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Abstract. We consider a three-species predator-prey system involving two competing

predators and one prey. The species diffuse with nonlocal dispersal kernels with possi-

bly non-compact support, and they interact in a heterogeneous environment moving with a

positive forced speed such that the environment is favorable to the prey in the absence of

predators far ahead of the shifting boundary and it is unfavorable far behind. Such systems

arise in the modeling of population dynamics under the effect of a shifting environment,

such as climate change. We show on the one hand the existence of waves connecting the

trivial state to the unique constant positive co-existence state for any value of the forced

speed. On the other hand, we show the existence of critical positive speeds for the existence

of waves connecting the trivial state to the states corresponding to the absence of one or

two predators.

1. Introduction

Nonlocal dispersal models arise in population dynamics to describe long-distance dispersal

of individuals [24, 25, 28]. Recently, the effect of environmental heterogeneity has drawn a lot

of attention in biological applications. In this paper, we consider the following predator-prey

system with two weak competing predators and one prey:

(1.1)


ut(x, t) = d1N1[u](x, t) + r1u(x, t) [−1− u(x, t)− kv(x, t) + aw(x, t)],

vt(x, t) = d2N2[v](x, t) + r2v(x, t) [−1− hu(x, t)− v(x, t) + aw(x, t)],

wt(x, t) = d3N3[w](x, t)+ r3w(x, t) [α(x− st)− bu(x, t)− bv(x, t)− w(x, t)],

in which the nonnegative quantities u = u(x, t) and v = v(x, t) are the densities of two

predators and w = w(x, t) is the density of the single prey, for x, t ∈ R.
Throughout the paper, the parameters d1, d2, d3, r1, r2, r3, a, b, h, k are all positive, and

a, b, h, k are such that

(1.2) a > 1, 0 < h, k < 1, 0 < b <
1

2(a− 1)
.
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Meanwhile, N1[u], N2[v] andN3[w] formulate the spatial nonlocal dispersal and are defined

by 

N1[u](x, t) := (J1 ∗ u)(x, t)− u(x, t) =

∫
R
J1(y)u(x− y, t)dy − u(x, t),

N2[v](x, t) := (J2 ∗ v)(x, t)− v(x, t) =

∫
R
J2(y)v(x− y, t)dy − v(x, t),

N3[w](x, t) := (J3 ∗ w)(x, t)− w(x, t) =

∫
R
J3(y)w(x− y, t)dy − w(x, t),

in which, throughout the paper, the functions Ji : R → R (i = 1, 2, 3) are probability kernel

functions satisfying

(J1) Ji is nonnegative, measurable with respect to the Lebesgue measure,
∫
R Ji(y)dy = 1,

and there are ηi > 0 and y±i ∈ R such that y−i < 0 < y+i and Ji > 0 in (y−i −ηi, y
−
i +ηi)

and in (y+i − ηi, y
+
i + ηi);

(J2)
∫
R Ji(y)y dy = 0;

(J3) there exist −∞ ≤ λ̃i < 0 < λ̂i ≤ +∞ such that Ii(λ) < +∞ for all λ ∈ (λ̃i, λ̂i), and

Ii(λ) → +∞ as λ ↓ λ̃i and λ ↑ λ̂i, where

Ii(λ) :=

∫
R
Ji(y)e

λydy.

Conditions (J1)-(J3) imply that each function Ii is strictly convex and of class C∞ in (λ̃i, λ̂i),

that Ii(0) = 1, I ′i(0) = 0, and Ii(λ) = +∞ for all λ ∈ (−∞, λ̃i] if −∞ < λ̃i (resp. for all

λ ∈ [λ̂i,+∞) if λ̂i < +∞). If Ji has a compact support, then λ̃i = −∞ and λ̂i = +∞.

Conditions (J1) and (J3) imply that each function y 7→ Ji(y)y is in L1(R) and, if Ji is even,
they necessarily yield (J2), and λ̃i = −λ̂i in (J3). We point out that the conditions (J1)-(J3)

are satisfied in particular if Ji is nonnegative, continuous, even, has a unit integral over R
and if Ii(λ) < +∞ for some λ > 0. But the conditions (J1)-(J3) cover more general dispersal

kernels Ji, in particular the kernels Ji can be non-symmetric.

