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Abstract. In this paper, we first derive a theorem on the convergence of solutions to

traveling waves in reaction-diffusion systems with equal diffusivities. Then we apply this

theorem to some specific examples of predator-prey models which were studied recently in

the literature. This gives a stability result for these traveling waves in the corresponding

predator-prey system under certain perturbations of initial data.

1. Introduction

In this paper, we consider the following equal-diffusive reaction-diffusion system

(ui)t = (ui)xx + uigi(u), x ∈ R, t > 0, i = 1, . . . ,m, (1.1)

where u := (u1, . . . , um), gi ∈ C1((0,∞)m), i = 1, . . . ,m, andm is a positive integer. Suppose

that (1.1) has two different constant equilibria {E∓} such that E− is unstable and E+ is

stable in the ODE sense. A traveling wave of (1.1) connecting E− and E+ is a solution u of

(1.1) in the form

ui(x, t) = ϕi(z), z := x+ st, i = 1, . . . ,m,

for some constant s ∈ R and function Φ := (ϕ1, . . . , ϕm) such that

Φ(−∞) = E−, Φ(∞) = E+. (1.2)

Then {s,Φ} satisfies

ϕ′′
i (z)− sϕ′

i(z) + ϕigi(Φ(z)) = 0, z ∈ R, i = 1, . . . ,m. (1.3)

The study of traveling waves in reaction-diffusion systems has attracted a lot of attentions

in recent years, due to its importance in describing the spatial-temporal behavior of solutions.

In particular, for the existence of traveling waves in predator-prey systems, we refer the reader
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to works [14, 19, 18, 20, 23, 13, 24, 37, 35, 36, 5, 25, 38, 17, 2, 3] done in past years. On the

other hand, great attention is paid to the stability analysis of traveling waves in parabolic

equations and systems, we refer the reader to, e.g., [9]-[12] and [28, 29, 33, 1, 15, 26, 27, 32,

21, 22, 31, 34]. Here the stability is equivalent to the convergence to the traveling wave for

solutions of (1.1) with initial data under certain perturbations. The main purpose of this

paper is to present a simple approach to tackle this stability problem.

Throughout this paper, we assume that system (1.1) has a bounded invariant set I in the

sense that a solution u of (1.1) stays in I if its initial data u(·, 0) = u0 lies in I. Moreover,

we assume that there is a positive constant s∗ such that system (1.1) has a traveling wave

solution {s,Φ} connecting E− and E+ with Φ := (ϕ1, . . . , ϕm) positive if and only if s ≥ s∗.

Hereafter a vector-valued function is called positive if each component of this function is

positive.

Let u be a positive solution of (1.1). Then, using the moving coordinate z = x + st,

{ui = ui(z, t)} satisfies

(ui)t = (ui)zz − s(ui)z + uigi(u), z ∈ R, t > 0, i = 1, . . . ,m. (1.4)

Note that traveling wave profile Φ is a stationary solution of (1.4). Suppose that there exists

a set of positive constants {σi} such that

I :=
m∑
i=1

σi (ui − vi) {gi(u)− gi(v)} ≤ 0, ∀u, v ∈ I. (1.5)

We introduce the following distance function

K[U ] :=
m∑
i=1

σiKi[Ui], Ki[Ui] := Ui − ϕi − ϕi ln
Ui

ϕi

, (1.6)

for a positive function U = (U1, . . . , Um) defined in R. Note that K[U ](z) ≥ 0 for all z ∈ R
and K[U ](z) = 0 if and only if U(z) = Φ(z) for some z ∈ R. Then we define the related

entropy function of u by

Ψ(z, t) := K[u(·, t)](z), z ∈ R, t > 0. (1.7)

Now, we are ready to state the following convergence theorem for system (1.4).

Theorem 1.1. Assume that system (1.1) has a bounded invariant set I. Let R be a positive

constant, {s,Φ} be a positive traveling wave solution of (1.1) for some s ≥ 2
√
R and let u

be a solution of (1.4) with initial data u0. Assume that condition (1.5) is enforced. Suppose

that the related entropy function Ψ of u satisfies

Ψt −Ψzz + sΨz ≤ RΨ, z ∈ R, t > 0. (1.8)
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Let µ := {s −
√
s2 − 4R}/2. If e−µzK[u0] ∈ L1(R), then u(z, t) → Φ(z) as t → ∞ locally

uniformly for z in R.

