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Abstract. In this paper, we study the forced waves of the Fisher-KPP equation in a

shifting environment. We introduce a new method to construct a sub-solution to derive the

existence of forced waves without the monotonicity assumption on the shifting growth rate

function. The forced waves we derived here are of the saturation type, in contrast to the

extinction type in the literature.

1. Introduction

The study of traveling waves in reaction-diffusion equations has attracted a lot of attention

in past years starting from the pioneer works [10, 13] in 1937 on a scalar equation. The

Fisher-KPP equation reads

(1.1) ut = duxx + u(1− u), x ∈ R, t > 0,

where u = u(x, t) represents the density of a species and d is its diffusion coefficient. Here

we have normalized both intrinsic growth rate and the carrying capacity to be 1. Since

then, there have been a lot of interesting works on the existence, uniqueness and stability of

traveling waves for many reaction-diffusion systems arising in ecology and epidemiology.

Recently, due to the threaten of global warming to the environment of ecological systems,

such as sea level rise, precipitation change, and desertification, more attention is paid to the

study of the effect of climate change. Among various mathematical modelings for climate

change, the simplest one is to replace the constant growth rate by a function h = h(x− st)

in which s is a positive constant representing the shifting speed of the environment. Then

the homogeneous equation (1.1) is replaced by the equation

(1.2) ut = duxx + u[h(x− st)− u], x ∈ R, t > 0.

We are concerned with the spreading dynamics of solutions of (1.2). In particular, we are

interested in traveling wave solutions of (1.2) in the form

u(x, t) = ϕ(z), z := x− st,
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for some function ϕ (the wave profile), where the wave speed s is the same as the environ-

mental shifting speed. This type of traveling wave is called a forced wave. Note that ϕ

satisfies

(1.3) dϕ′′(z) + sϕ′(z) + ϕ(z)[h(z)− ϕ(z)] = 0, z ∈ R.

For the study of forced waves for the scalar equation, two-species systems and a three-species

system, we refer the reader to, e.g., [3, 4, 8, 12, 2, 15, 7, 14, 5, 6, 9].

Among these works, the following condition is imposed on h:

(1.4)

{
h is bounded and continuous in R such that h ≤ h(∞) = 1 in R
h(z) < 0 for z ≤ −L for some positive constant L.

This implies that the devastating environment for the species is expanding as the time

increases. Hence it is natural to expect that the species goes extinction in the whole habitat

as t → ∞. In particular, Hu and Zou [12] has derived the forced waves for (1.2) with

ϕ(−∞) = 0 and ϕ(∞) = 1 for any s > 0, under condition (1.4) with h being assumed to be

monotone. It is of extinction type, since u(x, t) → 0 as t→ ∞ for all x ∈ R. Moreover, forced

waves were studied in [7] for a 2-species competition system and in [6] for a 1-predator-2-prey

system, under condition (1.4), h is monotone and h(z) → 1 as z → ∞ exponentially.

However, some species, such as mosquito, is benefited by global warming. Mosquitoes

grow faster with warm temperature. Of course, this is also bad to our environment, since

mosquito can be a vector of transmitting diseases such as dengue fever, West Nile virus,

etc. To model this phenomenon of mosquito’s growth, the net growth rate h = h(x− st) is

assumed to satisfy

(h1) h is bounded and continuous in R such that h(−∞) = 1;

(h2) h(z) < 0 for all z ≥ L for some positive constant L.

This means that the favorable habitat of mosquitoes expands in the positive x-axis.

We are looking for a forced wave solution u(x, t) = ϕ(z) of (1.2) such that

(1.5) ϕ(∞) = 0 < ϕ(z) < 1 = ϕ(−∞), ∀ z ∈ R.

Biologically, this means that with the climate change the species reaches the saturation level

1 throughout the entire habitat eventually. We shall call this wave as a forced wave of

saturation type, since u(x, t) → 1 as t→ ∞ for all x ∈ R. In fact, for s > 0, under an extra

assumption that h is monotone, a saturation forced wave exists if and only if s ∈ (0, 2
√
d),

by a result of Fang, Lou and Wu [8, Theorem 2.1 (i)].

Without the monotonicity assumption on h, we prove

Theorem 1.1. Under the assumptions (h1) and (h2), there exists a solution ϕ of (1.3)-(1.5)

for any s <
√
d.

The proof of Theorem 1.1 is given in the next section based on the monotone iteration

method. It is clear that ϕ ≡ 1 is a super-solution. The main difficulty of proving Theorem 1.1

is the construction of a suitable nontrivial sub-solution. To overcome this difficulty, we

provide in this paper a new method to verify the constructed function is a sub-solution. See

the proof of Proposition 2.2 in §2. This is one of the main contributions of this work. Note
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also that we do not impose the monotonicity of h and the exponential convergence of h to

h(−∞) in this paper. However, the range of admissible shifting speeds, s <
√
d, might not

be optimal. We therefore give a brief discussion on this issue in §3 and leave this as an open

question for future studies.

