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Abstract. In this paper, we study an SIR epidemic model with nonlocal dispersal. We

study the case with vital dynamics so that a renewal of the susceptible individuals is taken

into account. We characterize the asymptotic spreading speed to estimate how fast the disease

under consideration spreads. Due to the lack of comparison principle for the SIR model, our

proof is based on a delicate analysis of related problems with nonlocal scalar equations.

1. Introduction

In epidemiology, one of the most important questions is whether a disease can spread. There

are two typical classical epidemiology models, namely, the classical Kermack-McKendrick

model [19] and the so-called endemic model (cf. [13]). They are differentiated by whether the

vital dynamics (births and deaths) are taken into account. The spread of infectious diseases in

populations have been studied extensively. We refer the reader to, for examples, [6, 9, 13, 25,

24, 30] and the references therein. On the other hand, the movements of individuals usually

are not limited to a small area. Long distance effects and interactions are often presented,

and this can be formulated by the nonlocal dispersal (cf. [23]).

In this paper, we study the following SIR (susceptible-infective-removed) epidemic model

with nonlocal dispersal

St(x, t) = d1N1[S(·, t)](x) + µ− µS(x, t)− βS(x, t)I(x, t)

1 + αI(x, t)
, x ∈ R, t > 0,(1.1)

It(x, t) = d2N2[I(·, t)](x) +
βS(x, t)I(x, t)

1 + αI(x, t)
− (µ+ σ)I(x, t), x ∈ R, t > 0,(1.2)

Rt(x, t) = d3N3[R(·, t)](x) + σI(x, t)− µR(x, t), x ∈ R, t > 0,(1.3)

where S(x, t), I(x, t), R(x, t) represent the population densities of the susceptible, infective,

removed individuals at position x and time t, respectively. The parameters µ, β, α, σ are all

positive constants in which µ denotes the death rates of susceptible, infective and removed

populations. Also, after a suitable rescaling (cf. [21]), the inflow of newborns into the suscep-

tible population is taken to be the same constant µ. The parameter σ is the removed/recovery
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rate, β is the infective transmission rate and α measures the saturation level ([6, 24]) in the

Holling type II incidence function βSI/(1 + αI).

To describe the nonlocal operators in (1.1) and (1.2), we first introduce the following class

of kernels. For a given λ̂ ∈ (0,∞], a function J : R → [0,∞) is said to be in the class P(λ̂) if

the following conditions hold:

(J1) The kernel J is continuous (and nonnegative);

(J2) it holds that ∫
R
J(y)dy = 1, J(y) = J(−y) for all y ∈ R;

(J3) it holds that
∫
R J(y)e

λydy < ∞ for any λ ∈ (0, λ̂) and∫
R
J(y)eλydy → ∞ as λ ↑ λ̂.

Then the nonlocal diffusion operator Ni is defined by

Ni[φ](x) := (Ji ∗ φ)(x)− φ(x) =

∫
R
Ji(x− y)φ(y)dy − φ(x),

where Ji ∈ P(λ̂i) for some constant λ̂i ∈ (0,∞] for i = 1, 2, 3.

Since equation (1.3) is decoupled from the other two equations in our SIR model, in the

sequel we shall only consider the system for (1.1)-(1.2) only. The study of nonlocal evolution

equations has attracted a lot of attention in past years, due to the fact that nonlocal interaction

is often presented in many diffusive systems in ecology, biology, neuroscience and so on. There

is a vast literature on the study of various problems with nonlocal dispersals, we refer the

reader to, e.g., [15, 12, 14, 17, 7, 16, 5, 18, 2, 3, 29, 10, 1, 31, 8, 26, 11, 20] and the references

cited therein.

The main purpose of this paper is to study the spreading speed of infective populations for

model (1.1)-(1.2). Here the spreading speed is adopted from the definition defined by Aronson

andWeinberger [4] for the scalar logistic parabolic equation. We also refer the reader to [18, 31]

for the study of spreading speed for scalar nonlocal dispersal equations. For the spreading

speed of local reaction diffusion systems, see, e.g., [22, 27, 28]. However, for nonlocal dispersal

systems the spreading speeds have not yet been established so much.

