0 < s < η < 1, we let

a(η, s) := 2c4H(η)[
1

1− η
− 1

1− s
] = 2C[ln(

√
2)η + 2(1− η)]η

η − s

1− s
> 0,

where C = c4 = 1.1. To estimate the upper bound of λ in terms of H(η), we observe the

following inequality∫ η

0

1√
ea − 1

ds ≤
∫ η

0

1√
a+ 1

2
a2

ds

=
1√

C(ln(2)η + 4(1− η))η

∫ η

0

1√(
η−s
1−s

)
+D

(
η−s
1−s

)2 ds
:=

1√
2D

J(η,D),

where

D := D(η) =
1

2
C(ln(2)η + 4(1− η))η > 0, ∀ η ∈ (0, 1).

By Property 5.4 (in Appendix), we have

J(η,D) =

(
− ln (1− η) + 2 ln(

√
Dη + 1 +

√
Dη + η)

)
(D + 1

2
)(1− η)

(D + 1)3/2

+

√
(Dη + 1)(Dη + η)

(D + 1)3/2
.

We consider the function

G(η) :=
(D + 1)3/2

(D + 1
2
)(1− η)

(
√
2D − J(η,D)), η ∈ (0, 1).
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Then we have

G(η) =
(D + 1)3/2

√
2D −

√
(Dη + 1)(Dη + η)

(D + 1
2
)(1− η)

− ln(

(√
Dη + 1 +

√
Dη + η

)2
1− η

).

Note that G(0) = 0 and G(1−) = ∞.

Now, we show that G′ > 0 on (0, 1). For this, we compute the following three derivatives.

Firstly, we compute

d

dη
ln(

(√
Dη + 1 +

√
Dη + η

)2
1− η

) =

D+ηD′
√
Dη+1

+ 1+D+ηD′
√
Dη+η√

Dη + 1 +
√
Dη + η

+
1

1− η

=
(D+ηD′
√
Dη+1

+ 1+D+ηD′
√
Dη+η

)(
√
Dη + 1−

√
Dη + η)

1− η
+

1

1− η

=
−(Dη + η)(D + ηD′) + (Dη + 1)(1 +D + ηD′)

(1− η)
√
Dη + 1

√
Dη + η

:=
P3(η)

(1− η)
√
Dη + 1

√
Dη + η

,

where the cubic polynomial P3 is defined by

P3(η) := (1 +D) + η(1− η)D′ = 1 + 4Cη + (−8 +
3 ln(2)

2
)Cη2 + (4− ln(2))Cη3.

Secondly, we have

d

dη

√
(Dη + 1)(Dη + η)

(D + 1
2
)(1− η)

=
1 +D + 2η(D +D2) + (η + η2(1 + 2D))D′

2
√

(Dη + 1)(Dη + η)(D + 1
2
)(1− η)

−
√

(Dη + 1)(Dη + η)(−1
2
−D + (1− η)D′)

(D + 1
2
)2(1− η)2

=
P7(η)

2
√
Dη + 1

√
Dη + η(D + 1

2
)2(1− η)2

,

where P7 is a polynomial of degree seven defined by

P7(η) := (1 + η + 2ηD)(D + 1)(D +
1

2
) + η(1− η)(−3

2
+

1

2
η −D)D′

=
1

2
+

1

2
η +

(
12− 3 ln 2

4

)
Cη2 +

[
−14 +

13 ln 2

4
+ (24− ln 2)C

]
Cη3

+

[
2− ln 2

2
+

(
−48 + 13 ln 2− (ln 2)2

4

)
C + 16C2

]
Cη4

+

[
24− 12 ln 2 +

3(ln 2)2

2
+ (−48 + 12 ln 2)C

]
C2η5

+
[
48− 24 ln 2 + 3(ln 2)2

]
C3η6 +

[
−16 + 12 ln 2− 3(ln 2)2 +

(ln 2)3

4

]
C3η7.
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Thirdly, we compute

d

dη

√
(D + 1)32D

(D + 1
2
)(1− η)

=

(4D+1)(D+1)2D′√
(D+1)3D√

2(D + 1
2
)(1− η)

−
√
2
√

(D + 1)3D(−1
2
−D + (1− η)D′)

(D + 1
2
)2(1− η)2

:=

√
D + 1P6(η)√

2
√
D(D + 1

2
)2(1− η)2

,

where P6(η) is a polynomial of degree six defined by

P6(η) := 2D(D +
1

2
)(D + 1) + (1− η)(

1

2
+D + 2D2)D′

= C + (−1 +
ln(2)

2
+ 4C)Cη + (−4 + 3 ln(2) + 16C)C2η2

+(−4− ln(2) +
(ln(2))2

2
+ (−64 + 16 ln(2))C)C2η3

+(4− 2 ln(2) +
(ln(2))2

4
+ (96− 44 ln(2) + 5(ln(2))2)C)C2η4

+(−64 + 40 ln(2)− 8(ln(2))2 +
(ln(2))3

2
)C3η5

+(16− 12 ln(2) + 3(ln(2))2 − (ln(2))3

4
)C3η6.