Theorem 1.1 provides a stability of traveling wave in a certain sense. The key of this

stability is to derive the inequality (1.8). We shall show in §2 that, in addition to (1.5), it

requires that gi(Φ(z)) ≤ R for all z ∈ R for all i = 1, . . . ,m.

The rest of this paper is organized as follows. In §2, we provide a proof of Theorem 1.1.

Then applications of Theorem 1.1 to three specific predator-prey models studied in [4, 5, 17]

are given in §3. Here the constant R can be chosen so that s∗ = 2
√
R and so traveling waves

with all admissible wave speeds are stable (in the above sense). However, in some cases, we

were unable to obtain such a sharp result and we present other two examples (cf. [2, 3]) in

§4 for which stability of traveling waves can be derived only for wave speeds large enough.

Therefore, there remains an open problem for the stability of traveling waves with smaller

admissible wave speeds.

We add some remarks at the end of this section as follows. In most of the above-mentioned

works, one of the key ingredients is to analyze the spectrum of the associated linearized

operator of the studied system. In particular, the method developed by Evans [9]-[12] has

been widely used in the literature. However, Evans’ method requires a heavy and complicated

spectral analysis of the related operator (see, e.g., [1, 21, 22]). In some cases, a singular

perturbation method for a system involving a small parameter is adopted ([15]). On the

other hand, in some works on stability, some conditions on the spectrum are assumed in

order to derive the desired stability (e.g., [28, 29]). However, those spectrum conditions are

not easy to be verified for some specific systems.

Note that, in applying the Evans function method to obtain a stability of traveling waves

in predator-prey systems studied in this paper, certain steps are needed. The first step is to

analyze the essential spectrum of the associated asymptotic systems. This is done by calcu-

lating the Fredholm borders which is not too hard to be carried out, even for systems with

non-equal diffusivies. From this information on the essential spectrum, we see immediately

that the traveling waves can only be stable in a suitable weighted function space. Secondly,

in a suitably chosen weighted space, we need to analyze the point spectrum, including the

verification that 0 is a simple eigenvalue. This is extremely difficult to achieve and we were

unable to carry it out by this method.

We are not sure whether the conclusion of this paper can be obtained by the classical

methods. However, in comparing with the existing literature, our method does not need to

derive the spectrum of the associated linearized operator. Moreover, it can be applied to

reaction-diffusion equations (such as the classical Fisher-KPP equation) and systems of any

number of components, as long as we can find a suitable set of positive constants {σi} such
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that (1.5) holds. One should note that the existence of traveling waves in [2, 3, 4, 5, 17]

does not require the equal diffusivities condition. However, our method of deriving the

convergence to traveling waves requires the equal diffusivities condition. The non-equal

diffusivities case is delicate and we leave it as an open question.

2. Proof of Theorem 1.1 and the derivation of (1.8)

In this section, we first prove Theorem 1.1 as follows.

Proof of Theorem 1.1. Let s ≥ 2
√
R and let Ψ be the related entropy function of a solution

u of (1.4) with initial data u0. Consider the following linear heat equationsWt = Wzz − sWz +RW, z ∈ R, t > 0,

W (z, 0) = Ψ(z, 0), z ∈ R.

Define V (z, t) := e−µzW (z, t). Then V (z, t) satisfies

Vt = Vzz + (2µ− s)Vz,

using the identity µ2 − sµ + R = 0. The assumption e−µzK[u0] ∈ L1(R) implies V (·, 0) ∈
L1(R). Thus

0 ≤ V (z, t) =

∫
R

1√
4πt

exp
{
− (z − (2µ− s)t− y)2

4t

}
V (y, 0) dy ≤

∥V (·, 0)∥L1(R)√
4πt

→ 0

as t → ∞. Hence W (z, t) = eµzV (z, t) converges to zero locally uniformly for z ∈ R as

t → +∞. By the comparison principle, Ψ ≤ W . Therefore, the theorem is proved. □

Next, we provide a general calculation to derive (1.8).

