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Abstract. This paper is to derive the precise asymptotic spreading behavior for an epidemic

model with nonlocal dispersal. The proof is based on a Liouville type theorem on the positive

bounded entire solutions. This Liouville theorem holds for a general class of reaction-diffusion

systems with nonlocal dispersal which can be useful for reaction-diffusion systems arising in

ecology and epidemiology.

1. Introduction

In this paper, we consider the following SIR (susceptible-infective-removed) epidemic model

with nonlocal dispersal

St(x, t) = d1N1[S(·, t)](x) + µ− µS(x, t)− βS(x, t)I(x, t)

1 + αI(x, t)
, x ∈ R, t > 0,(1.1)

It(x, t) = d2N2[I(·, t)](x) +
βS(x, t)I(x, t)

1 + αI(x, t)
− (µ+ σ)I(x, t), x ∈ R, t > 0,(1.2)

Rt(x, t) = d3N3[R(·, t)](x) + σI(x, t)− µR(x, t), x ∈ R, t > 0,(1.3)

where S(x, t), I(x, t), R(x, t) represent the population densities of the susceptible, infective,

removed individuals at position x and time t, respectively. The parameters d1, d2, d3, µ, β, σ

are all positive constants in which di is the diffusion coefficient, i = 1, 2, 3, and µ denotes

the same death rates of susceptible, infective and removed populations. Also, after a suitable

rescaling (cf. [21]), the inflow of newborns into the susceptible population is taken to be

the same constant µ. The parameter σ is the removed/recovery rate and β is the infective

transmission rate. While the nonnegative constant α measures the saturation level ([5, 23]) in

the Holling type II incidence function βSI/(1 + αI).

Moreover, the nonlocal dispersal Ni is an operator acting on a function φ defined by

Ni[φ](x) := (Ji ∗ φ)(x)− φ(x) =

∫
R
Ji(x− y)φ(y)dy − φ(x), x ∈ R,

where the kernel Ji is a probability density function, i = 1, 2, 3. Throughout this paper, we

adopt the following class of kernels. For a given λ̂ ∈ (0,∞], a function J : R → [0,∞) is said

to be in the class P(λ̂) if the following conditions hold:
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(J1) The kernel J is nonnegative and continuous;

(J2) it holds that ∫
R
J(y)dy = 1, J(y) = J(−y) for all y ∈ R;

(J3) it holds that
∫
R J(y)e

λ|y|dy < ∞ for any λ ∈ (0, λ̂) and∫
R
J(y)eλ|y|dy → ∞ as λ ↑ λ̂.

Unlike the classical diffusion modelling the random movements, the mechanism of nonlocal

dispersal describes the individuals moving freely to have a long-range diffusion effect [22]. This

nonlocal interaction nature is often presented in many diffusive systems in ecology, biology,

neuroscience etc. Therefore, the study of nonlocal evolution equations has attracted a lot of

attention in past years, we refer the reader to, e.g., [15, 10, 14, 17, 6, 16, 4, 18, 2, 3, 25, 8, 1,

27, 26, 7, 24, 9, 20, 11] and the references cited therein.

We are concerned with the precise asymptotic spreading behaviors of solutions to system

(1.1)-(1.3). Since (1.3) is decoupled from the other two equations in our SIR model, in the

sequel we shall only consider the system (1.1)-(1.2). In particular, we are interested in the

initial value problem for (1.1)-(1.2) with the initial condition

(1.4) S(x, 0) = 1, I(x, 0) = I0(x), x ∈ R,

where I0 is a nonnegative continuous function defined in R with a nonempty compact support.

Under the assumption

(1.5) β > µ+ σ,

there is a unique stable positive endemic equilibrium (S∗, I∗), where

S∗ =
µ+ σ + αµ

αµ+ β
, I∗ =

µ(β − µ− σ)

(µ+ σ)(αµ+ β)
,

which corresponds to the coexistence state of (S, I). Hereafter we set γ := µ+ σ and define

(1.6) c∗ := inf
0<λ<λ̂2

d2
[∫

R J2(y)e
λydy − 1

]
+ β − γ

λ
.

Note that the constant c∗ is well-defined and c∗ > 0, since β − γ > 0 due to (1.5).