We deduce that

G′(η) =

√
2
√
Dη + 1

√
η(D + 1)P6 −

√
DP7 − 2

√
D(D + 1

2
)2(1− η)P3

2
√
D
√
Dη + 1

√
Dη + η(D + 1

2
)2(1− η)2

=

√
2
√
Dη + 1

√
η(D + 1)P6 −

√
D
(
P7 + 2(D + 1

2
)2(1− η)P3

)
2
√
D
√
Dη + 1

√
Dη + η(D + 1

2
)2(1− η)2

Therefore, for 0 < η < 1, G′(η) = 0 if and only if

√
2
√

Dη + 1
√
η(D + 1)P6 =

√
D

(
P7 + 2(D +

1

2
)2(1− η)P3

)
⇔ 4(Dη + 1)(D + 1)2(P6)

2 = C(ln(2)η + 4(1− η))

(
P7 + 2(D +

1

2
)2(1− η)P3

)2

.

Hence we are reduced to consider the following real polynomial of degree 19

P19 := 4(Dη + 1)(D + 1)2(P6)
2 − C(ln(2)η + 4(1− η))

(
P7 + 2(D +

1

2
)2(1− η)P3

)2

.

Using Matlab, we know that P19 has 5 real roots and 14 complex roots≈ −0.35207,−0.35207,

1.48106, 1.56168, 1.56168, −0.10171 ± 0.14272i, −0.19230 ± 0.16501i, 0.04204 ± 0.15679i,

0.90295±0.96819i, 0.90704±0.02790i, 1.27197±0.04656i, 1.45350±0.45664i. HenceG′(η) ̸= 0

on (0, 1). Because G′(η) has no zero point on (0, 1), and G′(1
2
) > 0, we deduce that

G′ > 0 on (0, 1).
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Since G is increasing on (0, 1) and G(0) = 0, so G(η) ≥ 0, ∀η ∈ (0, 1). It follows that√
2D ≥ J(η,D),∀η ∈ (0, 1). This implies that∫ η

0

1√
ea − 1

ds ≤ 1√
2D

J(η,D) ≤ 1, ∀η ∈ (0, 1).

Hence the upper bound estimation is proved. �

3. Uniqueness of critical point

This section is devoted to the proof of our main result, namely, there are exactly 2 solutions

to (1.2)-(1.3) for each λ ∈ (0, λ∗). This is equivalent to show that λ(η) has only a critical

point η in (0, 1).

First, we recall from (2.7) that

(3.1)

∫ η

0

eλ[r(s)−r(η)]

√
1− e2λ[r(s)−r(η)]

ds = 1, r(s) :=
1

1− s
.

Hereafter we always have λ = λ(η). Note also that

eλ[r(s)−r(η)] < 1, ∀ s ∈ (0, η).

Observe that for any integer n we have

d

ds
{arcsin(eλ[r(s)−r(η)])(1− s)n+2}

= λ
eλ[r(s)−r(η)]

√
1− e2λ[r(s)−r(η)]

(1− s)n − (n+ 2) arcsin(eλ[r(s)−r(η)])(1− s)n+1.

This implies that

λ

∫ η

0

eλ[r(s)−r(η)]

√
1− e2λ[r(s)−r(η)]

(1− s)nds(3.2)

=
π

2
(1− η)n+2 − arcsin(e−ληr(η)) + (n+ 2)

∫ η

0

arcsin(eλ[r(s)−r(η)])(1− s)n+1ds.

In particular, taking n = 0 and using (3.1), we deduce from (3.2) that

(3.3) λ =
π

2
(1− η)2 − arcsin(e−ληr(η)) + 2

∫ η

0

arcsin(eλ[r(s)−r(η)])(1− s)ds.
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Next, differentiating (3.3) with respect to η and using (3.1), for 0 < η < 1, we obtain

λ′ = −π(1− η)− e−ληr(η)

√
1− e−2ληr(η)

[−λ(1− η)−2 − λ′η(1− η)−1] + π(1− η)(3.4)

+2

∫ η

0

eλ[r(s)−r(η)]

√
1− e2λ[r(s)−r(η)]

{−λ(1− η)−2 + λ′[r(s)− r(η)]}(1− s)ds

=
e−ληr(η)

√
1− e−2ληr(η)

[λ(1− η)−2 + λ′η(1− η)−1] + 2λ′

−2[λ(1− η)−2 + λ′(1− η)−1]

∫ η

0

eλ[r(s)−r(η)]

√
1− e2λ[r(s)−r(η)]

(1− s)ds.

