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Abstract. In this note, we derive the stability of various monostable traveling waves in

two different classes of three-species competition systems. This includes cases of three weak

competitors and two-weak-one-strong competitors.

1. Introduction

In this note, we consider the following three-species diffusive competition system

(ui)t = (ui)xx + uigi(u1, u2, u3), x ∈ R, t > 0, i = 1, 2, 3, (1.1)

where 
g1(u1, u2, u3) := r1(1− u1 − a2u2 − a3u3),

g2(u1, u2, u3) := r2(1− b1u1 − u2 − b3u3),

g3(u1, u2, u3) := r3(1− c1u1 − c2u2 − u3)

(1.2)

in which the positive parameters ri, i = 1, 2, 3, denote the intrinsic growth rates, and aj, bk, cl

are the inter-specific competition coefficients of three species with densities ui, i = 1, 2, 3.

Here we assume all species have the same diffusivities 1 and the carrying capacity of each

species is normalized to be 1 which can be done by taking a suitable scaling.

Suppose that (1.1) has two different constant equilibria {E∓} such that E− is unstable

and E+ is stable in the ODE sense. A monostable traveling wave of (1.1) connecting E−

and E+ is a solution u of (1.1) such that

ui(x, t) = ϕi(z), z := x+ st, i = 1, 2, 3,

for some positive constant s (the wave speed) and function Φ := (ϕ1, ϕ2, ϕ3) (the wave profile)

satisfying

Φ(−∞) = E−, Φ(∞) = E+. (1.3)
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Then it is easy to see that {s,Φ} satisfies

ϕ′′
i (z)− sϕ′

i(z) + ϕigi(Φ(z)) = 0, z ∈ R, i = 1, 2, 3. (1.4)

For the existence of traveling waves in competition systems and non-cooperative systems,

we refer the reader to, e.g., [2, 3, 4, 5]. In particular, in the case of three weak competitors

such that

a2 + a3 < 1, b1 + b3 < 1, c1 + c2 < 1, (1.5)

there exist a unique positive co-existence state E∗ := (u∗, v∗, w∗), with u∗, v∗, w∗ ∈ (0, 1), the

semi-coexistence state Ec := (0, vc, wc) = (0, (1− b3)/(1− b3c2), (1− c2)/(1− b3c2)), and the

state E3 := (0, 0, 1). It is easy to see that both E3 and Ec are unstable, while E∗ is stable in

the ODE sense. Recall from [3] that (1.1) has a positive traveling wave connecting E− = E3

and E+ = E∗ if and only if s ≥ 2
√

r1(1− a3), provided

r2(1− b3) = r1(1− a3). (1.6)

While, (1.1) has a positive traveling wave connecting E− = Ec and E+ = E∗ if and only if

s ≥ 2
√
r1β, β := 1− a2vc − a3wc, provided

r1β ≥ max{r2(b1 + b3c2vc), r3[c1 + c2(1− vc)]}. (1.7)

On the other hand, for the case of two weak and one strong competitors, under the

assumption

a2 + a3 < 1, b3, c2 < 1, b1 ≥ 1/a2, c1 ≥ 1/a3, (1.8)

by [2, 3], (1.1) has a positive traveling wave connecting E− = E3 = (0, 0, 1) and E+ = E1 :=

(1, 0, 0) if and only if s ≥ 2
√

r1(1− a3), provided

r2(1− b3) = r1(1− a3) ≥ r3(c1 + c2 − 1)+. (1.9)

While, (1.1) has a positive traveling wave connecting E− = Ec and E+ = E1 if and only if

s ≥ 2
√
r1β, provided (1.7) is enforced.

The aim of this paper is to derive the stability of these traveling waves. For the study of

stability of traveling waves in non-cooperative systems using the Evans function’s approach,

we refer the reader to, e.g., [7, 8], and the references cited in [6]. Recently, by a very

fundamental method, a stability theorem was proved in [6] for general reaction-diffusion

systems with equal diffusivities. In [6], an application of this general theorem to derive the

stability of traveling waves in various predator-prey systems was given.