The function α in (1.1), describing the heterogeneity, is assumed to be continuous in R
and the given positive constant s denotes the environmental shifting speed. Throughout this

paper we also impose the following conditions on α:

(α1) α has limits α(±∞) at ±∞, such that −∞ < α(−∞) < 0 < α(+∞) < +∞, and

α(z) ≤ α(+∞) for all z ∈ R;
(α2) there exist C > 0 and ρ > 0 such that α(+∞)− α(z) ≤ Ce−ρz for all large z.

Condition (α1) means that the environment is favourable to the prey ahead of the shifting

boundary x = st, then gradually deteriorates until it becomes hostile to the species far behind

this shifting boundary. We point out that the function α is not assumed to be monotone.

Biologically, parameters (d1, d2, d3), (h, k), a and b represent the diffusion coefficients,

competition rates, conversion rate and predation rate, respectively. The assumption 0 <

h, k < 1 means that the two predators are weak competitors. Moreover, the negative net

growth rate −ri (i = 1, 2) of each predator means that each predator cannot survive without

the feeding of the prey. The terms −r1u(x, t)
2 and −r2v(x, t)

2 stand for the intra-specific

competition inside each predator population. The smallness of the predation rate b means
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that the predation has a relatively low impact on the prey, whereas the largeness of the

conversion rate a is related to the relatively large fitness of the predators in the presence of

the prey. The intrinsic growth rate of prey is given by r3α(x− st) which is temporal-spatial

dependent and takes both positive and negative values. From the modeling point of view,

the function α represents the shifting environment effect, such as climate change. Although

this term does not appear in the equation of each predator, the changing effect actually

affects indirectly both predators due to the fact that predators are fed by prey.

We are concerned with the existence of forced waves for (1.1). Namely, a traveling wave

solution of (1.1) with speed s is a solution in the form

(u, v, w)(x, t) = (ϕ1, ϕ2, ϕ3)(z), z := x− st,

with C1(R) functions ϕ1, ϕ2, ϕ3. Then (ϕ1, ϕ2, ϕ3) satisfies

(1.3)


−sϕ′

1(z) = d1N1[ϕ1](z) + r1ϕ1(z) [−1− ϕ1(z)− kϕ2(z) + aϕ3(z)], z ∈ R,
−sϕ′

2(z) = d2N2[ϕ2](z) + r2ϕ2(z) [−1− hϕ1(z)− ϕ2(z) + aϕ3(z)], z ∈ R,
−sϕ′

3(z) = d3N3[ϕ3](z) + r3ϕ3(z) [α(z)− bϕ1(z)− bϕ2(z)− ϕ3(z)], z ∈ R,

where

Ni[ϕi](z) :=

∫
R
Ji(y)ϕi(z − y)dy − ϕi(z), i = 1, 2, 3.

Throughout the paper, by a solution of (1.3), we always mean a triplet (ϕ1, ϕ2, ϕ3) of C
1(R)

nonnegative bounded functions. Since the environment is hostile to the species far behind

the shifting boundary x = st, by the assumption on α, it can be expected that all species go

extinction eventually. Hence we impose the boundary condition

(ϕ1, ϕ2, ϕ3)(−∞) = (0, 0, 0).

On the other hand, without loss of generality we may assume that

(1.4) α(+∞) = 1.

Condition (1.4) is assumed in all main results (Theorems 1.1-1.6). Then the following states

are the only possible constant and non-trivial limiting states (ϕ1, ϕ2, ϕ3)(+∞) at z = +∞:

E1 := (0, 0, 1), E2 := (up, 0, wp), E3 := (0, up, wp), E4 := (u∗, v∗, w∗),

where the real numbers up, wp, u
∗, v∗, w∗ are all positive and given by

up :=
a− 1

ab+ 1
, wp :=

b+ 1

ab+ 1
,

w∗ :=
1 + bγ

1 + abγ
, γ :=

2− h− k

1− hk
> 1, v∗ :=

1− h

1− hk
(aw∗ − 1), u∗ :=

1− k

1− hk
(aw∗ − 1).

Biologically, the state E1 corresponds to a saturated aboriginal prey living in the habitat

and there are two invading alien predators; E2 or E3 is a pair of aboriginal co-existent

predator-prey and an invading alien predator; lastly, E4 is the positive co-existence state.

The study of forced waves has attracted a lot of attention recently. We refer the reader

to, e.g., [2, 3, 4, 5, 6, 18, 19, 22, 23, 29, 38] for the case of scalar equations with local

diffusion and to [12, 13, 27, 31, 37] for the case of scalar equations with nonlocal dispersal.
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For two-species models, we refer the reader to [34] for a cooperative model, [1, 14, 30, 33, 35]

for competition models, and [10] for a predator-prey system with both classical diffusion

and nonlocal dispersal. Recently, forced waves for a three-species predator-prey system were

investigated in [11] for two competing preys and one predator with the classical diffusion.