For convenience, we define

Q(η) :=
e−ληr(η)

√
1− e−2ληr(η)

=
1√

e2ληr(η) − 1
,

In(η) :=

∫ η

0

eλ[r(s)−r(η)]

√
1− e2λ[r(s)−r(η)]

(1− s)nds, n ∈ Z,

Jn(η) :=

∫ η

0

arcsin(eλ[r(s)−r(η)])(1− s)nds, n ∈ Z.

Note that Jn is positive and

(3.5) Jn(η) ≤
π

2

1− (1− η)n+1

n+ 1
, if n ̸= −1; − π

2
ln(1− η), if n = −1.

Hence, by (3.2), In(η) is well-defined and

(3.6) In(η) = λ−1
{π
2
(1− η)n+2 − arcsin(e−λ η

1−η ) + (n+ 2)Jn+1(η)
}
, ∀ η ∈ (0, 1).

On the other hand, rewriting (3.4) as

λ′ = [λ(1− η)−2 + λ′η(1− η)−1]Q(η) + 2λ′ − 2[λ(1− η)−2 + λ′(1− η)−1]I1(η),

or equivalently,

(3.7) [2I1(η)− ηQ(η)− (1− η)]λ′(η) =
λ(η)

1− η
[Q(η)− 2I1(η)],

we obtain the following formula for the first derivative of λ

(3.8) λ′ = λ′(η) =
λ(η)

1− η
· −2I1(η) +Q(η)

2I1(η)− ηQ(η)− (1− η)
,

if 2I1(η)− ηQ(η)− (1− η) ̸= 0. In particular, when 2I1(η)− ηQ(η)− (1− η) ̸= 0,

(3.9) λ′(η) = 0 if and only if Q(η) = 2I1(η).

Note that

In(η) =

∫ η

0

(1− s)n√
e2λ[r(η)−r(s)] − 1

ds, n ∈ Z.
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Using that the function y/(ey − 1) is decreasing in y for y > 0 and observing that

r(η)− r(s) =
η − s

(1− η)(1− s)
<

η

(1− η)
, s ∈ (0, η), η ∈ (0, 1),

we obtain

I1(η) =

∫ η

0

1− s√
e2λ[r(η)−r(s)] − 1

ds =

∫ η

0

√
2λ[r(η)− r(s)]

e2λ[r(η)−r(s)] − 1

1− s√
2λ[r(η)− r(s)]

ds

≥
√

2ληr(η)

e2ληr(η) − 1

∫ η

0

1− s√
2λ[r(η)− r(s)]

ds =
√
ηQ(η)

∫ η

0

(1− s)3/2√
η − s

ds.

From Property 5.2 (see Appendix)∫ η

0

(1− s)3/2√
η − s

ds =
1

4
[(5− 3η)

√
η + 3(1− η)2 ln(

1 +
√
η

√
1− η

)],

we deduce that

(3.10) I1(η) ≥ Q(η)
1

4
[(5− 3η)η + 3

√
η(1− η)2 ln(

1 +
√
η

√
1− η

)].

Using (3.10), we now prove the following important lemma.

Lemma 3.1. It holds 2I1(η)− ηQ(η)− (1− η) > 0 for all η ∈ (0, 1).

Proof. First, we consider the quartic function (polynomial of degree 4)

P4(x) = [(1 +
x

3
)(1− x) + 1]2 − [(ln 2)x+ 4(1− x)], x ∈ R.

We compute

P ′
4(x) =

4

9
{(x+ 1)3 − 7(x+ 1) + 9(1− ln(2)

4
)}.

Then, using Cardano’s formula with p = −7 and q = 9(1− ln(2)
4

), the cubic polynomial P ′
4(x)

has only one (real) root at

x = −1 +
3

√
−q

2
+

√
q2

4
− 343

27
+

3

√
−q

2
−
√

q2

4
− 343

27
< −1.

Hence P4(x) is increasing for x ∈ [0, 1]. Since P4(0) = 0, we have P4(x) > 0 for x ∈ (0, 1).

Therefore, we have

(3.11)

√
(ln 2)x+ 4(1− x)− 1

1− x
< 1 +

x

3
, x ∈ (0, 1).

On the other hand, when x ∈ (0, 1), using

(3.12) ln

(
1 +

√
x√

1− x

)
=

∞∑
k=0

x
1
2

xk

2k + 1
,



16 J.-S. GUO, B.-C. HUANG, T. WAKASA, C.-J. WANG, AND C.-Y. YU

we get

1√
x
ln

(
1 +

√
x√

1− x

)
= 1 +

x

3
+

∞∑
k=2

xk

2k + 1
> 1 +

x

3
.