We now state the main theorem of this paper as follows.

Theorem 1.1. Let α ≥ 0 and Ji ∈ P(λ̂i) for some λ̂i ∈ (0,∞], i = 1, 2. Assume (1.5). In

the case α = 0, we further assume that d1 = d2 and J1 = J2. Let (S, I) be a solution of (1.1),

(1.2) and (1.4) with a nonnegative nontrivial compactly supported continuous initial data I0.

Then

lim
t→∞

sup
|x|≤ct

{|S(x, t)− S∗|+ |I(x, t)− I∗|} = 0, ∀ c ∈ (0, c∗),

where c∗ is defined by (1.6).
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To prove Theorem 1.1, we present in this paper a Liouville type theorem (Theorem 2.1

below) to characterize entire solutions for more general reaction-diffusion systems including

system (1.1)-(1.2) as a special case. Hereafter, a solution is called an entire solution if it is

defined for all t ∈ R. For the characterization of entire solutions in the study of the asymptotic

behavior of the associated reaction-diffusion systems, we refer the reader to, e.g., the references

cited in [12] for the case of classical diffusion and [13] for the fractional diffusion. In fact, the

proof of Theorem 2.1 is quite similar to the one given in [13]. However, extending a Lyapunov

function for ODE to a Lyapunov functional for PDE in an unbounded spatial domain relies

on a suitable choice of the weight function. We are able to find such a weight function to

overcome this difficulty. Consequently, Theorem 2.1 can be applied to a large class of systems

in ecology and epidemiology such as those reaction-diffusion systems studied in [12, 13] with

diffusions replaced by nonlocal dispersals.

The rest of this paper is organized as follows. We present a Liouville type theorem along

with its proof in §2. Then we give the detailed proof of Theorem 1.1 for the precise asymptotic

spreading behavior of system (1.1)-(1.2) in §3.

2. A Liouville type theorem

In this section, we consider the following general reaction-diffusion system

(2.1)
∂ui

∂t
= diNi[ui(·, t)](x) + fi(u1, . . . , um), x ∈ Rn, t ∈ R, i = 1, . . . ,m,

where m,n are positive integers, di > 0 and fi : Rm → R is a C1 function for each i = 1, . . . ,m.

Moreover, Ji ∈ P(λ̂i) for some constant λ̂i ∈ (0,∞] for i = 1, . . . ,m. Note that conditions

(J1)-(J3) are well-defined in Rn for n ≥ 1.

We assume that (2.1) has a unique positive constant equilibrium u∗ := (u∗
1, . . . , u

∗
m) such

that u∗
i ∈ (0,∞) for each i. Set g(θ) := θ − 1 − ln θ, θ > 0. Note that g is a strictly convex

smooth function on (0,∞) such that g(1) = 0 and g(θ) > 0 for all θ ̸= 1. Then we have the

following Liouville type theorem for (2.1).

Theorem 2.1. Let u = (u1, . . . , um) be an entire solution of (2.1) such that 0 < ai ≤ ui ≤
Ai < ∞ for i = 1, . . . ,m for some positive constants {ai, Ai} with ai ≤ u∗

i ≤ Ai. Suppose

that the corresponding diffusion-free system of (2.1) admits a nonnegative bounded Lyapunov

function in the form

F (u) =
m∑
i=1

Fi(ui), u = (u1, . . . , um) ∈ Rm
+ ,

where Fi(ui) = cig(ui/u
∗
i ) for some positive constant ci for i = 1, . . . ,m such that

(2.2)
m∑
i=1

F ′
i (ui)fi(u) ≤ −κF (u) for ui ∈ [ai, Ai], 1 ≤ i ≤ m,

for some positive constant κ. Then u = u∗.

To prove Theorem 2.1, we first prepare the following lemma.
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Lemma 2.2. Let J ∈ P(λ̂) for some λ̂ ∈ (0,∞]. Then for any ε > 0 there exists R > 0

sufficiently large such that

N [ρR](x) := (J ∗ ρR)(x)− ρR(x) ≤ ερR(x), ∀ x ∈ Rn,

where

ρR(x) := e−|x|/R.

Proof. First, J ∗ e−|x|/R is well-defined because of (J2).