In [11], the authors obtained both front and pulse types forced waves.

In the case of nonlocal dispersal, one usually assume that each kernel function is of compact

support (so that λ̃i = −∞ and λ̂i = +∞ in (J3)). One of the motivations of this work is

to remove the restriction on the compact support of kernel(s). This question has been left

open in [10] for the two-species predator-prey system.

We now describe our main results as follows. We repeat that the condition (1.2) is assumed

in all results, as are (J1)-(J3) and (α1)-(α2). First, the following theorem provides the

existence of waves connecting (0, 0, 0) and the co-existence state E4, whatever the positive

forced speed s may be.

Theorem 1.1. In addition to (1.2) and (1.4), suppose

(1.5) b < min

{
1− h

2a
,
1− k

2a

}
.

Then, for any s > 0, there exists a positive1 solution (ϕ1, ϕ2, ϕ3) of (1.3) such that

(ϕ1, ϕ2, ϕ3)(−∞) = (0, 0, 0) and (ϕ1, ϕ2, ϕ3)(+∞) = E4.

Next, for waves connecting (0, 0, 0) and the predator-free state E1 = (0, 0, 1), we let

(1.6) s∗i := inf
λ∈(0,λ̂i)

Qi(λ), Qi(λ) :=
di[Ii(λ)− 1] + ri(a− 1)

λ
, λ ∈ (0, λ̂i), i = 1, 2.

From (1.2) and (J1)-(J3) and the comments after (J1)-(J3), each function Qi (i = 1, 2) is

continuous and positive in (0, λ̂i), Qi(λ) → +∞ as λ ↓ 0 or λ ↑ λ̂i (this last property is

immediate if λ̂i < +∞, and it holds as well if λ̂i = +∞ since I ′i(λ) =
∫
R Ji(y)ye

λydy → +∞
as λ → +∞ = λ̂i in that case). Hence, each s∗i is positive and the infimum in (1.6) is

a minimum, and it is reached by a unique λ∗
i ∈ (0, λ̂i) (since I ′′i is positive in (0, λ̂i), and

even in the whole interval of definition (λ̃i, λ̂i)). Furthermore, Qi is decreasing in (0, λ∗
i ] and

increasing in [λ∗
i , λ̂i). Then we have

Theorem 1.2. Suppose (1.2) and (1.4). If s > max{s∗1, s∗2}, then there exists a positive

solution (ϕ1, ϕ2, ϕ3) of (1.3) such that

(1.7) (ϕ1, ϕ2, ϕ3)(−∞) = (0, 0, 0) and (ϕ1, ϕ2, ϕ3)(+∞) = E1.

Moreover, when (λ̃i, λ̂i) = (−∞,+∞) for some i ∈ {1, 2}, then a positive solution (ϕ1, ϕ2, ϕ3)

of (1.3) and (1.7) exists only if s ≥ s∗i .

For the waves connecting (0, 0, 0) and the mixed state E2 = (up, 0, wp), we let

(1.8) β2 := −1− hup + awp =
(a− 1)(1− h)

ab+ 1
> 0

1By positive, we mean that each component ϕi (i = 1, 2, 3) is positive in R.
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and

(1.9) s∗∗2 := inf
λ∈(0,λ̂2)

R2(λ), R2(λ) :=
d2[I2(λ)− 1] + r2β2

λ
, λ ∈ (0, λ̂2).

As for Qi in (1.6), the function R2 is continuous and positive in (0, λ̂2), R2(λ) → +∞ as λ ↓ 0

or λ ↑ λ̂2, s
∗∗
2 is positive and the infimum in the definition of s∗∗2 is a minimum, reached by

a unique λ∗∗
2 ∈ (0, λ̂2). Furthermore, R2 is decreasing in (0, λ∗∗

2 ] and increasing in [λ∗∗
2 , λ̂2).

Then we have

Theorem 1.3. In addition to (1.2) and (1.4), suppose

(1.10) max{d1, d3} ≤ d2, J1 = J2 = J3 in R,

and

(1.11) r1[1 + k(a− 1)] ≤ r2β2.