2. Existence of forced waves

In this section, we shall study the existence of forced waves of (1.2).

First, we prove the following result.

Proposition 2.1. For any positive solution ϕ of (1.3), ϕ(∞) = 0.

Proof. That ϕ(∞) = 0 follows from the fact h(z) < 0 for all z ≫ 1, by a contradiction

argument (cf. [5]). To be self-contained and for the reader’s convenience, we provide the

details as follows. For a contradiction, we suppose that ϕ+ > 0, where

ϕ+ := lim sup
z→∞

ϕ(z).

If ϕ is monotone ultimately at z = ∞, then ϕ(z) → ϕ+ as z → ∞. Hence there is a

sequence {zn} such that zn ↑ ∞ and ϕ′(zn) → 0 as n → ∞. Without loss of generality, by

(h1), we may assume that h(z) < 0 for all z ≥ z1. Then by integrating (1.3) from z1 to zn
we obtain

(2.1) [ϕ′(zn)− ϕ′(z1)] + s[ϕ(zn)− ϕ(z1)] =

∫ zn

z1

{ϕ(z)[ϕ(z)− h(z)]}dz ≥
∫ zn

z1

ϕ2(z)dz.

Since the left-hand side of (2.1) is uniformly bounded for all n and the right-hand side of

(2.1) tends to +∞ as n→ ∞, we reach a contradiction.

On the other hand, if ϕ is oscillatory near +∞, then there is a maximal sequence {zn} of

ϕ such that zn → ∞ and ϕ(zn) → ϕ+ as n → ∞. Without loss of generality, by (h1), we

may assume that h(z) < 0 for all z ≥ z1. Then

0 ≥ ϕ′′(zn) + sϕ′(zn) = ϕ(zn)[ϕ(zn)− h(zn)] ≥ ϕ2(zn) → (ϕ+)2 > 0,

a contradiction.

Hence we have proved that ϕ+ = 0. Due to ϕ ≥ 0 in R, we therefore conclude that

ϕ(∞) = 0. �

Next, we derive the existence of a positive solution of (1.3).

Proposition 2.2. If s <
√
d, then (1.3) has a positive solution ϕ such that

lim inf
z→−∞

ϕ(z) > 0.

Proof. First, given η ∈ (0, 1), it follows from h(−∞) = 1 that

(2.2) h(z −K) ≥ 1− η, ∀ z < 0,

for some positive constant K = K(η). The constant η is to be chosen later.
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We consider the function g(z) := eλz − 2e2λz, where λ > 0 is a constant to be determined

later. Note that g(z) > 0 if and only if z < z0 := −(ln 2)/λ < 0. Also, g(z) ≤ g(z1) for all

z ∈ R, where z1 < z0 is uniquely defined by

eλz1 = 1/4.

Note that g has a unique maximal point at z = z1 such that

g(z1) = eλz1(1− 2eλz1) = 1/8, g(−∞) = 0.

Let δ := eλz∗ for a z∗ < z1 to be chosen later. Then δ ∈ (0, 1/4) and

g(z∗) = δ(1− 2δ) := γ(δ) = γ.

We claim that the function

ϕ(z) :=

{
γ − g(z), z < z∗,

0, z ≥ z∗,

satisfies

(2.3) L(z) := dϕ′′(z) + sϕ′(z) + ϕ(z)[h(z −K)− ϕ(z)] ≥ 0 for all z ̸= z∗.

Clearly, (2.3) holds for z > z∗.

For z < z∗, using (2.2) we obtain

L(z) = −(dλ2 + sλ)eλz + 4(2dλ2 + sλ)e2λz + ϕ(z)[h(z −K)− ϕ(z)]

≥ −(dλ2 + sλ)eλz + 4(2dλ2 + sλ)e2λz + ϕ(z){1− ϕ(z)− η}
= −(dλ2 + sλ)eλz + 4(2dλ2 + sλ)e2λz + f(eλz; δ)− ηϕ(z),

where

f(y; δ) = γ(1− γ) + (−1 + 2γ)y + (1− 4γ)y2 + 4y3 − 4y4.