Let I := [0, 1]3. Suppose that there exists a set of positive constants {σ1, σ2, σ3} such that

3∑
i=1

σi (ui − vi) {gi(u1, u2, u3)− gi(v1, v2, v3)} ≤ 0, ∀ (u1, u2, u3), (v1, v2, v3) ∈ I. (1.10)
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Then a distance function

K[U ] :=
3∑

i=1

σiKi[Ui], Ki[Ui] := Ui − ϕi − ϕi ln
Ui

ϕi

, (1.11)

is defined for any positive function U = (U1, U2, U3) : R 7→ (0,∞)3. Note that K[U ](z) ≥ 0

for all z ∈ R and K[U ](z) = 0 if and only if U(z) = Φ(z) for some z ∈ R. For a positive

constant R, we let

λ = λ(s;R) :=
s−

√
s2 − 4R

2
, s ≥ 2

√
R. (1.12)

Also, using the moving coordinate z = x+ st, (1.1) is re-written as

(ui)t = (ui)zz − s(ui)z + uigi(u), z ∈ R, t > 0, i = 1, 2, 3, (1.13)

hereafter u = u(z, t) := (u1(z, t), u2(z, t), u3(z, t)).

Then we have the following two stability theorems.

Theorem 1. Assume, in addition to (1.5), that either a2b3c1 = a3b1c2 or

a2 + b1 + a3 + c1 ≤ 2, a2 + b1 + b3 + c2 ≤ 2, a3 + c1 + b3 + c2 ≤ 2.

Let Φ be a positive traveling wave of (1.1) connecting E− ∈ {(0, 0, 1), (0, vc, wc)} and E+ =

E∗ with wave speed s ≥ 2
√
R, where R := max{r1, r2, r3}. Then {s,Φ} is stable in the sense

that u(z, t) → Φ(z) as t → ∞ locally uniformly for z ∈ R for any solution u of (1.13) with

initial data u0 at t = 0 satisfying e−λzK[u0] ∈ L1(R), where λ = λ(s;R) is defined in (1.12)

and the constants {σ1, σ2, σ3} in the definition of K in (1.11) are chosen so that (1.10) holds.

Theorem 2. Assume, in addition to (1.8), that a2b1 = 1 = a3c1 and

2a2a3 = a22b3 + a23c2.

Let Φ be a positive traveling wave of (1.1) connecting E− ∈ {(0, 0, 1), (0, vc, wc)} and E+ =

E1 with wave speed s ≥ 2
√
R, where R := max{r1, r2, r3}. Then {s,Φ} is stable in the sense

described in Theorem 1.

In fact, Theorems 1 and 2 follow from an application of the general theorem [6, Theorem

1.1]. We make some remarks on the perturbation of initial data as follows. At the stable

tail of traveling wave, i.e., z = ∞, the perturbation is allowed to be arbitrarily large due to

condition e−λzK[u0] ∈ L1(R). Note that λ > 0. However, at the unstable tail (z = −∞), the

perturbation can only be made with decay rate faster than eλz. This is a typical phenomenon

in the stability of monostable waves in many reaction-diffusion systems, including their

discrete analogues. Note that the exponent λ is a function of the wave speed s.

In applying [6, Theorem 1.1], we first note that the constant R is defined by

max
1≤i≤3

sup
z∈R

{gi(Φ(z))} ≤ R.
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Hence R = max{r1, r2, r3} by using ϕi ≥ 0 for all i. Therefore, to prove Theorems 1 and 2,

all we need to do is to find some conditions on the parameters in (1.2) along with a suitable

set of constants {σ1, σ2, σ3} such that (1.10) holds. The verification of (1.10) is given in

the next section. The main contribution of this note is providing some conditions on the

parameters in (1.2) to ensure the stability of traveling waves in competition systems. The

importance of this work is that these stability results can be proved by a very simple method

without any hard work on spectral analysis.

Note that R > r1(1 − a3) and R > r1β. The stability of wave with speed s < 2
√
R is

still left open. In fact, the stability of wave with speed s < 2
√
R can be proved if one can

derive sharper lower bounds for wave profiles. We also remark that the conditions on the

parameters in (1.2) imposed in Theorems 1 and 2 may not be optimal. The stability and

instability of traveling waves for the other cases are still left open.

2. Verification of (1.10)

For notational convenience, we letu := (u1, u2, u3), v := (v1, v2, v3), I := −
∑3

i=1{σi(ui − vi)[gi(u)− gi(v)]},
X := u1 − v1, Y := u2 − v2, Z := u3 − v3.

Then I is computed as

I = [X, Y, Z]B

XY
Z

 = σ1r1X
2 + σ2r2Y

2 + σ3r3Z
2

+(σ1r1a2 + σ2r2b1)XY + (σ2r2b3 + σ3r3c2)Y Z + (σ1r1a3 + σ3r3c1)XZ, (2.1)

where

B :=

 σ1r1 (σ1r1a2 + σ2r2b1)/2 (σ1r1a3 + σ3r3c1)/2

(σ1r1a2 + σ2r2b1)/2 σ2r2 (σ2r2b3 + σ3r3c2)/2

(σ1r1a3 + σ3r3c1)/2 (σ2r2b3 + σ3r3c2)/2 σ3r3

 .