Next, writing

N [ρR](x) =

∫
Rn

J(y)
[
e−|x−y|/R − e−|x|/R] dy = ρR(x)

∫
Rn

J(y)
[
e|x|/R−|x−y|/R − 1

]
dy

and using |x| − |x− y| ≤ |y| for any x, y ∈ Rn, we obtain

(2.3) N [ρR](x) ≤ ρR(x)

∫
Rn

J(y){e|y|/R − 1} dy.

Now, let ε > 0 be given and let R0 > 1 be sufficiently large such that 1/R0 < λ̂. Then, by

(J2) and (J3), there exists r > 0 sufficiently large such that

(2.4) 0 <

∫
|y|≥r

J(y){e|y|/R − 1} dy ≤
∫
|y|≥r

J(y){e|y|/R0 − 1} dy < ε/2, ∀R ≥ R0.

Moreover, since the sequence J(y){e|y|/R−1} converges to 0 as R → ∞ uniformly over {|y| ≤ r},
we may choose a large enough R ≥ R0 such that

0 <

∫
|y|≤r

J(y){e|y|/R − 1} dy < ε/2.

Then the lemma follows from this estimate together with (2.3) and (2.4). □
With the weight ρR, we introduce the functional

FR(t) :=

∫
Rn

F (u(x, t))ρR(x)dx

for an entire solution u of (2.1) satisfying

0 < ai ≤ ui ≤ Ai < ∞, i = 1, . . . ,m.

Note that F (u(x, t)) is uniformly bounded over Rn × R and ρR is integrable over Rn. Hence

FR(t) is well-defined and uniformly bounded for t ∈ R. Then Theorem 2.1 can be proved

in the same manner as that for [13, Theorem 1.1]. To be self-contained and for the reader’s

convenience, we provide some details here.

First, we compute

d

dt
FR(t) =

m∑
i=1

∫
Rn

F ′
i (ui)fi(u)ρRdx+

m∑
i=1

di

∫
Rn

F ′
i (ui)Ni[ui]ρR dx.

It follows from (2.2) and g′(θ) = 1− 1/θ that

(2.5)
d

dt
FR(t) ≤ −κFR(t) +

m∑
i=1

dici
1

u∗
i

∫
Rn

(
1− u∗

i

ui

)
Ni[ui]ρR dx.
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Next, for a fixed i set

Ii(t) :=

∫
Rn

(
1− u∗

i

ui(x, t)

)
Ni[ui](x, t)ρR(x) dx.

Then we obtain from

Ni[ui](x, t) =

∫
Rn

Ji(x− y){ui(y, t)− ui(x, t)}dy,

that

(2.6) Ii(t) =

∫
Rn

∫
Rn

Ji(x− y)u∗
i

[
1− ui(x, t)

u∗
i

+
ui(y, t)

u∗
i

− ui(y, t)

ui(x, t)

]
ρR(x) dydx.

By changing the order of integration, we also have

(2.7) Ii(t) =

∫
Rn

∫
Rn

Ji(x− y)u∗
i

[
1− ui(x, t)

u∗
i

+
ui(y, t)

u∗
i

− ui(y, t)

ui(x, t)

]
ρR(x) dxdy.

On the other hand, by exchanging the roles of x and y and using J(x− y) = J(y − x), we get

from (2.6) that

(2.8) Ii(t) =

∫
Rn

∫
Rn

Ji(x− y)u∗
i

[
1− ui(y, t)

u∗
i

+
ui(x, t)

u∗
i

− ui(x, t)

ui(y, t)

]
ρR(y) dxdy.

Summing over (2.7) and (2.8), we obtain 2Ii(t) = Ii1(t) + Ii2(t), where

Ii1(t) :=

∫
Rn

∫
Rn

Ji(x− y)u∗
i

[
ρR(x) + ρR(y)−

ui(x, t)ρR(y)

ui(y, t)
− ui(y, t)ρR(x)

ui(x, t)

]
dxdy

Ii2(t) :=

∫
Rn

∫
Rn

Ji(x− y)
{
[ui(y, t)− ui(x, t)]ρR(x) + [ui(x, t)− ui(y, t)]ρR(y)

}
dxdy.