If s > s∗∗2 and s ≥ R2(ρ), with ρ > 0 as in (α2), then there exists a positive solution

(ϕ1, ϕ2, ϕ3) of (1.3) such that

(1.12) (ϕ1, ϕ2, ϕ3)(−∞) = (0, 0, 0) and (ϕ1, ϕ2, ϕ3)(+∞) = E2.

Moreover, when (λ̃2, λ̂2) = (−∞,+∞), a positive solution (ϕ1, ϕ2, ϕ3) of (1.3) and (1.12)

exists only if s ≥ s∗∗2 .

Notice that, if condition (α2) is satisfied for a certain ρ > 0, so is it for every ρ′ ∈ (0, ρ].

Therefore, in Theorem 1.3, one can always assume without loss of generality that ρ ∈ (0, λ̂2)

and that R2(ρ) is a real number. We also point out that, if α(z) = α(+∞) for all z large

enough, then (α2) is satisfied for all ρ > 0, hence ρ can be chosen so that R2(ρ) = s∗∗2 and

the condition s ≥ R2(ρ) in the statement can then be dropped.

By exchanging the roles of u and v, a similar theorem to Theorem 1.3, on forced waves

connecting the trivial state and E3, can be derived. We omit it here.

One should notice that the above theorems hold under the assumptions (J1)-(J3) on

kernels Ji, i = 1, 2, 3, and conditions (α1)-(α2) on α. In particular, the kernel functions Ji,

i = 1, 2, 3, are not assumed to be compactly supported or symmetric. It is worth to mention

that the method of this work can also be applied to the 2-species system studied in [10] and

that the compact support assumption and the symmetry of the kernels can then be removed.

Next, we turn to the derivation of waves with critical speeds. We divide our main results

into three cases. The following two theorems show, under some conditions, the existence

of forced waves connecting the trivial state to the predator-free state E1 = (0, 0, 1), for the

minimal possible shifting speed. We recall that s∗1 and s∗2 are defined in (1.6).

Theorem 1.4. In addition to (1.2) and (1.4), suppose that s∗1 = s∗2, and that J1 and J2 have

compact supports. Then a positive solution of (1.3) with (1.7) exists for s = s∗1 = s∗2.

Note that the condition s∗1 = s∗2 is fulfilled especially if d1 = d2, r1 = r2, and J1 = J2 in R.

Theorem 1.5. In addition to (1.2) and (1.4), suppose that s∗1 > s∗2 and that J1 has a compact

support. Then a positive solution of (1.3) with (1.7) exists for s = s∗1.
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Note that, from the comments after (J1)-(J3), the condition s∗1 > s∗2 is fulfilled if d1 ≥ d2,

r1 ≥ r2, (d1, r1) ̸= (d2, r2), and J1 = J2 in R. A similar result to Theorem 1.5 also holds if

s∗2 > s∗1 and if J2 has a compact support (namely, in that case, a forced wave connecting the

trivial state and E1 with the critical speed s = s∗2 exists).

Lastly, the next theorem shows, under some conditions, the existence of forced waves

connecting the trivial state to the mixed state E2 = (up, 0, wp), for the minimal possible

shifting speed.

Theorem 1.6. In addition to (1.2) and (1.4), suppose that d1 = d2 = d3, that J := J1 =

J2 = J3 in R, and that J has a compact support. We also assume that (1.11) holds and

that ρ ≥ λ∗∗
2 , where ρ > 0 is as in (α2) and λ∗∗

2 > 0 denotes the unique minimum of R2 in

(0, λ̂2) = (0,+∞). Then a positive solution of (1.3) with (1.12) exists for s = s∗∗2 .

By exchanging the roles of u and v, a similar theorem to Theorem 1.6 on forced waves

connecting the trivial state and E3 with critical speed can be derived. We omit it here.

Predator-prey systems such as (1.1) are neither cooperative nor competitive, and the

maximum principle does not hold for these systems. Furthermore, due to the heterogeneity

of the function α, the systems (1.1) and (1.3) are not invariant by translation with respect

to the spatial variable, and new difficulties then arise in comparison with the existence of

traveling waves for homogeneous predator-prey systems (we refer to, e.g., [7, 8, 9, 20, 21] for

the existence of waves for various homogeneous predator-prey systems with local diffusion,

and to [15, 16, 17] for the study of spreading speeds for such homogeneous systems with

local or nonlocal dispersal).