To characterize the spreading speed of infective populations for (1.1)-(1.2), we consider the

initial value problem for (1.1)-(1.2) with the following initial condition

(1.4) S(x, 0) = 1, I(x, 0) = I0(x), x ∈ R,

where I0 is a nonnegative continuous function defined in R with a nonempty compact support.

Throughout this paper, we assume

(1.5) β > µ+ σ.

Hereafter we set γ := µ+ σ and define

(1.6) c∗ := inf
0<λ<λ̂2

d2
[∫

R J2(y)e
λydy − 1

]
+ β − γ

λ
.

Note that the constant c∗ is well-defined and c∗ > 0, since β − γ > 0 due to (1.5).
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We now state the main theorem of this paper as follows.

Theorem 1.1. Let (S, I) be a solution of (1.1), (1.2) and (1.4) with a nonnegative nontrivial

compactly supported continuous initial data I0. Assume the condition (1.5) is enforced. Then

the constant c∗ defined in (1.6) is the (asymptotic) spreading speed of I in the sense

lim
t→∞

sup
|x|>ct

I(x, t) = 0, ∀ c > c∗,(1.7)

lim inf
t→∞

inf
|x|<ct

I(x, t) > 0, ∀ c ∈ (0, c∗).(1.8)

To the best of our knowledge, little works are done on the spreading speeds for nonlocal

reaction diffusion systems. Although our method is based on a method used in [28] for a local

diffusion system, there are major differences from [28] due to the nonlocal diffusion in our

system. Moreover, Holling type II incidence function makes the analysis nontrivial. One of

the major difficulties in our study is the derivation of some useful a priori estimates and this

is overcome by applying the fundamental solution of the nonlocal linear operator. One should

note the independence of the constants to any given point in the course of deriving the key

estimate (3.6) in §3. Also, the uniform continuity of I (from [18, 20]) is crucial to the proof

of our main theorem.

The rest of this paper is organized as follows. In the next section, we recall some well-

known theories on the scalar nonlocal diffusion equation from [17, 18, 20] and give some a

priori estimates to solutions of (1.1), (1.2) and (1.4). Then Theorem 1.1 is proved in §3.
Finally, a brief discussion is given in §4.

2. Preliminaries

Let (S, I) be a solution of (1.1)-(1.2) with the initial condition (1.4). The purpose of this

section is to derive some a priori estimates. Hereafter we use the notation

X := {all uniformly continuous bounded functions defined in R},
X+ := {w ∈ X | w ≥ 0 in R},
Xb := {w ∈ X | 0 ≤ w ≤ b in R}, b > 0.

Let λ̂ ∈ (0,∞] and a kernel J ∈ P(λ̂) be given. Let w0 ∈ X+ and let w be a solution to{
wt(x, t) = dN [w(·, t)](x), x ∈ R, t > 0,

w(x, 0) = w0(x), x ∈ R,

where N [w] := J ∗ w − w. Then w(·, t) ∈ X+ for all t > 0, by the positivity property of

the semigroup {exp(tdN )}t≥0 generated by N (cf. [17, 18, 20]). Moreover, this positivity

property also holds for

(2.1) wt(x, t) = dN [w(·, t)](x)− Lw(x, t), x ∈ R, t > 0,

where L is a constant. Indeed, (2.1) can be re-written as

[eLtw]t(x, t) = dN [eLtw(·, t)](x), x ∈ R, t > 0.

Hence w(·, t) ∈ X+ for all t > 0, if w(·, 0) ∈ X+.
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We now derive the following a priori estimates for solutions (S, I) to system (1.1)-(1.2).

Lemma 2.1. Let I0 be a nonnegative nontrivial compactly supported continuous function

defined in R. Then system (1.1)-(1.2) with initial condition (1.4) admits a global solution

(S, I) such that

(2.2) 0 ≤ S(x, t) ≤ 1, 0 ≤ I(x, t) ≤ κ, ∀x ∈ R, t > 0,

where κ := max{b, (β − γ)/(αγ)} and b := ∥I0∥L∞(R) ∈ (0,∞).

Proof. It is clear that a local (in time) solution (S, I) of (1.1)-(1.2) and (1.4) exists for t < T

for some T ≤ ∞. Hence S(·, t), I(·, t) ∈ X such that S ∈ R and I ∈ (−1/α,∞) for all t < T .