By a simple calculation, we have

Ψt =
m∑
i=1

σi(ui)t

(
1− ϕi

ui

)
, Ψz =

m∑
i=1

{
σi(ui)z

(
1− ϕi

ui

)
− σiϕ

′
i ln

ui

ϕi

}
,

and

Ψzz =
m∑
i=1

{
σi(ui)zz

(
1− ϕi

ui

)
− σiϕ

′′
i ln

ui

ϕi

− σi

[
(ui)z

(
ϕi

ui

)
z

+
ϕiϕ

′
i

ui

(
ui

ϕi

)
z

]}
Since σi > 0 for each i and

(ui)z

(
ϕi

ui

)
z

+
ϕiϕ

′
i

ui

(
ui

ϕi

)
z

= −ϕi

[
(ui)z
ui

− ϕ′
i

ϕi

]2
≤ 0, ∀ i,
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it follows from (1.3) and (1.4) that

Ψt −Ψzz + sΨz ≤
m∑
i=1

{
σi (ui − ϕi) gi(u)− σiϕigi(Φ) ln

ui

ϕi

}

=
m∑
i=1

σi (ui − ϕi) gi(u) +
m∑
i=1

σigi(Φ) {Ki[ui]− (ui − ϕi)}

=
m∑
i=1

σi (ui − ϕi) {gi(u)− gi(Φ)}+
m∑
i=1

σigi(Φ)Ki [ui] ,

using

ϕi ln
ui

ϕi

= Ki[ui]− (ui − ϕi).

Therefore, if (1.5) holds for a suitable set of positive constants {σi} and if

max
1≤i≤m

{∥gi(Φ)∥L∞(R)} ≤ R,

then we can get the desired inequality (1.8) so that Theorem 1.1 can be applied.

3. Some examples of predator-prey models

In this section, we apply Theorem 1.1 to derive the asymptotic stability of traveling waves

in some specific predator-prey models.

3.1. A singular predator-prey model.

First, we consider the following singular predator-prey systemut = uxx + au(1− u)− v, x ∈ R, t > 0,

vt = vxx + bv (1− v/u) , x ∈ R, t > 0,
(3.1)

where a > 0 and b > 0. System (3.1) arises from a reduced model of the control of introduced

rabbits to protect native birds from introduced cat predation in an island [6, 7, 8, 4]. We

call this system singular, since the prey density u may reach zero in some finite time so that

the reaction term in the predator v equation becomes singular.

If a > 1, then (3.1) has a positive constant state E∗ = (u∗, v∗), where u∗ = v∗ = 1− 1/a.

We are interested in whether an alien predator can invade the existing prey so that both

predator and prey can live together in the habitat. This is equivalent to the existence of

traveling wave {s, ϕ1, ϕ2} connecting the predator-free state (1, 0) and the co-existence state

(u∗, v∗) in the following sense

lim
z→−∞

(ϕ1, ϕ2) = (1, 0), lim
z→∞

(ϕ1, ϕ2) = (u∗, v∗). (3.2)



6 J.-S. GUO AND M. SHIMOJO

Note that the wave profiles {ϕ1, ϕ2} satisfyϕ′′
1(z)− sϕ′

1(z) + aϕ1(z) [1− ϕ1(z)]− ϕ2(z) = 0, z ∈ R,

ϕ′′
2(z)− sϕ′

2(z) + bϕ2(z)
[
1− ϕ2(z)

ϕ1(z)

]
= 0, z ∈ R.

(3.3)

Suppose that a ≥ 4. Recall from [4] that for each s ≥ s∗ := 2
√
b there exists a positive

solution (ϕ1, ϕ2) of (3.3) such that condition (3.2) holds.

For a ≥ 4, let

a :=
1

2
−

√
1

4
− 1

a
, a :=

1

2
+

√
1

4
− 1

a
.

Then it is easy to check that Iα := [α, 1]× [0, 1] is an invariant domain for the corresponding

ordinary differential system of (3.1) for any α ∈ [a, a]. Hence, by the standard invariant

domain theory [30], any solution (u, v) of (3.1) with (u, v)(·, 0) = (u0, v0) exists globally in

time such that (u, v)(x, t) ∈ Iα for all (x, t) ∈ R× (0,+∞), if (u0, v0) ∈ Iα in R.
Note that traveling waves (ϕ1, ϕ2) constructed in [4] satisfy ϕ1 ≥ 1/2. We then define the

following admissible set

A := {(a, α) ∈ [4,∞)× [a, a] | aα ≥ 4}.

It is easy to check that {(a, 1/2) | a ≥ 8} ⊂ A. Note also that with the moving coordinate

z, (3.1) is reduced tout = uzz − suz + au(1− u)− v, z ∈ R, t > 0,

vt = vzz − svz + bv
(
1− v

u

)
, z ∈ R, t > 0,

(3.4)

for u = u(z, t) and v = v(z, t).