Then, by exchanging x and y and using J(x− y) = J(y − x), we obtain

Ii1(t) = 2

∫
Rn

∫
Rn

Ji(x− y)u∗
i

[
1− ui(y, t)

ui(x, t)

]
ρR(x) dxdy,

Ii2(t) = 2

∫
Rn

∫
Rn

Ji(x− y)
[
ui(y, t)− ui(x, t)

]
ρR(x) dxdy.

It follows that

Ii(t) =

∫
Rn

∫
Rn

Ji(x− y)

[
ui(y, t) + u∗

i − ui(x, t)− u∗
i

ui(y, t)

ui(x, t)

]
ρR(x) dxdy

≤
∫
Rn

∫
Rn

Ji(x− y)

[
ui(y, t)− ui(x, t) + u∗

i ln
(ui(x, t)

ui(y, t)

)]
ρR(x) dxdy,

using 1−X ≤ ln(1/X) for all X > 0. Thus we get

(2.9) Ii(t) ≤
u∗
i

ci

∫
Rn

∫
Rn

Ji(x− y)
[
Fi(ui(y, t))− Fi(ui(x, t))

]
ρR(x) dxdy.
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Moreover, using∫
Rn

∫
Rn

Ji(x− y)Fi(ui(y, t))ρR(x) dxdy =

∫
Rn

∫
Rn

Ji(y − x)Fi(ui(x, t))ρR(y) dydx

=

∫
Rn

∫
Rn

Ji(x− y)Fi(ui(x, t))ρR(y) dxdy,

it follows from (2.9) that

Ii(t) ≤
u∗
i

ci

∫
Rn

Fi(ui(x, t))Ni[ρR](x) dx.

According to Lemma 2.2, for each Ji, for any ε ∈ (0, κ/2), there exists Ri > 0 such that

Ni[ρRi
] ≤ ε

mdi
ρRi

.

If we choose R ≥ max1≤i≤m Ri, then

(2.10) Ii(t) ≤
εu∗

i

mdici

∫
Rn

Fi(ui(x, t)) ρR(x) dx.

Finally, from (2.5) and (2.10) it follows that

d

dt
FR(t) ≤ −(κ− ε)FR(t) ≤ −κ

2
FR(t), ∀ t ∈ R.

By integrating in time from −∞ to t, we deduce that FR(t) = 0 for all t ∈ R. Hence

F (u(x, t)) ≡ 0 and so u(x, t) ≡ u∗ for all (x, t) ∈ Rn × R. Theorem 2.1 is thereby proved. □

3. Proof of Theorem 1.1

First, we recall the following proposition from [11].

Proposition 3.1. Let α > 0 and let (S, I) be a solution of (1.1), (1.2) and (1.4) with a

nonnegative nontrivial compactly supported continuous initial data I0. Assume the condition

(1.5) is enforced. Then the constant c∗ defined in (1.6) is the (asymptotic) spreading speed of

I in the sense

(3.1) lim
t→∞

sup
|x|>ct

I(x, t) = 0, ∀ c > c∗; lim inf
t→∞

inf
|x|<ct

I(x, t) > 0, ∀ c ∈ (0, c∗).

Let α ≥ 0. Since 0 is a sub-solution of (1.2) with I(x, 0) ≥ 0 for any S(x, t) ∈ R, by
comparison we obtain I ≥ 0 in R × [0,∞). Similarly, 0 is a sub-solution and 1 is a super-

solution of (1.1) with S(·, 0) ≡ 1. Hence, by comparison, we have 0 ≤ S ≤ 1 in R × [0,∞).

With this information, one can check that the proof of [11, Theorem 1.1] works well for α = 0.

Hence we obtain

Corollary 3.2. Let α = 0 and let (S, I) be a solution of (1.1), (1.2) and (1.4) with a nontrivial

nonnegative compactly supported continuous initial data I0. Assume the condition (1.5) is

enforced. Then (3.1) holds with the constant c∗ defined in (1.6).