First, we claim that I(x, t) ≥ 0 for all x ∈ R, t ∈ (0, T ). Indeed, we first re-write (1.2) as

It(x, t) = d2N2[I(·, t)](x) +
(

βS(x, t)

1 + αI(x, t)
− γ

)
I(x, t), x ∈ R, t < T.

Then, for any τ ∈ (0, T ), since(
βS(x, t)

1 + αI(x, t)
− γ

)
≥ −L, ∀x ∈ R, t < τ,

we apply the comparison principle, [18, Theorem 2.3], along with the above positivity property

to obtain that I(x, t) ≥ 0 for x ∈ R, t < τ . Since τ is arbitrary, we conclude that I(x, t) ≥ 0

for x ∈ R, t < T .

Next, we claim that S ≥ 0 in R× [0, T ). To see this, we observe from (1.1) that S satisfies

St(x, t) > d1N1[S(·, t)](x)−
(
µ+

βI(x, t)

1 + αI(x, t)

)
S(x, t), x ∈ R, t < T.

Hence, by the same argument as above, S(x, t) ≥ 0 for all x ∈ R, t < T .

To claim S ≤ 1 in R× [0, T ), we set S̃ := 1− S. Then, by (1.1), S̃ satisfies

S̃t(x, t) ≥ d1N1[S̃(·, t)]x− µS̃(x, t), x ∈ R, t < T.

This implies that S̃(x, t) ≥ 0 for all x ∈ R, t < T . Hence S ≤ 1 in R× [0, T ).

Finally, we prove I(x, t) ≤ κ for x ∈ R, t < T . To this aim, using S ≤ 1 and I ≥ 0 in

R× [0, T ), from (1.2) it follows that

It(x, t) ≤ d2N2[I(·, t)](x) +
I(x, t)

1 + αI(x, t)
{β − γ[1 + αI(x, t)]}

≤ d2N2[I(·, t)](x) + I(x, t)[β − γ − γαI(x, t)], x ∈ R, t < T.

Note that the solution Î(t) to the equation

Ît = Î(β − γ − γαÎ), t < T,

with initial data Î(0) = b satisfies Î(t) ≤ κ for all t < T . Here the fact that α > 0 was used.

Then the comparison principle [18, Theorem 2.3] implies that I(x, t) ≤ κ for x ∈ R, t < T .

We conclude that (2.2) holds for all t < T . Hence we must have T = ∞ and the lemma is

proved. �
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Next, we recall some properties of the strongly positive semigroup {exp (td1N1)}t≥0 from

[17, 20] as follows. First, the fundamental solution W of this semigroup can be decomposed

as

(2.3) W (x, t) = e−d1tδ0(x) +K(x, t), x ∈ R, t ≥ 0,

where K is a nonnegative smooth function satisfying the estimate

(2.4)

∫
R
K(x, t)dx ≤ 2, ∀t ≥ 0.

In fact, W is the solution of the problem

wt(x, t) = d1N1[w(·, t)](x), t > 0, w(·, 0) = δ0,

where δ0 denotes the Dirac mass at x = 0.

Now, consider the solution w to the problem

(2.5)

{
wt(x, t) = d1N1[w(·, t)](x)− kw(x, t) + f(x, t), x ∈ R, t > 0,

w(x, 0) = w0(x), x ∈ R.

Re-writing (2.5) as{
[ektw]t(x, t) = d1N1[e

ktw(·, t)](x) + ektf(x, t), x ∈ R, t > 0,

w(x, 0) = w0(x), x ∈ R,

then, by (2.3), w can be expressed as

w(x, t) = e−(d1+k)tw0(x) + e−kt

∫
R
K(x− y, t)w0(y)dy(2.6)

+

∫ t

0

e−(d1+k)(t−s)f(x, s)ds+

∫ t

0

∫
R
e−k(t−s)K(x− y, t− s)f(y, s)dyds.

This formula will be useful in the next section.

3. Proof of Theorem 1.1

Since system (1.1)-(1.2) does not admit a comparison principle, to prove Theorem 1.1 we

apply the comparison principle of the scalar nonlocal equation as follows.

Let d, a, b be given positive constants. We consider the following nonlocal logistic equation

(3.1)

{
wt(x, t) = dN [w(·, t)](x) + aw(x, t) [b− w(x, t)] , x ∈ R, t > 0,

w(x, 0) = w0(x), x ∈ R,

where as before N [w] = J ∗ w − w with J ∈ P(λ̂) for some λ̂ ∈ (0,∞]. Then we have the

following comparison principle (cf. [18, Theorem 2.3]).