For a (positive) solution (u, v) of (3.4), we define its related entropy function byΨ(z, t) := K[u(·, t), v(·, t)](z) = bK1[u(·, t)](z) +K2[v(·, t)](z),
K1[u] := u− ϕ1 − ϕ1 ln(u/ϕ1), K2[v] := v − ϕ2 − ϕ2 ln(v/ϕ2).

(3.5)

Then we have the following lemma.

Lemma 3.1. Given s ≥ s∗ = 2
√
b. Assume (a, α) ∈ A and b ≥ a/2. Then for a solution

(u, v) of (3.4) with initial data (u0, v0) ∈ Iα, its related entropy function Ψ satisfies

Ψt −Ψzz + sΨz ≤ bΨ, z ∈ R, t ∈ (0,∞). (3.6)

Proof. Note that (u(x, t), v(x, t)) ∈ Iα for all x ∈ R and t > 0, since (u0, v0) ∈ Iα.

For this problem, we have

g1(u, v) = a(1− u)− v/u, g2 = b(1− v/u).
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Then the quantity I in (1.5) is computed as

I = −b

{
a(u− ϕ1)

2 + [(u− ϕ1) + (v − ϕ2)]

(
v

u
− ϕ2

ϕ1

)}
.

Using

v

u
− ϕ2

ϕ1

=
1

u
(v − ϕ2)−

ϕ2

uϕ1

(u− ϕ1) ,

we obtain

I = −b

[(
a− ϕ2

uϕ1

)
(u− ϕ1)

2 +
ϕ1 − ϕ2

uϕ1

(u− ϕ1)(v − ϕ2) +
1

u
(v − ϕ2)

2

]
.

Note that the determinant of the above bilinear form(
ϕ1 − ϕ2

uϕ1

)2

− 4

u

(
a− ϕ2

uϕ1

)
≤ 0

if and only if

a ≥ (ϕ1 − ϕ2)
2

4uϕ2
1

+
ϕ2

uϕ1

=
(ϕ1 + ϕ2)

2

4uϕ2
1

:= Q.

Since the coefficient of (v − ϕ2)
2, 1/u, is positive and Q ≤ 4/α, due to ϕ2 ∈ [0, 1], u ∈ [α, 1]

and ϕ1 ∈ [1/2, 1], it follows from the assumption aα ≥ 4 that I ≤ 0.

On the other hand, since ϕ1 ≥ 1/2, ϕ2 ≥ 0 and b ≥ a/2, we have

g1(Φ) = a(1− ϕ1)−
ϕ2

ϕ1

≤ a/2 ≤ b, g2(Φ) = b(1− ϕ2/ϕ1) ≤ b.

Thus the lemma is proved. □

Applying Theorem 1.1, we have the following stability theorem for (3.1).

Theorem 3.2. Suppose that s ≥ s∗ = 2
√
b. Assume (a, α) ∈ A and b ≥ a/2. Let (u, v) be

a solution of system (3.4) with initial data (u0, v0) ∈ Iα such that e−µzK[(u0, v0)] ∈ L1(R),
where µ := (s −

√
s2 − 4b)/2. Then (u, v)(z, t) converges to (ϕ1, ϕ2)(z) as t → +∞ locally

uniformly for z in R, where {s, (ϕ1, ϕ2)} is a traveling wave obtained in [4].

3.2. Regular predator-prey system.

The second example is the following (regular) predator-prey systemut = uxx + au(1− u− kv), x ∈ R, t > 0,

vt = vxx + bv(1− v/u), x ∈ R, t > 0,
(3.7)

with nonnegative nontrivial initial data (u0, v0) at t = 0, where a, b, k are positive constants.

Note that u never vanishes for positive times and so the ratio term v/u never becomes

singular.
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Recall from [5] that, given a constant k ∈ (0, 1), for each s ≥ s∗ := 2
√
b there is a positive

solution (ϕ1, ϕ2) ofϕ′′
1(z)− sϕ′

1(z) + aϕ1(z)[1− ϕ1(z)− kϕ2(z)] = 0, z ∈ R,

ϕ′′
2(z)− sϕ′

2(z) + bϕ2(z)
[
1− ϕ2(z)

ϕ1(z)

]
= 0, z ∈ R,

(3.8)

satisfying

lim
z→−∞

(ϕ1, ϕ2) = (1, 0), lim
z→∞

(ϕ1, ϕ2) =

(
1

1 + k
,

1

1 + k

)
.