Our task is to find some conditions on parameters in (1.2) and a suitable set of {σi} so that

(1.10) holds, i.e., I ≥ 0. This is also equivalent to find some conditions on parameters in

(1.2) and positive constants {σi} such that the matrix B is symmetric positive semi-definite.

2.1. Three weak competitors.

Case 1. a2b3c1 = a3b1c2, i.e.,
a2b3
b1

=
a3c2
c1

. (2.2)
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With (1.5) and the choice

σ1 =
1

r1
, σ2 =

a2
r2b1

, σ3 =
a3
r3c1

,

we obtain from (2.1) and (2.2) that I ≥ 0, since by using (2.2) we can write

I = (1− a2 − a3)X
2 +

a2
b1
(1− b1 − b3)Y

2 +
a3
c1
(1− c1 − c2)Z

2

+a2(X + Y )2 + a3(X + Z)2 +
a2b3
b1

(Y + Z)2.

Case 2. condition

a2 + b1 + a3 + c1 ≤ 2, a2 + b1 + b3 + c2 ≤ 2, a3 + c1 + b3 + c2 ≤ 2 (2.3)

is enforced. Setting σi = 1/ri, i = 1, 2, 3, we obtain from (2.1) that

I = X2 + Y 2 + Z2 + (a2 + b1)XY + (a3 + c1)XZ + (b3 + c2)Y Z,

B =

 1 (a2 + b1)/2 (a3 + c1)/2

(a2 + b1)/2 1 (b3 + c2)/2

(a3 + c1)/2 (b3 + c2)/2 1

 .

Hence I ≥ 0 under condition (2.3), by Gerschgorin’s Theorem [1]. Indeed, we can write I as

I =
a2 + b1

2
(X + Y )2 +

a3 + c1
2

(X + Z)2 +
b3 + c2

2
(Y + Z)2 +

[
1− a2 + b1 + a3 + c1

2

]
X2

+

[
1− a2 + b1 + b3 + c2

2

]
Y 2 +

[
1− a3 + c1 + b3 + c2

2

]
Z2

so that I ≥ 0, if condition (2.3) holds. Thereby, Theorem 1 is proved. □

2.2. Two weak and one strong competitors.

This case is more delicate. Recall from the fundamental theory of linear algebra that B

is symmetric positive semi-definite if and only if all principal minors of B are nonnegative.

First, we take σ1 = 1/r1. Then the symmetric positive semi-definiteness of B requires

r22b
2
1σ

2
2 − 2r2(2− a2b1)σ2 + a22 ≤ 0. (2.4)

Thus, in order to have some σ2 > 0 such that (2.4) holds, we need

2− a2b1 > 0 and (2− a2b1)
2 ≥ a22b

2
1. (2.5)

Since (2.5) holds if and only if a2b1 ≤ 1, we obtain from condition a2b1 ≥ 1 in (1.8) that

a2b1 = 1 and so, by (2.4),

σ2r2 =
a2
b1

= a22.
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Next, since the symmetric positive semi-definiteness of B also requires

r23c
2
1σ

2
3 − 2r3(2− a3c1)σ3 + a23 ≤ 0,

a similar argument as before implies that we must have a3c1 = 1 and

σ3r3 =
a3
c1

= a23.

It follows that

B =

 1 a2 a3
a2 a22 (a22b3 + a23c2)/2

a3 (a22b3 + a23c2)/2 a23

 .

Note that

det(B) = −[a2a3 − (a22b3 + a23c2)/2]
2.

Hence all eigenvalues of B are nonnegative if and only if

2a2a3 = a22b3 + a23c2. (2.6)

Recall from (1.8) that b3, c2 ∈ (0, 1). To see (2.6) is admissible for some {b3, c2} ∈ (0, 1),

we consider, e.g., a3 = 2a2. Then (2.6) is equivalent to b3 + 4c2 = 4, which can be achieved

when we choose c2 ∈ (3/4, 1) and b3 = 4(1− c2).

Now, using (2.6), B can be re-written as

B =

 1 a2 a3
a2 a22 a2a3
a3 a2a3 a23

 .

It is easy to see that B has the eigenvalues {0, 0, 1+a22+a23} with the corresponding orthogonal

eigenvectors

[0,−a3, a2]
T , [−(a22 + a23), a2, a3]

T , [1, a2, a3]
T .

We conclude that I ≥ 0, under the assumptions (1.8), a2b3 = 1 = a3c1 and (2.6), with

σ1 = 1/r1, σ2 = a22/r2, σ3 = a23/r3.

In fact, we have I = (X + a2Y + a3Z)
2. This proves Theorem 2. □
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