Note that y = eλz ∈ (0, δ) for z < z∗, f(0; δ) = γ(1− γ) > 0 and f(δ; δ) = 0. Moreover,

f ′(y; δ) = (−1 + 2γ) + 2(1− 4γ)y + 12y2 − 16y3

gives f ′(0; δ) = −1+2γ < 0 and f ′(δ; δ) = −1+4δ < 0. Note that γ < δ < 1/4. Furthermore,

f ′′(y; δ) = 2(1− 4γ) + 24y − 48y2

so that f ′′(0; δ) = 2(1− 4γ) > 0 and f ′′(δ; δ) = 2 + 16γ > 0. This implies that f ′′(y; δ) > 0

for all y ∈ [0, δ] and so f ′(y; δ) < f ′(δ; δ) < 0 for all y ∈ (0, δ).

Now, set

F (y;λ, δ) := −(dλ2 + sλ)y + 4(2dλ2 + sλ)y2 + f(y; δ).

Then {
F ′(y;λ, δ) = −(dλ2 + sλ) + 8(2dλ2 + sλ)y + f ′(y; δ),

F ′′(y;λ, δ) = 8(2dλ2 + sλ) + f ′′(y; δ).

Also, we compute

F (δ;λ, δ) = δλ{−(dλ+ s) + 4(2dλ+ s)δ} = δλ{(8δ − 1)dλ− (1− 4δ)s}.
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Then, to get F (δ;λ, δ) > 0 for a positive λ, we need

(2.4) δ ∈ (1/8, 1/4), λ >
(1− 4δ)s

(8δ − 1)d
:= λm(δ).

On the other hand, since

F ′(δ;λ, δ) = −(dλ2 + sλ) + 8(2dλ2 + sλ)δ − (1− 4δ),

we see that F ′(δ;λ, δ) ≤ 0 for some positive λ if and only if

Λ(λ; δ) := (16δ − 1)dλ2 + (8δ − 1)sλ− (1− 4δ) ≤ 0.

Since the function Λ(λ; δ) is increasing in λ > 0 for δ ∈ (1/8, 1/4), we have

Λ(λ; δ) > Λ(λm(δ); δ) = (1− 4δ)

{[
(16δ − 1)(1− 4δ)

(8δ − 1)2
+ 1

]
s2

d
− 1

}
, ∀λ > λm(δ).

Note that the function

H(δ) :=
(16δ − 1)(1− 4δ)

(8δ − 1)2
+ 1

is strictly decreasing in δ ∈ (1/8, 1/4) such that H(1/4) = 1 and H(δ) → ∞ as δ → (1/8)+.

Hence, when s <
√
d, there is a unique δ0 ∈ (1/8, 1/4) such that d = H(δ0)s

2.

Next, we choose a fixed δ ∈ (δ0, 1/4) such that H(δ)s2 < d so that Λ(λm; δ) < 0 for the

corresponding λm(δ) defined in (2.4). Moreover, by (2.4), there exists λ > λm(δ) > 0 with

λ− λm(δ) sufficiently small such that F (δ;λ, δ) > 0 and F ′(δ;λ, δ) = Λ(λ; δ) ∈ (Λ(λm, δ), 0].

Recall that

F ′′(y;λ, δ) = 8(2dλ2 + sλ) + f ′′(y; δ) > 0, ∀ y ∈ (0, δ).

Hence F ′(y;λ, δ) < 0 for all y ∈ (0, δ) and so

(2.5) F (y;λ, δ) > F (δ;λ, δ) > 0 for all y ∈ (0, δ).

Finally, we choose a constant η such that

(2.6) 0 < η ≤ F (δ;λ, δ)

γ
.

Then with the corresponding K in (2.2) to the chosen η in (2.6) it follows from (2.5) that

L(z) ≥ F (eλz;λ, δ)− ηϕ(z) ≥ F (δ;λ, δ)− ηγ ≥ 0, ∀ z < z∗,

using ϕ(z) < γ for all z < z∗. Hence (2.3) is proved and this shows that ϕ is a sub-solution

of

(2.7) dϕ̂′′(z) + sϕ̂′(z) + ϕ̂(z)[h(z −K)− ϕ̂(z)] = 0, z ∈ R.

Note that

lim
z↗z∗

ϕ′(z) < 0 = lim
z↘z∗

ϕ′(z).

It is clear that ϕ(z) ≡ 1 is a super-solution of (2.7). Hence, by the monotone iteration

method, there is a solution ϕ̂ of (2.7) such that

(2.8) ϕ(z) ≤ ϕ̂(z) ≤ ϕ(z), ∀ z ∈ R.
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Then ϕ(z) := ϕ̂(z +K) is a solution of (1.3). Moreover, by (2.8) and the strong maximum

principle, we see that 0 < ϕ < 1 in R. In particular, we have

(2.9) ϕ− := lim inf
z→−∞

ϕ(z) ≥ lim inf
z→−∞

ϕ(z +K) = γ > 0.