Proposition 3.1. Let u be a super-solution and v be a sub-solution of (3.1) with u(·, t) ∈ Xb

and v(·, t) ∈ Xb for all t > 0, in the sense

ut(x, t) ≥ dN [u(·, t)](x) + au(x, t) [b− u(x, t)] , x ∈ R, t > 0,

vt(x, t) ≤ dN [v(·, t)](x) + av(x, t) [b− v(x, t)] , x ∈ R, t > 0,
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such that v(x, 0) ≤ u(x, 0) for all x ∈ R. Then v(x, t) ≤ u(x, t) for all x ∈ R, t > 0.

Next, we define the quantity ĉ by

ĉ := inf
0<λ<λ̂

d
[∫

R J(y)e
λydy − 1

]
+ ab

λ
.

Then ĉ is well-defined and ĉ > 0 since ab > 0. Moreover, we have

Proposition 3.2 ([18]). Let w be a solution of (3.1) with w(·, t) ∈ Xb for all t > 0 for a

given w0 ∈ Xb. Assume that w0 has a nonempty compact support. Then we have

lim
t→∞

inf
|x|<ct

w(x, t) = b for any c ∈ (0, ĉ),(3.2)

lim
t→∞

sup
|x|>ct

w(x, t) = 0 for any c > ĉ.(3.3)

Now, we are ready to give a proof of our main theorem as follows.

Proof of Theorem 1.1. The proof of (1.7) is trivial. We observe from (1.2) that

It(x, t) ≤ d2N2[I(·, t)](x) + I(x, t)

{
β

1 + αI(x, t)
− γ[1 + αI(x, t)]

}
≤ d2N2[I(·, t)](x) + I(x, t)[β − γ − γαI(x, t)], x ∈ R, t > 0,

using S ≤ 1 and I ≥ 0. Hence (1.7) follows from Proposition 3.2.

To derive (1.8), we first rewrite (1.1) for S̃ := 1− S as

S̃t(x, t) = d1N1[S̃(·, t)](x)− µS̃(x, t) +
βS(x, t)I(x, t)

1 + αI(x, t)
,(3.4)

≤ d1N1[S̃(·, t)](x)− µS̃(x, t) + βI(x, t), x ∈ R, t > 0,

using S ≤ 1 and I ≥ 0 in R. The comparison gives S̃(x, t) ≤ ŝ(x, t) for all x ∈ R, t > 0, where

ŝ satisfies

ŝt(x, t) = d1N1[ŝ(·, t)](x)− µŝ(x, t) + βI(x, t), x ∈ R, t > 0,

and ŝ(x, 0) = S̃(x, 0) = 0 for all x ∈ R. It follows from (2.6) that

(3.5) ŝ(x, t) = β

∫ t

0

e−(d1+µ)(t−s)I(x, s)ds+ β

∫ t

0

∫
R
e−µ(t−s)K(x− y, t− s)I(y, s)dyds.

Next, given ε ∈ (0, c∗). We choose a constant δ ∈ (0, β − γ) small enough such that

inf
0<λ<λ̂2

d2
[∫

R J2(y)e
λydy − 1

]
+ β − γ − δ

λ
> c∗ − ε.

For this δ, we claim that there is a sufficiently large τ such that

(3.6) βŝ(x, t) ≤ δ +QI(x, t), x ∈ R, t ≥ τ,

for some positive constant Q.

To derive (3.6), we first choose

τ = τ(δ) = max
{ 1

d1 + µ
log

( 4βκ

(d1 + µ)δ

)
,
1

µ
log

(8βκ
µδ

)}
.
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Then by a simple calculation, we obtain

βκ

∫ t−τ

0

e−(d1+µ)(t−s)ds ≤ δ

4
, 2βκ

∫ t−τ

0

e−µ(t−s)ds ≤ δ

4
, ∀ t ≥ τ,

where κ is define in (2.2).

