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Abstract. We prove a Liouville theorem on the positive bounded entire solution of a class of

reaction-diffusion systems with fractional diffusion. Some application of this Liouville theorem

is also given.

1. Introduction

In this paper, we consider the following reaction-diffusion system

(1.1)
∂ui

∂t
+ di(−∆)αui = fi(u1, . . . , um), t ∈ R, x ∈ Rn, i = 1, . . . ,m,

where n,m are positive integers, di > 0 and fi : Rm → R is a C1 function for each i = 1, . . . ,m,

and (−∆)α represents the fractional diffusion with order α ∈ (0, 1). The fractional diffusion

is one of the anomalous diffusions in which the diffusive phenomenon is described by Lévy

processes allowing long jumps.

The study of fractional diffusion has attracted a lot of attentions recently and the results

are very different from that of the classical diffusion. In particular, it is proved in [3] that the

invading speed of stable state into the unstable one is exponentially in time for the fractional

diffusion Fisher-KPP type scalar equation, in contrast to the linear rate for the classical dif-

fusion [1]. This exponential propagation speed is also shown in [4] for a predator-prey system

and in [5] for a multi-component cooperative diffusive system with at least one diffusion is of

fractional type.

We are concerned with the characterization of entire solutions of (1.1). Here an entire

solution is a solution defined for all t ∈ R (and for all x ∈ Rn). Let 0 < ki < Ki < ∞ for

i = 1, . . . ,m. Set g(θ) := θ − 1− ln θ, θ > 0. Note that g is a strictly convex smooth function

on (0,∞) such that g(θ) > 0 for all θ ̸= 1 and g(1) = 0. Throughout this paper we shall

always assume that (1.1) has a unique positive constant equilibrium u∗ := (u∗
1, . . . , u

∗
m) such

that ki < u∗
i < Ki for each i.

Our main theorem of this paper reads
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Theorem 1.1. Let u = (u1, . . . , um) be an entire solution of (1.1) such that ui ∈ [ki, Ki] for i =

1, . . . ,m. Suppose that the corresponding diffusion-free system of (1.1) admits a nonnegative

bounded Lyapunov function in the form

F (u) =
m∑
i=1

Fi(ui), u = (u1, . . . , um) ∈ Rm
+ ,

where Fi(ui) = cig(ui/u
∗
i ) for some positive constant ci for each i such that

(1.2)
m∑
i=1

F ′
i (ui)fi(u) ≤ −κF (u), u ∈

m∏
i=1

[ki, Ki],

for some positive constant κ. Then u = u∗.

In particular, we have

Corollary 1.2. Suppose that u is a bounded entire solution of

ut + d(−∆)αu = ru(1− u), t ∈ R, x ∈ Rn,

where d, r are positive constant, such that u ≥ ε in R×Rn for some positive constant ε. Then

u ≡ 1.

It is well-known that the characterization of entire solutions plays an important role in the

study of asymptotic behavior of the associated reaction-diffusion systems. As a result, some

applications to the study of spatial propagation, such as the spreading behaviors, of systems

arising in ecology and epidemiology can be addressed. For the study of spreading dynamics of

systems with the classical diffusion, we refer the reader to [1] for a scalar equation, [13, 7] for

two-component systems and [14, 12, 6] for three-component systems.

In fact, Theorem 1.1 is an extension of [10, Theorem 1.1] when the standard diffusion is

replaced by the fractional diffusion. Recall from [10] that there are many diffusion-free kinetic

systems have Lyapunov functions which enjoy the property (1.2). Hence Theorems 1.1 holds

for a large class of systems in ecology and epidemiology such as those systems mentioned in

[10] with the classical diffusion replaced by the fractional diffusion.

One of the applications of Theorem 1.1 is to derive the convergence of solutions to the unique

positive co-existence state u∗ in the persistent (for all components) zone, by using the regularity

theory of fractional diffusion equations such as the Hölder regularity [11, Theorem 1.2] and the

interior regularity estimate [9, Theorem 1.1] (see also [15, Theorem 2.5]). In this aspect, we

refer the reader to, e.g. [7, Theorem 2.6] and [10, Theorem 1.3] for the classical diffusion case.