As for system (3.1), it is easy to check that the set Ik := [1−k, 1]× [0, 1] is an invariant set

for system (3.7). Note that the traveling waves (ϕ1, ϕ2) constructed in [5] satisfy ϕ1 ≥ 1− k.

Using the moving coordinate z, (3.7) is re-written asut = uzz − suz + au(1− u− kv), z ∈ R, t > 0,

vt = vzz − svz + bv(1− v/u), z ∈ R, t > 0.
(3.9)

For a solution (u, v) of (3.9), we define its related entropy function Ψ and distance function

K as that for (3.4). Then we have the following lemma.

Lemma 3.3. Given s ≥ s∗ = 2
√
b and a > 1/16. Assume k ∈ (0, 1) such that

1

a(1− k)2
− 2√

a
≤ k ≤ 2√

a
, (3.10)

and b ≥ ak. Then its related entropy function Ψ satisfies (3.6) for a solution (u, v) of (3.9)

with initial data (u0, v0) ∈ Ik.

Proof. The proof is similar to that of Lemma 3.1. Here we have

g1(u, v) = a(1− u− kv), g2 = b(1− v/u).

First, we compute

I = −b
[
a(u− ϕ1)

2 +

(
ak − ϕ2

uϕ1

)
(u− ϕ1)(v − ϕ2) +

1

u
(v − ϕ2)

2
]
.

Note that I ≤ 0 if and only if (
ak − ϕ2

uϕ1

)2

≤ 4a

u

which is equivalent to

K1 :=
ϕ2

auϕ1

− 2√
a
√
u
≤ k ≤ ϕ2

auϕ1

+
2√
a
√
u
:= K2. (3.11)

It is easy to check that

maxK1 =
1

a(1− k)2
− 2√

a
, minK2 =

2√
a
,
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by using u, ϕ1 ∈ [1 − k, 1] and 0 ≤ ϕ2 ≤ 1. We conclude that I ≤ 0, if condition (3.10) is

enforced.

On the other hand, we compute

g1(Φ) = a(1− ϕ1 − kϕ2) ≤ ak ≤ b, g2(Φ) = b(1− ϕ2/ϕ1) ≤ b,

using ϕ1 ≥ 1− k, ϕ2 ≥ 0 and b ≥ ak. Thus the lemma is proved. □

Then we have the following stability theorem for system (3.7).

Theorem 3.4. Given s ≥ s∗ = 2
√
b and a > 1/16. Assume (3.10) holds for some k ∈ (0, 1)

and b ≥ ak. Let (u, v) be a solution of system (3.9) with initial data (u0, v0) ∈ Ik such

that e−µzK[(u0, v0)] ∈ L1(R), where µ := (s −
√
s2 − 4b)/2. Then (u, v)(z, t) converges to

(ϕ1, ϕ2)(z) as t → +∞ locally uniformly for z in R, where {s, (ϕ1, ϕ2)} is a traveling wave

obtained in [5].

Remark 3.5. We show here that condition (3.10) is not void. Note that the set

B :=

{
k ∈ (0, 1)

∣∣∣ 1

a(1− k)2
− 2√

a
<

2√
a

}
̸= ∅,

if a > 1/16. Furthermore, the condition

1

a(1− k)2
− 2√

a
≤ k, (3.12)

is equivalent to g(k) ≥ 1, where

g(k) := (ak + 2
√
a)(1− k)2.

Note that g(0) = 2
√
a and g(1) = 0. We compute

g′(k) = (1− k)[a(1− k)− 2(ak + 2
√
a)] = a(1− k)(1− 4/

√
a− 3k) = 0

if and only if k = 1 or k = k0 := (1− 4/
√
a)/3 ∈ (0, 1). Since

g′′(k) = a(−4 + 4/
√
a+ 6k),

we obtain from g′′(1) > 0 and g′′(k0) < 0 that

max
k∈(0,1)

g(k) = g(k0) = (ak0 + 2
√
a)(1− k0)

2 =
4

27
√
a
(2 +

√
a)3 := h(a).