Now, given any point (x0, t0) with t0 ≥ τ . It is trivial that (3.6) holds for (x0, t0), when

βŝ(x0, t0) ≤ δ. Suppose that βŝ(x0, t0) > δ. It follows from (2.2), (2.4) and (3.5) that

βŝ(x0, t0) ≤ βκ

∫ t0−τ

0

e−(d1+µ)(t0−s)ds+ 2βκ

∫ t0−τ

0

e−µ(t0−s)ds(3.7)

+β

∫ t0

t0−τ

e−(d1+µ)(t0−s)I(x0, s)ds

+β

∫ t0

t0−τ

∫
R
e−µ(t0−s)K(x0 − y, t0 − s)I(y, s)dyds.

Hence we have

β

∫ t0

t0−τ

e−(d1+µ)(t0−s)I(x0, s)ds+ β

∫ t0

t0−τ

∫
R
e−µ(t0−s)K(x0 − y, t0 − s)I(y, s)dyds ≥ δ

2
.

Next, using (2.4) we can choose a constant R with R ≫ 1 such that

βκ

∫ ∞

0

∫
|y|≥R

e−µtK(y, t)dydt ≤ δ

4
.

Then we obtain

β

∫ t0

t0−τ

∫
|x0−y|≥R

e−µ(t0−s)K(x0 − y, t0 − s)I(y, s)dyds

≤ βκ

∫ τ

0

∫
|y|≥R

e−µtK(y, t)dydt ≤ δ

4

and so

β

∫ t0

t0−τ

e−(d1+µ)(t0−s)I(x0, s)ds+ β

∫ t0

t0−τ

∫ R

−R

e−µ(t0−s)K(x0 − y, t0 − s)I(y, s)dyds ≥ δ

4
.

Moreover, by choosing a constant η ∈ (0, τ) small enough such that

βκ

{∫ η

0

e−(d1+µ)tdt+

∫ η

0

∫ R

−R

e−µtK(y, t)dydt

}
≤ δ

8
,

we get

β

∫ t0−η

t0−τ

e−(d1+µ)(t0−s)I(x0, s)ds(3.8)

+β

∫ t0−η

t0−τ

∫ R

−R

e−µ(t0−s)K(x0 − y, t0 − s)I(y, s)dyds ≥ δ

8
.

It follows that there exist a positive constant ν and a point

(y0, s0) ∈ [x0 −R, x0 +R]× [t0 − τ, t0 − η]

such that I(y0, s0) ≥ ν. Note that ν is independent of (x0, t0).
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Now, recall from [18, 20] that I(·, t) is uniformly continuous for each t ≥ 0. Furthermore,

by Lemma 2.1 and (1.2), the time derivative of I is bounded from [0,∞) to X. Hence I is

uniformly continuous on R× [0,∞). Hence there is a positive constant ρ such that

I(y, s0) ≥
ν

2
, ∀ y ∈ [y0 − ρ, y0 + ρ].

Then we consider the solution z to{
zt(y, s) = d2N2[z(·, s)](y)− γz(x, t), y ∈ R, s > s0,

z(y, s0) = I(y), y ∈ R,

where I is a uniformly continuous nonnegative function defined in R such that I ≤ ν/2 in R
and

I(y) = ν/2, ∀ y ∈ [y0 − ρ/2, y0 + ρ/2], I(y) = 0, ∀ |y − y0| ≥ ρ.

Note that z(y, s) > 0 for all y ∈ R for all s > s0 (cf. [18]). Hence the constant χ defined by

χ := min{z(y, s) | y ∈ [y0 −R, y0 +R], s ∈ [s0 + η, s0 + τ ]}

is positive. Moreover, by comparison, we have I(y, s) ≥ z(y, s) for y ∈ R and s ≥ s0, since I

satisfies I(y, s0) ≥ I(y) for all y ∈ R and

It(y, s) ≥ d2N2[I(·, s)](y)− γI(y, s), y ∈ R, s > 0.

In particular, we have I(x0, t0) ≥ z(x0, t0) ≥ χ, since (x0, t0) ∈ [y0−R, y0+R]× [s0+η, s0+τ ].

We conclude that (3.6) holds with the constant Q := 3βκ/(νχ), since we have

βŝ(x0, t0) ≤ δ

2
+

δ

4
+

δ

8
+ β

∫ t0−η

t0−τ

e−(d1+µ)(t0−s)I(x0, s)ds

+β

∫ t0−η

t0−τ

∫ R

−R

e−µ(t0−s)K(x0 − y, t0 − s)I(y, s)dyds

≤ δ + 3βκ/ν ≤ δ +QI(x0, t0).