Therefore, we obtain from (3.11) that

(3.13)
1√
x
ln

(
1 +

√
x√

1− x

)
>

√
(ln 2)x+ 4(1− x)− 1

1− x
, x ∈ (0, 1).

Next, it is easy to see that 2y > ey − 1 when 0 < y ≤ 1. Since

max
x∈[0,1]

{[(ln 2)x+ 4(1− x)]x2} =
256

27(4− ln 2)2
,

we have

y(x) := c4[(ln 2)x+ 4(1− x)]x2 ≤ c4 ·
256

27(4− ln 2)2
< 1, ∀x ∈ [0, 1].

Here the last inequality follows due to the constant c4 = 1.1 derived in Lemma 2.5. So

2c4[(ln 2)x+ 4(1− x)]x2 > ec4[(ln 2)x+4(1−x)]x2 − 1, 0 < x < 1.

Then we have

2
√
ec4[(ln 2)x+4(1−x)]x2 − 1

< 2x
√
2c4[(ln 2)x+ 4(1− x)] =

√
8c4x

√
(ln 2)x+ 4(1− x)

< 3x
√
(ln 2)x+ 4(1− x) < 3x+ 3

√
x(1− x) ln(

1 +
√
x√

1− x
)

for x ∈ (0, 1), using 8c4 < 9 and (3.13). From (3.10) and the above estimation, it follows

that

2I1(η)− ηQ(η)− (1− η)

≥ Q(η)
3

2
[(1− η)η +

√
η(1− η)2 ln(

1 +
√
η

√
1− η

)]− (1− η)

= Q(η)
1− η

2

(
3η + 3

√
η(1− η) ln(

1 +
√
η

√
1− η

)− 2
√

e2ληr(η) − 1

)
> Q(η)(1− η)

(√
ec4[(ln 2)η+4(1−η)]η2 − 1−

√
e2ληr(η) − 1

)
≥ 0,

using Lemma 2.5. The lemma is proved. �
From Lemma 3.1 and (3.9), we see that λ′(η) = 0 if and only if Q(η) = 2I1(η).

The following lemma gives an important fact that any critical point of λ is away from 1.

Lemma 3.2. If λ′(η) = 0, then η ≤ r2, where r2 ∈ (0.38, 0.39) is the unique root of

2 = (5− 3η)η + 3
√
η(1− η)2 ln

(
1 +

√
η

√
1− η

)
in (0, 1).
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Proof. Set

a(x) := 3
√
x ln

(
1 +

√
x√

1− x

)
, b(x) :=

2− 3x

1− x
.

It is easy to check that a(x) is increasing on (0, 1), b(x) is decreasing on (0, 1), a(0) = 0 <

2 = b(0), a(1−) = +∞ and b(1−) = −∞. Hence there is exactly one intersection of a(x) and

b(x) on (0, 1), say r2 (≈ 0.38834 67189), such that

(5− 3x)x+ 3
√
x(1− x)2 ln

(
1 +

√
x√

1− x

)
< 2 for x ∈ (0, r2),(3.14)

(5− 3x)x+ 3
√
x(1− x)2 ln

(
1 +

√
x√

1− x

)
> 2 for x ∈ (r2, 1).(3.15)

It follows from (3.10) and (3.15) that I1(η) > Q(η)/2 for η ∈ (r2, 1). Hence the lemma is

proved by using (3.9). �
Our goal is to derive that λ has a unique critical point in (0, 1). This can be done if we

can derive that λ′′(η) < 0 when λ′(η) = 0. In the sequel, we let η̄ ∈ (0, r2] be any point such

that λ′(η̄) = 0 and set λ̄ = λ(η̄). At η̄, since 2I1(η̄) = Q(η̄), it follows from Lemma 3.1 and

2I1(η̄)− η̄Q(η̄)− (1− η̄) = [Q(η̄)− 1](1− η̄)

that Q(η̄) > 1.

To compute λ′′(η̄), using λ′(η̄) = 0, (3.8) and (3.9), we can easily derive that

(3.16) λ′′(η̄) =
λ̄

1− η̄
· −2I ′1(η̄) +Q′(η̄)

2I1(η̄)− η̄Q(η̄)− (1− η̄)
.

To proceed further, we use (3.6) to compute the first derivative of I1(η) as follows. First, we

can easily compute from the definition of J2 that

J ′
2(η̄) =

π

2
(1− η̄)2 − λ̄

(1− η̄)2
I2(η̄).

Then, by (3.6) with n = 1, we obtain

I ′1(η̄) =
1

λ̄

{
−3

2
π(1− η̄)2 +

λ̄

(1− η̄)2
Q(η̄) + 3J ′

2(η̄)

}
=

1

(1− η̄)2
[Q(η̄)− 3I2(η̄)].

On the other hand, we have

Q′(η̄) = − λ̄

(1− η̄)2
1

1− e−2λ̄η̄/(1−η̄)
Q(η̄) < 0.