It is easy to check that h(a) ≥ h(1) = 4 for all a > 0. We conclude that condition (3.12)

holds for some k ∈ (0, 1), if we assume a > 1/16.
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3.3. Two-predator-one-prey system.

Finally, we consider the following two-predator-one-prey system
ut = uxx + r1u(−1− u− hv + aw), x ∈ R, t > 0,

vt = vxx + r2v(−1− ku− v + aw), x ∈ R, t > 0,

wt = wxx + r3w(1− bu− bv − w), x ∈ R, t > 0,

(3.13)

where

0 < h, k < 1, a > 1, b < min

{
1

2(a− 1)
,
1− h

2a
,
1− k

2a

}
. (3.14)

Note that the set

I0 := {0 ≤ u, v ≤ a− 1, 0 ≤ w ≤ 1}

is an invariant set of system (3.13).

Recall from [17] that for each s ≥ s∗ := max{2
√

r1(a− 1), 2
√

r2(a− 1)} system (3.13)

admits a traveling wave solution

(u, v, w)(x, t) = (ϕ1, ϕ2, ϕ3)(x+ st)

for some functions (wave profiles) (ϕ1, ϕ2, ϕ3) such that

(ϕ1, ϕ2, ϕ3)(−∞) = (0, 0, 1), (ϕ1, ϕ2, ϕ3)(+∞) = (u∗, v∗, w∗),

where

w∗ :=
(1− hk) + b(2− h− k)

(1− hk) + ab(2− h− k)
, v∗ :=

1− h

1− hk
(aw∗ − 1), u∗ :=

1− k

1− hk
(aw∗ − 1).

Without loss of generality, we may assume that r1 ≥ r2. Then s∗ = 2
√
r1(a− 1).

Using the moving coordinate z := x+ st, system (3.13) is equivalent to
ut = uzz − suz + r1u(−1− u− hv + aw), z ∈ R, t > 0,

vt = vzz − svz + r2v(−1− ku− v + aw), z ∈ R, t > 0,

wt = wzz − swz + r3w(1− bu− bv − w), z ∈ R, t > 0.

(3.15)

For a solution (u, v, w) of (3.15), we setΨ = σ1Ψ1 + σ2Ψ2 + σ3Ψ3, Ψi(z, t) := Ki[u(·, t), v(·, t), w(·, t)](z),
K1 := (u− ϕ1)− ϕ1 ln

u
ϕ1
, K2 := (v − ϕ2)− ϕ2 ln

v
ϕ2
, K3 := (w − ϕ3)− ϕ3 ln

w
ϕ3
,

where σ1 := 1, σ2 := r1/r2 and σ3 := r1a/(r3b). Then we have
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Lemma 3.6. Given s ≥ s∗ = 2
√
r1(a− 1). Suppose that, in addition to (3.14),

r2 ≤ r1, r3 ≤ r1(a− 1). (3.16)

Then the function Ψ satisfies

Ψt −Ψzz + sΨz ≤ r1(a− 1)Ψ, z ∈ R, t > 0, (3.17)

if the initial data (u, v, w)(z, 0) of a solution (u, v, w) of (3.15) lies in I0.

Proof. Note that (u, v, w)(z, t) ∈ I0 for all z ∈ R and t > 0. Here we setg1(u, v, w) = r1(−1− u− hv + aw), g2(u, v, w) = r2(−1− ku− v + aw),

g3(u, v, w) = r3(1− bu− bv − w).

Then the quantity I in (1.5) is computed as

I = −[r1(u− ϕ1)
2 + σ2r2(v − ϕ2)

2 + σ3r3(w − ϕ3)
2 + (r1h+ σ2r2k)(u− ϕ1)(v − ϕ2)].

It is easy to check that I ≤ 0, since 0 < h, k < 1. Moreover, using 0 ≤ ϕi ≤ 1, i = 1, 2, 3,

and (3.16), we obtain

g1(Φ) ≤ r1(a− 1), g2(Φ) ≤ r2(a− 1) ≤ r1(a− 1), g3(Φ) ≤ r3 ≤ r1(a− 1).

Hence the lemma is proved. □

From Lemma 3.6 and applying Theorem 1.1, we have the following stability theorem for

system (3.13).

Theorem 3.7. Suppose that s ≥ s∗ = 2
√

r1(a− 1). Let (3.14) and (3.16) be enforced.