With (3.6) at hand and using S = 1− S̃, from (1.2) it follows that

It(x, t) = d2N2[I(·, t)](x) +
I(x, t)

1 + αI(x, t)

{
β[1− S̃(x, t)]− γ − αγI(x, t)

}
(3.9)

≥ d2N2[I(·, t)](x) +
I(x, t)

1 + αI(x, t)
{β − γ − [δ +QI(x, t)]− αγI(x, t)}

for x ∈ R, t ≥ τ . Since (1− αI) ≤ 1/(1 + αI) ≤ 1 and β − γ − δ > 0, we compute

I(x, t)

1 + αI(x, t)
{β − γ − [δ +QI(x, t)]− αγI(x, t)}

=
I(x, t)

1 + αI(x, t)
(β − γ − δ)− I(x, t)

1 + αI(x, t)
(Q+ αγ)I(x, t)

≥ I(x, t)[1− αI(x, t)](β − γ − δ)− I(x, t)(Q+ αγ)I(x, t)

= I(x, t) {(β − γ − δ)−MI(x, t)} ,
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where M := [α(β − γ − δ) +Q+ αγ] > 0. Hence (3.9) can be re-written as

(3.10) It(x, t) ≥ d2N2[I(·, t)](x) + I(x, t) {(β − γ − δ)−MI(x, t)} , x ∈ R, t ≥ τ.

Finally, applying Propositions 3.1 and 3.2, we conclude that

lim inf
t→∞

inf
|x|<c∗−ε

I(x, t) ≥ lim
t→∞

inf
|x|<c∗−ε

Î(x, t) =
β − γ − δ

M
> 0,

where Î is a solution to the problemÎt(x, t) ≥ d2N2[Î(·, t)](x) + Î(x, t)
{
(β − γ − δ)−MÎ(x, t)

}
, x ∈ R, t > τ,

Î(x, τ) = I(x, τ), x ∈ R.

This completes the proof of Theorem 1.1. �

4. Discussion

Surprisingly, we could not find any works on the spreading speed for SIR models. Our

analysis for the spreading speed on the case α > 0 relies on the global boundedness of the

infective population. In fact, replacing K in (2.6) by the Gaussian kernel, Theorem 1.1 also

holds for the standard diffusion case, namely, for the system

St(x, t) = d1∆S(x, t) + µ− µS(x, t)− βS(x, t)I(x, t)

1 + αI(x, t)
, x ∈ R, t > 0,(4.1)

It(x, t) = d2∆I(x, t) +
βS(x, t)I(x, t)

1 + αI(x, t)
− (µ+ σ)I(x, t), x ∈ R, t > 0.(4.2)

The proof can be done by a completely similar argument as above, since we have the com-

parison principle and the spreading result ([4]) for the corresponding scalar equation with

standard diffusion.

On the other hand, when α = 0, if we can derive the global boundedness of the infective

population as that in Lemma 2.1, then our method works and Theorem 1.1 holds for both

nonlocal dispersal and standard diffusion cases. In particular, when d2 = d1 and J2 = J1, by

adding (1.1) and (1.2) we obtain

(S + I)t ≤ d1N1[(S + I)(·, t)](x) + µ− µ(S + I)(x, t).

From this inequality and the comparison principle it follows that

(S + I)(x, t) ≤ 1− (1− ∥S0 + I0∥L∞(R))e
−µt

for all x ∈ R and t ≥ 0. Of course, this also works for the standard diffusion case.

Finally, we remark that any solution to the ODE system

St = µ− µS − βSI,

It = βSI − (µ+ σ)I,

is uniformly bounded and converges to the positive endemic equilibrium, because we have

a Lyapunov function as is explained in [24]. However, the Lyapunov functional is not well-

defined for PDE system (4.1)-(4.2) (or (1.1)-(1.2)) with α = 0. Also, the comparison principle

does not hold for both systems (4.1)-(4.2) and (1.1)-(1.2). Hence the boundedness of the
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solution to the Cauchy problem when α = 0 does not follow immediately. We leave the

problem on the spreading speed for the endemic model with α = 0 as an open problem.
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