Hence we deduce that

(3.17) −2I ′1(η̄) +Q′(η̄) =
1

(1− η̄)2

{
6I2(η̄)−

[
2 +

λ̄

1− e−2λ̄η̄/(1−η̄)

]
Q(η̄)

}
.

Finally, we prove
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Lemma 3.3. It holds

6I2(η)−
[
2 +

λ

1− e−2λη/(1−η)

]
Q(η) < 0

for η ∈ (0, r2].

Proof. First, since ex − 1 > x for all positive x and∫ x

0

(1− s)5/2√
x− s

ds =
1

24
[
√
x(33− 40x+ 15x2) + 15(1− x)3 ln(

1 +
√
x√

1− x
)]

for all x ∈ (0, 1) (see Property 5.3 in Appendix), it follows that

I2(η) =

∫ η

0

1√
e2λ[r(η)−r(s)] − 1

(1− s)2ds(3.18)

≤ 1√
2λr(η)

∫ η

0

(1− s)5/2

(η − s)1/2
ds

=
1√

2λr(η)

1

24
[
√
η(33− 40η + 15η2) + 15(1− η)3 ln(

1 +
√
η

√
1− η

)]

=
1√

2ληr(η)

1

24
[η(33− 40η + 15η2) + 15

√
η(1− η)3 ln(

1 +
√
η

√
1− η

)].

To proceed further, we consider the following two auxiliary functions for x ∈ (0, 1)

a(x) := x(33− 40x+ 15x2) + 15
√
x(1− x)3 ln(

1 +
√
x√

1− x
),

b(x) := 2

[
4 +

1− x

x

y

ey − 1

] √
y

√
ey − 1

, y = y(x) = c4[(ln 2)x+ 4(1− x)]x2.

Set x0 := 8/[3(4− ln 2)] ≈ 0.8. Since y(x) is increasing for 0 ≤ x ≤ x0 and z/(ez − 1) is

decreasing for positive z, so the composition y(x)/[ey(x) − 1] is decreasing for 0 ≤ x ≤ x0.

Moreover, (1− x)/x is also decreasing for x ∈ (0, 1). Therefore, b(x) is decreasing for

0 < x ≤ x0, where x0 > r2.

For a(x), we compute

(3.19) a′(x) =
1

2

105x2 − 190x+ 81 + 15(1− x)2(1− 7x)
ln
(

1+
√
x√

1−x

)
√
x


By (3.12), ln(1+

√
x√

1−x
) >

√
x for x ∈ (0, 1). Then we have a′(x) > p(x)/2 for x ∈ (0, 1/7),

where

p(x) := 105x2 − 190x+ 81 + 15(1− x)2(1− 7x).

Since p′(x) = −5(63x2 − 132x + 65) which has two zeros at 22±
√
29

21
≈ 0.79, 1.30, p(x) is

decreasing on (0, 1/7). Hence p(x) > p(1/7) > 0 and so a(x) is increasing for x ∈ (0, 1/7).
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On the other hand, for x ∈ [1/7, r2], it follows from (3.14) and (3.19) that

a′(x) ≥ 1

2

[
105x2 − 190x+ 81 +

5(1− 7x)√
x

· 2− (5− 3x)x√
x

]
=

1

2x
(10− 14x).

Hence a(x) is also increasing for x ∈ [1/7, r2].

Using the definition of r2 in Lemma 3.2, we compute

a(r2) = r2(33− 40r2 + 15r22) + 5(1− r2) · 3
√
r2(1− r2)

2 ln

(
1 +

√
r2√

1− r2

)
= r2(33− 40r2 + 15r22) + 5(1− r2) · [2− (5− 3r2)r2] = 10− 2r2.

Moreover, it is easy to check that a(r2) < b(r2). We conclude that

(3.20) a(x) < b(x) for x ∈ [0, r2],

since a(x) is increasing and b(x) is decreasing for x ∈ [0, r2].

Now, it follows from (3.18), (3.20), and the decreasing property of y/(ey − 1) with y ≥
2ληr(η) that

6I2(η) <
1√

2ληr(η)
· 1
2
·
[
4 +

1− η

η

2ληr(η)

e2ληr(η) − 1

] √
2ληr(η)√

e2ληr(η) − 1

=

[
2 +

λ

e2ληr(η) − 1

]
Q(η) =

[
2 +

λe−2ληr(η)

1− e−2ληr(η)

]
Q(η)

≤
[
2 +

λ

1− e−2ληr(η)

]
Q(η)

for η ∈ (0, r2]. Hence the lemma follows.

�
Now we are ready to prove the following uniqueness theorem on the critical points of λ(η).

Theorem 3.4. There is a unique point η∗ on (0, 1) such that λ′(η) > 0 for 0 < η < η∗,

λ′(η∗) = 0, and λ′(η) < 0 for η∗ < η < 1 .