Let (u, v, w) be a solution of system (3.15) with initial data (u0, v0, w0) ∈ I0 such that

e−µzK[(u0, v0, w0)] ∈ L1(R), where µ := [s −
√

s2 − 4r1(a− 1)]/2. Then (u, v, w)(z, t) con-

verges to (ϕ1, ϕ2, ϕ3)(z) as t → +∞ locally uniformly for z in R, where {s, (ϕ1, ϕ2, ϕ3)} is a

traveling wave obtained in [17].

4. Two more examples of predator-prey systems

In this section, we shall provide two more examples of predator-prey systems studied in

[2, 3]. In the following examples, under certain conditions there is a unique positive co-

existence state Ec = (uc, vc, wc) in each system. For simplicity of presentation, we shall not

mention the specific conditions and refer the reader to the references [2, 3]. As we shall see,

by applying Theorem 1.1, stability can be assured only for those traveling waves with large

enough wave speeds.
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First, in [3], (1.1) for a system of two weak competing preys and one predator was studied

in which 
g1(u1, u2, u3) = r1(1− u1 − ku2 − bu3),

g2(u1, u2, u3) = r2(1− hu1 − u2 − bu3),

g3(u1, u2, u3) = r3(−1 + au1 + au2 − u3),

where

0 < h, k < 1, a >
2

2− h− k
, 0 < b < min

{
1− k

2a− 1
,
1− h

2a− 1
,
a(2− h− k)− 2

2a(2a− 1)

}
.

It is clear that I = [0, 1] × [0, 1] × [0, 2a − 1] is an invariant set for this case. Moreover,

with σ1r1 = 1, σ2r2 = 1 and σ3r3 = b/a, we have

−
3∑

i=1

{σi(ui − vi)[gi(u)− gi(v)]}

= σ1r1(u1 − v1)
2 + σ2r2(u2 − v2)

2 + σ3r3(u3 − v3)
2 + (σ1kr1 + σ2hr2)(u1 − v1)(u2 − v2)

+(σ2br2 − σ3ar3)(u2 − v2)(u3 − v3) + (σ1br1 − σ3ar3)(u1 − v1)(u3 − v3)

= {(u1 − v1)
2 + (h+ k)(u1 − v1)(u2 − v2) + (u2 − v2)

2}+ b

a
(u3 − v3)

2 ≥ 0

for any u := (u1, u2, u3) and v := (v1, v2, v3) in R3, since h+ k < 2.

Set E− = (up, vp, 0) and E+ = Ec, where

up :=
1− k

1− hk
, vp :=

1− h

1− hk
.

Let β := a(up + vp) − 1 > 0. The minimal wave speed for waves connecting {E∓} is

characterized by s∗ := 2
√
r3β in [3]. However, since we have

g1(Φ) ≤ r1, g2(Φ) ≤ r2, g3(Φ) ≤ r3(2a− 1),

we can only obtain the stability for waves with speed s ≥ 2
√
R, where

R := max{r1, r2, r3(2a− 1)} ≥ r3(2a− 1) > r3β,

by applying Theorem 1.1.

Secondly, in [2], (1.1) for a system of a pair of strong-weak competing preys and one

predator was studied in which
g1(u1, u2, u3) = r1(1− u1 − ku2 − b1u3),

g2(u1, u2, u3) = r2(1− hu1 − u2 − b2u3),

g3(u1, u2, u3) = r3(−1 + au1 + au2 − u3),

where 0 < h < 1 < k and a > 1. It is clear that I = [0, 1] × [0, 1] × [0, 2a − 1] is also an

invariant set for this case.
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Note that, with σ1 = 1/r1, σ2 = b1/(b2r2) and σ3 = b1/(ar3), we have

−
3∑

i=1

{σi(ui − vi)[gi(u)− gi(v)]}

= σ1r1(u1 − v1)
2 + σ2r2(u2 − v2)

2 + σ3r3(u3 − v3)
2 + (σ1kr1 + σ2hr2)(u1 − v1)(u2 − v2)

+(σ2b2r2 − σ3ar3)(u2 − v2)(u3 − v3) + (σ1b1r1 − σ3ar3)(u1 − v1)(u3 − v3)

= {(u1 − v1)
2 + (k + hb1/b2)(u1 − v1)(u2 − v2) +

b1
b2
(u2 − v2)

2}+ b1
a
(u3 − v3)

2 ≥ 0

for any u := (u1, u2, u3) and v := (v1, v2, v3) in R3, provided that(
k + h

b1
b2

)2

≤ 4
b1
b2
. (4.1)

See also [2, Lemma 4.7].