NONLOCAL DISPERSAL 7

Note that, for a given α > 0, the uniform persistence of S follows from that S ≥ αµ/(β+αµ)

in R × [0,∞), since αµ/(β + αµ) is a sub-solution of (1.1) with S(·, 0) ≡ 1. Recall also from

[11, (2.2)] that I ≤ max{∥I0∥∞, (β − γ)/(αγ)}.
The case for α = 0 is more delicate. We only consider the case when d1 = d2 := d and

J1 = J2 := J . Then equations (1.1)-(1.2) are reduced to

(3.2)

{
St(x, t) = dN [S(·, t)](x) + µ− µS(x, t)− βS(x, t)I(x, t), t > 0, x ∈ R,
It(x, t) = dN [I(·, t)](x) + βS(x, t)I(x, t)− (µ+ σ)I(x, t), t > 0, x ∈ R,

where

N [φ](x) :=

∫
R
J(x− y)φ(y)dy − φ(x), x ∈ R.

Set W := 1− (S + I). Then W satisfies

Wt = dN [W ]− µW + σI ≥ dN [W ]− µW, x ∈ R, t > 0.

It follows that

(eµtW )t(x, t) ≥ dN [eµtW (·, t)](x), x ∈ R, t > 0.

Since W (x, 0) = −I0(x) ≥ −∥I0∥∞, by comparison, we obtain the estimate

(3.3) S(x, t) + I(x, t) ≤ 1 + e−µt∥I0∥∞ ≤ 1 + ∥I0∥∞ := θ, x ∈ R, t > 0.

Using S ≥ 0 and I ≥ 0, we conclude that

(3.4) I is uniformly bounded in R× [0,∞).

Moreover, since the constant µ/(µ+ βθ) is a sub-solution of S-equation in (3.2), we obtain

(3.5) S ≥ µ/(µ+ βθ) > 0 in R× [0,∞),

by comparison.

Next, with the help of Theorem 2.1, Proposition 3.1, Corollary 3.2, and a uniform persistent

result on (S, I) in the zone {(x, t) | |x| ≤ ct, t ≫ 1} for c ∈ (0, c∗), the proof of Theorem 1.1

can be done by a similar argument as that of [12, Theorem 1.4] with some modifications due

to the regularity of solutions. We provide a proof as follows.

Proof of Theorem 1.1. First, we recall from [18, 20] that both S(·, t) and I(·, t) are uniformly

continuous on R for each t ≥ 0. Moreover, the uniform boundedness of (S, I) and (1.1)-(1.2)

implies that both St and It are uniformly bounded. This implies that both S and I are

uniformly continuous in R× [0,∞). Furthermore, it follows from (1.1)-(1.2) that both St and

It are uniformly continuous in R× [0,∞).

Next, we let

(3.6) k0 ≤ S(x, t) ≤ 1, 0 ≤ I(x, t) ≤ k1 < ∞, x ∈ R, t ≥ 0,

for some positive constants k0, k1. Following [12], we assume for contradiction that there is a

positive constant δ such that

(3.7) |S(xj, tj)− S∗|+ |I(xj, tj)− I∗| ≥ δ, ∀ j ≥ 1,
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for some sequence {(xj, tj)} with tj → ∞ as j → ∞ and |xj| ≤ c0tj for all j ≥ 1 for some

constant c0 ∈ (0, c∗). Set

(Sj, Ij)(x, t) := (S, I)(x+ xj, t+ tj), (x, t) ∈ R2, j ≥ 1.

It follows from the above regularity result that {(Sj, Ij)} and {((Sj)t, (Ij)t)} are uniformly

bounded and equi-continuous sequences on R2. Hence, by Arzelá-Ascoli theorem with the help

of a diagonal process, the limit

(S∞, I∞)(x, t) := lim
j→∞

(Sj, Ij)(x, t), (x, t) ∈ R2,

exists (up to a subsequence) such that (S∞, I∞) is an entire solution of system (1.1)-(1.2).

Finally, note that (3.6) holds for (S∞, I∞) in R2. Also, by (3.1) with c ∈ (c0, c
∗), there is a

positive constant k3 such that I∞ ≥ k3 in R2. Hence (S∞, I∞) = (S∗, I∗) by Theorem 2.1 and

a Lyapunov function given in [19, 12]. However, |S∞(0, 0) − S∗| + |I∞(0, 0) − I∗| ≥ δ > 0 by

(3.7), a contradiction. This completes the proof of Theorem 1.1. □
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