To our knowledge, this convergence property for multi-component reaction-diffusion systems

with fractional diffusion was little addressed in literature before. In fact, Theorem 1.1 can

be applied to derive the convergence of solution to the positive co-existence state behind the

spreading front for the predator-prey system studied in [4].

The rest of this paper is organized as follows. First, a proof of Theorem 1.1 is given in §2,
based on some delicate analysis of the associated integrations and a suitable choice of weight

function (cf. [2]). Then we give another example of predator-prey system for an application of

Theorem 1.1 in §3. Note that [3, Theorem 1.2 (b)] can also be proved by applying Corollary 1.2

instead of [3, Lemma 3.3].
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2. Proof of Theorem 1.1

Let

ρ1(z) =

{
(1 + (|z|2 − 1)4)−γ/8, |z| ≥ 1,

1, |z| ≤ 1,

where the constant γ ∈ (n, n + 2α). According to Lemma 2.1 of [2], there exists r0 ≫ 1 and

C0 > 0 such that

|(−∆z)
αρ1(z)| ≤

C0

|z|n+2α
, ∀ |z| ≥ r0.

Thus, due to γ < n+ 2α, there exists a constant C1 > 0 such that

(−∆z)
αρ1(z) ≥ −C1ρ1(z), ∀ |z| ≥ r0.

Hence, by taking a larger constant C1 > 0 (if it is necessary), we obtain

(2.1) (−∆z)
αρ1(z) ≥ −C1ρ1(z), ∀ z ∈ Rn.

Set ρR(x) := ρ1(x/R), R > 0. Then, from the scaling property of (−∆)α and (2.1), we have

(2.2) (−∆)αρR(x) = (−∆x)
αρ1(x/R) =

1

R2α
(−∆z)

αρ1(z) ≥ − C1

R2α
ρ1(z) = − C1

R2α
ρR(x).

Now we introduce the functional

FR(t) :=

∫
Rn

F (u(t, x))ρR(x)dx,

where u is an entire solution of (1.1) such that

0 < ki ≤ ui ≤ Ki < ∞, i = 1, . . . ,m.

Note that F (u(t, x)) is uniformly bounded over R× Rn and ρR is integrable over Rn, due to

γ > n. Hence FR(t) is well-defined and uniformly bounded for t ∈ R. Then we compute

d

dt
FR(t) =

m∑
i=1

∫
Rn

F ′
i (ui)fi(u)ρRdx−

m∑
i=1

di

∫
Rn

F ′
i (ui)[(−∆)αui]ρR dx.

It follows from (1.2) and g′(θ) = 1− 1/θ that

(2.3)
d

dt
FR(t) ≤ −κFR(t)−

m∑
i=1

dici
1

u∗
i

∫
Rn

(
1− u∗

i

ui

)
[(−∆)αui]ρR dx.

Recall that

(−∆)αw(x) :=

∫
Rn

J(x− y)[w(x)− w(y)]dy,

where the integral is realized as the principal value and

J(x) :=
4αΓ(n/2 + α)

πn/2|Γ(−α)|
1

|x|n+2α
.
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Then for a fixed i we can calculate

I :=

∫
Rn

(
1− u∗

i

ui(t, x)

)
[(−∆)αui(t, x)] ρR(x) dx

=

∫
Rn

(
1− u∗

i

ui(t, x)

)[∫
Rn

J(x− y){ui(t, x)− ui(t, y)}dy

]
ρR(x) dx

=

∫
Rn

∫
Rn

J(x− y)u∗
i

[
− 1 +

ui(t, x)

u∗
i

− ui(t, y)

u∗
i

+
ui(t, y)

ui(t, x)

]
ρR(x) dydx.

By changing the order of integration, we also have

I =

∫
Rn

∫
Rn

J(x− y)u∗
i

[
− 1 +

ui(t, x)

u∗
i

− ui(t, y)

u∗
i

+
ui(t, y)

ui(t, x)

]
ρR(x) dxdy.