Therefore, the proposition is proved. �

With (2.9), we follow a method used in [11] to claim that ϕ(−∞) = 1. For this, we set

A := {θ ∈ [0, 1) | ϕ− > l(θ)}, l(θ) := θ + (1− θ)γ/2.

Since 0 ∈ A, by (2.9), the quantity θ0 := supA is well-defined and θ0 ∈ (0, 1]. Passing to the

limit, we obtain that ϕ− ≥ l(θ0).

To proceed further, we assume that θ0 < 1. Then we must have ϕ− = l(θ0), by the

continuity of l(θ). Suppose that ϕ is monotone ultimately at z = −∞. Then ϕ(z) → l(θ0)

as z → −∞ and there is a sequence {zn} such that zn → −∞ and ϕ′(zn) → 0 as n → ∞.

By an integration of (1.3) from zn to 0, we obtain

−d[ϕ′(0)− ϕ′(zn)]− s[ϕ(0)− ϕ(zn)] =

∫ 0

zn

{ϕ(z)[h(z)− ϕ(z)]}dz, ∀n.

This leads to a contradiction, by letting n→ ∞, since

lim
z→−∞

{ϕ(z)[h(z)− ϕ(z)]} = l(θ0)[1− l(θ0)] > 0.

On the other hand, if ϕ is oscillatory as z → −∞, then we choose a sequence of minimal

points {zn} of ϕ with zn → −∞ and ϕ(zn) → l(θ0) as n→ ∞. This implies

0 = dϕ′′(zn) + sϕ′(zn) + ϕ(zn)[h(zn)− ϕ(zn)]

≥ ϕ(zn)[h(zn)− ϕ(zn)] → l(θ0)[1− l(θ0)] > 0, as n→ ∞,

a contradiction. We conclude that θ0 = 1 and so ϕ− ≥ l(1) = 1. Since ϕ < 1 in R, we have

proved that ϕ(−∞) = 1. This completes the proof of Theorem 1.1.

3. Discussion

In this paper, we obtain a new type of forced waves, the saturation type, for the shifting

speed s with s <
√
d. As we have seen, the existence of forced wave relies on the existence

of a sub-solution ϕ. Here we choose

ϕ(z) =

{
(eλz∗ − 2e2λz∗)− (eλz − 2e2λz), z < z∗ < z1 := − ln 4/λ,

0, z > z∗,

with a certain choice of λ to obtain the upper bound
√
d. We suspect that the upper bound√

d is not optimal.

A first suspicious question is what if we choose

ϕ(z) =

{
(eλz∗ − qe(1+ν)λz∗)− (eλz − qe(1+ν)λz), z < z∗ < z1 := − ln[(1 + ν)q]/(λν),

0, z > z∗,
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for given constants q > 1 and ν > 0. It turns out that the upper bound is the same as the

case q = 2 and ν = 1.

On the other hand, there might be other choices of sub-solutions which produce a wider

range of admissible shifting speeds. We leave it for the interested reader to explore this

possibility. Another interesting question is whether there is an upper bound for the existence

of forced waves of saturation type. Recall from [1] that the spreading speed of the classical

equation (1.1) is 2
√
d and, by comparison, a solution of (1.2) is a sub-solution of (1.1) with

the same initial data. We suspect that 2
√
d might be the upper bound for the forced waves

of saturation type. In fact, this is true under an extra assumption that h is monotone as

mentioned in §1. It would be very interesting to remove the monotonicity assumption for

the existence of saturation forced waves. This is left for an open question.

Note that an extinction forced wave exists for any shifting speed s > 0, under condition

(1.4) and the monotonicity on h. Indeed, under the change of variables

v(x, t) = u(−x, t), h̃(z) = h(−z), s̃ = −s,

it follows from (1.2) that v satisfies

vt = dvxx + v[h̃(x− s̃t)− v], x ∈ R, t > 0,

and h̃ satisfies condition (1.4), if h satisfies (h1) and (h2). In particular, h̃(∞) = 1 and

h̃(z) < 0 for −z ≫ 1. Then, for a forced wave v(x, t) := ψ(x − s̃t) with ψ(−∞) = 0 and

ψ(∞) = 1, we obtain v(x, t) → 0 as t → ∞, when s̃ > 0 or s < 0. On the other hand, we

obtain v(x, t) → 1 as t→ ∞, when s̃ < 0, i.e., s > 0. Hence the derivations of extinction and

saturation forced waves are mathematically equivalent, except the shifting speeds in both

cases have different signs. In fact, an extinction forced wave exists for any s̃ > 0 (cf. [8,

Theorem 2.1 (i)] and [12, Theorem 1.1]). We also refer the reader to [9, Proposition 3.7] for

a simple proof of this result without the monotonicity on h̃, but requiring an exponential

decay of 1− h̃(z) to zero at z = ∞.
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