Proof. Since λ′(0+) > 0 and λ′(1−) < 0, there exists a point η∗ ∈ (0, 1) such that λ′(η∗) = 0.

By Lemma 3.2, η∗ ∈ (0, r2]. From (3.16), (3.17) and Lemma 3.3 it follows that λ′′(η∗) < 0.

Hence λ(η) cannot have another critical point than η∗ and the theorem is proved. �

4. Stability analysis

In this section, we study the following initial boundary value problem

ut − uxx = λ
1 + u2

x

(1− u)2
, x ∈ (−1, 1), t > 0,(4.1)

u(x, 0) = u0(x), x ∈ [−1, 1], u(±1, t) = 0.(4.2)

We shall derive the stability of some stationary solutions of (4.1)-(4.2).
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First, we prove

Lemma 4.1. For each λ ∈ (0, λ∗), the corresponding two solutions u1, u2 of (1.2)-(1.3) are

ordered in the sense that u1 < u2 in (−1, 1) if u1(0) < u2(0).

Proof. Fix λ ∈ (0, λ∗). Let u1 and u2 be two solutions of (1.2)-(1.3) with 0 < η1 < η2 < 1,

where ηi := ui(0), i = 1, 2. We claim that u1 < u2 in (−1, 1).

For contradiction, we assume that there is a x̄ ∈ (0, 1) such that u1(x̄) ≥ u2(x̄). Without

loss of generality we may assume that u1(x̄) = u2(x̄). From (2.6), at x = x̄, we have∫ u1(x̄)

0

[
(e

2λ( 1
1−η1

− 1
1−s

) − 1)−1/2 − (e
2λ( 1

1−η2
− 1

1−s
) − 1)−1/2

]
ds = 0.

Since 1
1−η1

< 1
1−η2

, we have[
(e

2λ( 1
1−η1

− 1
1−s

) − 1)−1/2 − (e
2λ( 1

1−η2
− 1

1−s
) − 1)−1/2

]
> 0

for all s ∈ [0, u1(x̄)], which leads a contradiction. Hence the lemma is proved. �

Corollary 4.2. For 0 < η1 < η2 < 1, set λ1 = λ(η1) and λ2 = λ(η2). Let ui be the solution

of (1.2)-(1.3) with λ = λi and ui(0) = ηi, i = 1, 2. If λ1η1
1−η1

< λ2η2
1−η2

, then we have u1 < u2 in

(−1, 1).

Proof. We claim that the following inequality holds for s ∈ (0, 1)

(e
2λ1(

1
1−η1

− 1
1−s

) − 1)−1/2 > (e
2λ2(

1
1−η2

− 1
1−s

) − 1)−1/2.

If the claim is true, then the proof of this corollary is similar to that for Lemma 4.1.

If λ1 ≤ λ2, then it is easy to show that the claim holds using η1 < η2. Suppose that

λ1 > λ2. Then we have, at s = 0,

(e
2λ1(

1
1−η1

−1) − 1)−1/2 > (e
2λ2(

1
1−η2

−1) − 1)−1/2,

since λ1η1
1−η1

< λ2η2
1−η2

İf the claim is not true, then there exists a w ∈ (0, 1) such that

(e
2λ1(

1
1−η1

− 1
1−w

) − 1)−1/2 = (e
2λ2(

1
1−η2

− 1
1−w

) − 1)−1/2.

It follows that

w = 1 +
λ1 − λ2

λ2/(1− η2)− λ1/(1− η1)
> 1,

a contradiction with w ∈ (0, 1). Hence the corollary follows. �
From (3.8), it follows that

(4.3)

(
λη

1− η

)′

= λ
2I1(η)− 1

[2I1(η)− ηQ(η)− (1− η)](1− η)
.

Using this identity, we prove
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Figure 2. Curve of λη
1−η

.

Lemma 4.3. It holds λ∗η∗

1−η∗
< λη

1−η
for η∗ < η < 1, where λ = λ(η) and λ∗ = λ(η∗).

Proof. First, we claim that λη
1−η

is increasing for η ∈ (0, 1/2). When 0 < s < η < 1/2, since

s < 1− s, we have

I1(η) =

∫ η

0

1− s√
e2λ[r(η)−r(s)] − 1

ds >

∫ η

0

s√
e2λ[r(η)−r(s)] − 1

ds.

By (2.7), we know that∫ η

0

1− s√
e2λ[r(η)−r(s)] − 1

ds+

∫ η

0

s√
e2λ[r(η)−r(s)] − 1

ds = 1.

Hence I1(η) > 1/2. Recall Lemma 3.1. Then, using (4.3), λη
1−η

is increasing for η ∈ (0, 1/2)

and so the lemma holds for η∗ < η < 1/2.