On the other hand, by exchanging the roles of x and y together with J(x− y) = J(y − x),

we have

I =

∫
Rn

∫
Rn

J(x− y)u∗
i

[
− 1 +

ui(t, x)

u∗
i

− ui(t, y)

u∗
i

+
ui(t, y)

ui(t, x)

]
ρR(x) dydx

=

∫
Rn

∫
Rn

J(y − x)u∗
i

[
− 1 +

ui(t, y)

u∗
i

− ui(t, x)

u∗
i

+
ui(t, x)

ui(t, y)

]
ρR(y) dxdy

=

∫
Rn

∫
Rn

J(x− y)u∗
i

[
− 1 +

ui(t, y)

u∗
i

− ui(t, x)

u∗
i

+
ui(t, x)

ui(t, y)

]
ρR(y) dxdy.

Hence we obtain 2I = I1 + I2, where

I1 :=

∫
Rn

∫
Rn

J(x− y)u∗
i

[
− ρR(x)− ρR(y) +

ui(t, x)ρR(y)

ui(t, y)
+

ui(t, y)ρR(x)

ui(t, x)

]
dxdy

= 2

∫
Rn

∫
Rn

J(x− y)u∗
i

[
− 1 +

ui(t, y)

ui(t, x)

]
ρR(x) dxdy,

I2 :=

∫
Rn

∫
Rn

J(x− y)
[
ui(t, x)ρR(x)− ui(t, y)ρR(x) + ui(t, y)ρR(y)− ui(t, x)ρR(y)

]
dxdy

= 2

∫
Rn

∫
Rn

J(x− y)
[
ui(t, x)− ui(t, y)

]
ρR(x) dxdy.
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Here we have exchanged x and y to get the second equality for each I1 and I2, respectively. It

follows from I = (I1 + I2)/2 that

I =

∫
Rn

∫
Rn

J(x− y)

[
ui(t, x)− u∗

i − ui(t, y) + u∗
i

ui(t, y)

ui(t, x)

]
ρR(x) dxdy

=

∫
Rn

∫
Rn

J(x− y)

[
ui(t, x)− u∗

i − u∗
i log

(ui(t, x)

ui(t, y)

)
− ui(t, y)

+u∗
i

ui(t, y)

ui(t, x)
− u∗

i log
(ui(t, y)

ui(t, x)

)]
ρR(x) dxdy,

≥
∫
Rn

∫
Rn

J(x− y)

[
ui(t, x)− u∗

i − u∗
i log

(ui(t, x)

ui(t, y)

)
− ui(t, y) + u∗

i

]
ρR(x) dxdy,

using X − logX ≥ 1 for all X > 0. Thus we get

(2.4) I ≥ u∗
i

ci

∫
Rn

∫
Rn

J(x− y)
[
Fi(ui(t, x))− Fi(ui(t, y))

]
ρR(x) dxdy.

Moreover, using∫
Rn

∫
Rn

J(x− y)Fi(ui(t, y))ρR(x) dxdy =

∫
Rn

∫
Rn

J(y − x)Fi(ui(t, x))ρR(y) dydx

=

∫
Rn

∫
Rn

J(x− y)Fi(ui(t, x))ρR(y) dxdy,

it follows from (2.4) that

(2.5) I ≥ u∗
i

ci

∫
Rn

Fi(ui(t, x)) [(−∆)αρR(x)] dx.

Finally, we apply (2.2), (2.3) and (2.5) to conclude that

d

dt
FR(t) ≤ −

(
κ− C2

R2α

)
FR(t), ∀ t ∈ R,

where C2 = (max1≤i≤m di)C1. By choosing R > 0 sufficiently large such that C2/R
2α ≤ κ/2

and integrating for time from −∞ to t, we deduce that FR(t) = 0 for all t ∈ R. Hence

F (u(t, x)) ≡ 0 and so u(t, x) ≡ u∗ for all (t, x) ∈ R× Rn. Theorem 1.1 is thereby proved. �

3. An example

Consider the following predator-prey system

ut + d1(−∆)αu = r1u(1− u− av), t > 0, x ∈ Rn,(3.1)

vt + d2(−∆)αv = r2v(−1 + bu− v), t > 0, x ∈ Rn,(3.2)

where n is a positive integer, u and v denote the population densities of the prey and predator,

d1 and d2 are their diffusion coefficients, (−∆)α represents the fractional diffusion with order

α ∈ (0, 1). Moreover, r1 and −r2 are the intrinsic growth rates of the prey and the predator,

respectively, r1a represents the predation rate and r2b represents the conversion rate.