Let E∗ := (u∗, 0, w∗) and E∗ = (0, v∗, w∗), where

u∗ :=
1 + b1
1 + ab1

, w∗ :=
a− 1

1 + ab1
; v∗ :=

1 + b2
1 + ab2

, w∗ :=
a− 1

1 + ab2
.

Set

β∗ = 1− hu∗ − b2w
∗, β∗ = 1− kv∗ − b1w∗.

Recall from [2] that both E∗ and E∗ are unstable (i.e., β∗ > 0 and β∗ > 0) and Ec is stable,

if Ec exists and (
k + h

b1
b2

)2

< 4
b1
b2
. (4.2)

Case 1. Recall from [2] that there is a positive traveling wave with E− = E∗ for any

s ≥ 2
√
r2β∗, if

r2β
∗ ≥ max{r1[k + b1(2a− 1)], r3}. (4.3)

Moreover, these waves satisfy E+ = Ec, if Ec exists and condition (4.2) is enforced. However,

since

g1(Φ) ≤ r1, g2(Φ) ≤ r2, g3(Φ) ≤ r3(2a− 1),

we can only imply the stability of those waves with speeds s ≥ 2
√
R, where

R = max{r1, r2, r3(2a− 1)} ≥ r2 > r2β
∗.

Case 2. Similar result for waves connecting E∗ and Ec to Case 1 holds, if we replace (4.3)

by

r1β∗ ≥ max{r2[h+ b2(2a− 1)], r3} (4.4)
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and the minimal wave speed by 2
√
r1β∗. Then we have the stability of those waves with

speeds s ≥ 2
√
R, where

R = max{r1, r2, r3(2a− 1)} ≥ r1 > r1β∗.

Case 3. E− = E∗ and E+ = E∗. In this case, we have β∗ > 0 and β∗ < 0. Moreover, we

assume, in addition to (4.3), that

a(1− h) > 1, b2 <
a(1− h)− 1

a(2a− 1)
.

Then the minimal wave speed is given by s∗ = 2
√
r2β∗ (cf. [2]).

For (1.5), if we choose σi = 1/ri for i = 1, 2, 3, then

−
3∑

i=1

{σi(ui − vi)[gi(u)− gi(v)]}

= X2 + Y 2 + Z2 + (h+ k)XY + (b1 − a)XZ + (b2 − a)Y Z := [X, Y, Z]B

XY
Z

 ,

where 
X := u1 − v1, Y := u2 − v2, Z := u3 − v3,

B :=


1 (h+ k)/2 (b1 − a)/2

(h+ k)/2 1 (b2 − a)/2

(b1 − a)/2 (b2 − a)/2 1

 .

Hence (1.5) can be ensured if

h+ k + b1 − a ≤ 2, h+ k + b2 − a ≤ 2, b1 + b2 − 2a ≤ 2, (4.5)

by Gershgorin’s Theorem [16].

On the other hand, by taking

σ1 =
1

r1
, σ2 =

b1
b2r2

, σ3 =
b1
ar3

,

we have

−
3∑

i=1

{σi(ui − vi)[gi(u)− gi(v)]} = X2 + (hb1/b2 + k)XY +
b1
b2
Y 2 +

b1
a
Z2.

Hence (4.5) is changed to

hb1 + kb2 ≤ 2b2, hb1 + kb2 ≤ 2b1 (4.6)

so that (1.5) is assured.
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Recall from [2] that β∗ > 0 if and only if

b2 <
a− h

a− 1
b1 +

1− h

a− 1
. (4.7)

Moreover, β∗ < 0 if and only if

b2(a− k) < (a− 1)b1 + (k − 1). (4.8)

Note that (4.8) holds, if either 1 < a ≤ k or

a > k, b2 <
a− 1

a− k
b1 +

k − 1

a− k
. (4.9)

From these conditions, (4.5) and (4.6) can be achieved under certain conditions on param-

eters {h, k, a, b1, b2}. We leave the detailed characterization of the parameters range to the

interested reader. We conclude from Theorem 1.1 that the waves connecting {E∗, E∗} are

stable in the sense described in Theorem 1.1 for those speeds s ≥ 2
√
R, where

R = max{r1, r2, r3(2a− 1)} ≥ r2 > r2β
∗.
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