Next, we set

q(x) := [ln(
√
2)x+ 2(1− x)]x2, x ∈ [1/2, 1].

It is easy to see that q(x) is increasing on (0, x0), x0 := 8/[3(4− ln 2)] ≈ 0.8, and decreasing

on (x0, 1). Then we have q(x) ≥ q(1/2) for all x ∈ [1/2, 1], since q(1/2) < q(1). Recalling

from Lemma 3.2 that η∗ ∈ (0, r2) and r2 ∈ (0.38, 0.39). Then q(0.39) > q(η∗) and it is easy

to check that c3q(1/2) > c4q(0.39). By using Lemmas 2.4 and 2.5, we deduce that

λη

1− η
≥ c3q(η) ≥ c3q(1/2) > c4q(0.39) > c4q(η

∗) ≥ λ∗η∗

1− η∗

for η ∈ [1/2, 1). This complete the proof of the lemma. �

Remark 4.4. The above lemma can be observed numerically (see Figure 2). This figure

also implies that ui solutions in Corollary 4.2 are ordered for ηi ∈ (0, 0.82].

For convenience, we let Uλ
+(x) be the larger stationary solution for λ ∈ (0, λ∗), Uλ

−(x) be

the smaller one for λ ∈ (0, λ∗), and U∗(x) be the unique stationary solution for λ = λ∗.

From Lemma 4.1, Corollary 4.2, and Lemma 4.3, we have proved the following theorem.
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Theorem 4.5. It holds Uλ
−(x) < U∗(x) < Uλ

+(x) for all λ ∈ (0, λ∗).

Now, for the initial boundary value problem (4.1)-(4.2), we have

Lemma 4.6 (Comparison Principle). If u and v are solutions of (4.1)-(4.2) with initial data

u0 and v0, respectively, such that u0 ≥ v0, then u(x, t) ≥ v(x, t) for x ∈ [−1.1], t > 0.

Proof. Set w = u− v. Then w satisfies w(±1, t) = 0, w(x, 0) ≥ 0 for x ∈ [−1, 1] and

wt − wxx = λ(awx + bw), x ∈ (−1, 1), t > 0,

where

a :=
1

(1− u)2(1− v)2
{[ux(1− v) + vx(1− u)](1− v)},

b :=
1

(1− u)2(1− v)2
{(2− v − u) + [ux(1− v) + vx(1− u)]vx}.

By the maximum principle, we have w ≥ 0. Hence the lemma is proved. �
Note that the existence of local (in time) solution to (4.1)-(4.2) with smooth initial data

u0 satisfying 0 ≤ u0 < 1 in [−1, 1] follows easily from the standard argument with the

parabolic regularity theory. As a consequence of Lemma 4.6, there exists a unique solution

to (4.1)-(4.2) as long as u < 1.

Theorem 4.7. Let λ ∈ (0, λ∗) and let u be the corresponding solution of (4.1)-(4.2) with

initial data u0 satisfying 0 ≤ u0(x) ≤ U∗(x) for all x ∈ [−1, 1]. Then u converges to Uλ
− as

t → ∞.

Proof. First, we let w be the solution of (4.1)-(4.2) with initial data U∗ for a given λ ∈ (0, λ∗).

Set z = wt. Then z satisfies

zt = zxx + λ
2wx

(1− w)2
zx + 2λ

1 + w2
x

(1− w)3
z, x ∈ (−1, 1), t > 0.

Since

z(x, 0) = U∗
xx(x) + λ

1 + [U∗
x(x)]

2

[1− U∗(x)]2
< U∗

xx(x) + λ∗ 1 + [U∗
x(x)]

2

[1− U∗(x)]2
= 0, ∀x ∈ (−1, 1),

it follows from the maximum principle that z < 0 for all t > 0. Therefore, the limit

W (x) := limt→∞w(x, t) exists for all x ∈ [−1, 1]. Note that W is a stationary solution of

(4.1)-(4.2) for the given λ, since wt(x, t) → 0 as t → ∞ for all x ∈ [−1, 1]. Hence we have

either W = Uλ
− or W = Uλ

+. However, U
∗(0) < Uλ

+(0). Hence we must have W = Uλ
−.

Next, we consider the solution v of (4.1)-(4.2) with zero initial data. Note that vt(x, 0) ≡
λ > 0 for all x ∈ (−1, 1). It follows from the maximum principle that vt > 0 for all t > 0.

Hence the limit V (x) := limt→∞ v(x, t) exists for all x ∈ [−1, 1]. As above, V is also a

stationary solution of (4.1)-(4.2) for the given λ. This gives that V = Uλ
−.
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Finally, since 0 ≤ u0 ≤ U∗, we have v ≤ u ≤ w, by Lemma 4.6. We conclude that u → Uλ
−

as t → ∞. The proof is complete. �
The stability of Uλ

− follows immediately from Theorem 4.7.