Then we have the following theorem by an application of Theorem 1.1.
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Theorem 3.1. Assume that

(3.3) b > 1, a(b− 1) < 1.

Set s∗ := [r2(b− 1)]/(n+ 2α). Let (u, v) be the solution to (3.1)-(3.2) with initial condition

(3.4) u(0, x) = u0(x), v(0, x) = v0(x), x ∈ Rn,

where the initial data is assumed to satisfy

(3.5) v0 is uniformly continuous with compact support, 0 ≤ v0 ≤ b− 1, χ ≤ u0 ≤ 1 in Rn

for some positive constant χ. Then

(3.6) lim
t→∞

sup
|x|≤est

{|u(t, x)− u∗|+ |v(t, x)− v∗|} = 0, ∀ s ∈ (0, s∗).

As mentioned in the introduction, the proof of Theorem 3.1 relies on a uniform persistent

result on the zone {(x, t) | |x| ≤ est, t ≫ 1} for s ∈ (0, s∗).

First, comparing with the corresponding ODE system, i.e., solutions independent of x, it

follows from the comparison principle for the scalar equation that

(3.7) u ≥ 0, v ≥ 0, u ≤ 1, v ≤ b− 1.

Using v ≤ b− 1, it follows from (3.1) that

ut + d1(−∆)αu ≥ r1u[1− a(b− 1)− u], t > 0, x ∈ Rn.

Hence, by comparison, we obtain

(3.8) u(t, x) ≥ min{χ, 1− a(b− 1)} := β > 0, ∀ (t, x) ∈ (0,∞)× Rn.

Next, we derive

(3.9) lim inf
t→∞

inf
|x|≤est

v(t, x) > 0, ∀ s ∈ (0, s∗).

To show (3.9), we set w = 1−u. Then w0 := 1−u0 ≤ 1−χ in Rn and, using (3.8), w satisfies

wt + d1(−∆)αw ≤ −r1βw + r1av, t > 0, x ∈ Rn.

Let ϕ be the solution of{
ϕt + d1(−∆)αϕ = −r1βϕ+ r1av, t > 0, x ∈ Rn,

ϕ(0, x) = w0(x), x ∈ Rn.

Then w ≤ ϕ. Set Φ(t, x) := er1βtϕ(t, x). Then Φ satisfies{
Φt + d1(−∆)αΦ = r1ae

r1βtv, t > 0, x ∈ Rn,

Φ(0, x) = w0(x), x ∈ Rn.

Hence, by the variation of constants formula, we obtain

(3.10) ϕ(t, x) = e−r1βt

{∫
Rn

p(t, x− y)w0(y)dy + r1a

∫ t

0

∫
Rn

p(t− s, x− y)er1βsv(s, y)dyds

}
,

where p(t, x) is the kernel corresponding to ∂t + d1(−∆)α (cf. [3]). Then (3.9) can be proved

by a similar argument in [8], by using (3.10). We omit it here.
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With (3.8) and (3.9), we finish the proof of Theorem 3.1 by the same argument as that of

[10, Theorem 1.3] with the help of Theorem 1.1 and recall from [6, Lemma 4.2] that

F (u, v) := br2u
∗g(u/u∗) + ar1v

∗g(v/v∗)

is a Lyapunov function for (3.1)-(3.2) satisfying condition (1.2) for some positive constant κ.

Finally, we remark that the exponential spreading speed s∗ depends on the fractional order

α. However, the exact convergence rate to the equilibrium (u∗, v∗) in (3.6) is left open. In fact,

this is not known even for the scalar Fisher-KPP equations.
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