Corollary 4.8. For λ ∈ (0, λ∗), Uλ
− is stable.
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5. Appendix

In this appendix, for reader’s convenience, we provide the derivation of some non-standard

integrals used in this paper.

Property 5.1. It holds∫ η

0

(1− s)1/2√
η − s

ds =
√
η + (1− η) ln(

1 +
√
η

√
1− η

)

for all η ∈ (0, 1).

Proof. For 0 < s < η < 1, set t =
√

η−s
1−s

. Then

dt = −1

2

√
1− s

η − s

1− η

(1− s)2
ds

and we have ∫ η

0

(1− s)1/2√
η − s

ds = 2(1− η)

∫ √
η

0

1

(1− t2)2
dt

= 2(1− η)

(
1

4
ln(1 + t)− 1

4(1 + t)
− 1

4
ln(1− t) +

1

4(1− t)

) ∣∣∣√η

0

= 2(1− η)

(
1

4
ln(1 +

√
η)− 1

4
(
1 +

√
η
) − 1

4
ln(1−√

η) +
1

4
(
1−√

η
))

=
√
η + (1− η) ln(

√
1 +

√
η

1−√
η
)

=
√
η + (1− η) ln(

1 +
√
η

√
1− η

).

The property is derived. �
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Property 5.2. We have∫ η

0

(1− s)3/2√
η − s

ds =
1

4

[
(5− 3η)

√
η + 3(1− η)2 ln(

1 +
√
η

√
1− η

)

]
for all η ∈ (0, 1)

Proof. Similar to the proof of the previous property, set t =
√

η−s
1−s

, for 0 < s < η < 1.

Then we have∫ η

0

(1− s)3/2√
η − s

ds = 2(1− η)2
∫ √

η

0

1

(1− t2)3
dt

= 2(1− η)2
( 3

16
ln(1 + t)− 3

16(1 + t)
− 1

16(1 + t)2

− 3

16
ln(1− t) +

3

16(1− t)
+

1

16(1− t)2

)∣∣∣√η

0

= 2(1− η)2
(

3

16
ln(

1 +
√
η

1−√
η
) +

3

16
(

1

1−√
η
− 1

1 +
√
η
) +

1

16
(

1

(1−√
η)2

− 1

(1 +
√
η)2

)

)

=
1

4

[
(5− 3η)

√
η + 3(1− η)2 ln(

√
1 +

√
η

1−√
η
)

]

=
1

4

[
(5− 3η)

√
η + 3(1− η)2 ln(

1 +
√
η

√
1− η

)

]
.

The property is proved. �
Similar technique can be used to obtain the following property.

Property 5.3. It holds∫ η

0

(1− s)5/2√
η − s

ds =
1

24

[
√
η(33− 40η + 15η2) + 15(1− η)3 ln(

1 +
√
η

√
1− η

)

]
for all η ∈ (0, 1).

Finally, we prove

Property 5.4. For D > 0 and η ∈ (0, 1), it holds that

J(η,D) :=

∫ η

0

1√(
η−s
1−s

)
+D

(
η−s
1−s

)2 ds
=

(1− η)(2D + 1)

2(D + 1)3/2

{
− ln(1− η) + 2 ln(

√
Dη + 1 +

√
Dη + η)

}
+

√
Dη2 + η

D + 1
.

Proof. Set

t =
1− s

η − s
, s ∈ (0, η), η ∈ (0, 1).
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Then t ∈ (1/η,∞) and

ds = (1− η)
dt

(t− 1)2
.

We obtain

J(η,D) = (1− η)

∫ ∞

1/η

1√
D + t

t

(t− 1)2
dt

= (1− η)

{∫ ∞

1/η

1√
D + t(t− 1)

dt+

∫ ∞

1/η

1√
D + t(t− 1)2

dt

}
:= (1− η)(J1 + J2).

To compute Ji, i = 1, 2, we first set
√
D + t = u and then set u =

√
D + 1 sec θ. This

gives (without the upper and lower bounds of the integrals)

J1 =
2√

D + 1

∫
csc θdθ = − 2√

D + 1
ln

(√
D + t√
t− 1

+

√
D + 1√
t− 1

)
+ C,

J2 =
2

(D + 1)3/2

∫
csc θ cot2 θdθ

= −
√
D + t

(D + 1)(t− 1)
+

1

(D + 1)3/2
ln

(√
D + t√
t− 1

+

√
D + 1√
t− 1

)
+ C,

where C is a constant. Here we have used the following standard integrals∫
csc θdθ = − ln(| csc θ + cot θ|) + C,∫
csc θ cot2 θdθ =

1

2
{− csc θ cot θ + ln(| csc θ + cot θ|)}+ C.

Then the property is derived. �
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