With respect to the paper [10] on systems with both classical diffusion and nonlocal

dispersal, we introduce in the present paper, in order to remove the assumption on compact

support, some new ideas based on the Schauder fixed-point theorem, the suitable definition

of upper and lower solutions, and translation strategies described in Section 2. The existence

of forced waves connecting co-existence or predator-free states to the trivial state then relies

on the construction of suitable upper and lower solutions, which is quite intricate for this

three-species system.

The question of existence of traveling waves or forced waves has been addressed extensively.

For the stability of traveling waves, or the convergence of general solutions to traveling waves,

we refer the reader to [31] and the references cited therein for scalar equations or systems

which admit a comparison principle. However, without comparison principle, the question

of convergence to traveling waves is still open.

Organization of the paper. Section 2 presents a general framework for the existence

of waves, based on fixed point methods and translation strategies. Theorems 1.1-1.3 on

the existence of super-critical waves connecting (0, 0, 0) and E4, E1 or E2 are proved in

Sections 3-5. Section 6 is devoted to the proof of Theorems 1.4-1.6 on the existence of forced

waves with critical speeds.

2. Preliminaries

First, we introduce the notion of generalized upper-lower solutions of (1.3).



NONLOCAL DISPERSAL AND CLIMATE CHANGE 7

Definition 2.1. Continuous functions (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) are called a pair of upper

and lower solutions of (1.3) if ϕi ≥ ϕi in R, i = 1, 2, 3, and the following inequalities

U1(z) := d1N1[ϕ1](z) + sϕ
′
1(z) + r1ϕ1(z) [−1− ϕ1(z)− kϕ

2
(z) + aϕ3(z)] ≤ 0,(2.1)

U2(z) := d2N2[ϕ2](z) + sϕ
′
2(z) + r2ϕ2(z) [−1− hϕ

1
(z)− ϕ2(z) + aϕ3(z)] ≤ 0,(2.2)

U3(z) := d3N3[ϕ3](z) + sϕ
′
3(z) + r3ϕ3(z) [α(z)− bϕ

1
(z)− bϕ

2
(z)− ϕ3(z)] ≤ 0,(2.3)

L1(z) := d1N1[ϕ1
](z) + sϕ′

1
(z) + r1ϕ1

(z) [−1− ϕ
1
(z)− kϕ2(z) + aϕ

3
(z)] ≥ 0,(2.4)

L2(z) := d2N2[ϕ2
](z) + sϕ′

2
(z) + r2ϕ2

(z) [−1− hϕ1(z)− ϕ
2
(z) + aϕ

3
(z)] ≥ 0,(2.5)

L3(z) := d3N3[ϕ3
](z) + sϕ′

3
(z) + r3ϕ3

(z) [α(z)− bϕ1(z)− bϕ2(z)− ϕ
3
(z)] ≥ 0(2.6)

hold for all z ∈ R\E for some finite subset E (possibly empty) of R (the functions ϕ
i
and ϕi

are assumed to be of class C1 in, at least, R \ E).

Next, from the Schauder fixed-point theorem, we can derive the existence of wave profiles as

follows. Note that our proof below actually only requires the nonnegativity and integrability

of the kernels Ji.

Lemma 2.2. Let s > 0 be given. Let (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) be a pair of nonnegative

bounded upper and lower solutions of (1.3). Then (1.3) admits a solution (ϕ1, ϕ2, ϕ3) such

that ϕ
i
≤ ϕi ≤ ϕi in R for all i = 1, 2, 3.

Proof. First of all, we denote

M := max
{
∥α∥L∞(R), ∥ϕ1∥L∞(R), ∥ϕ2∥L∞(R), ∥ϕ3∥L∞(R)

}
and we define a positive constant β as follows:

(2.7) β := max{σ1, σ2, σ3} > 0,

where

(2.8) σ1 := d1 + r1(2M + kM + 1), σ2 := d2 + r2(2M + hM + 1), σ3 := d3 + r3M(b+ 3).

We also fix an arbitrary positive continuous function W : R → R (a weight function) such

that W (z) → 0 as z → ±∞ and we consider the Banach space

X :=
{
(ϕ1, ϕ2, ϕ3) : ϕi ∈ C0(R) ∩ L∞(R), i = 1, 2, 3

}
endowed with the norm

(2.9) ∥(ϕ1, ϕ2, ϕ3)∥X := max
{
∥ϕ1W∥L∞(R), ∥ϕ2W∥L∞(R), ∥ϕ2W∥L∞(R)

}
.

We then set

Γ :=
{
(ϕ1, ϕ2, ϕ3) : ϕi ∈ C0(R), 0 ≤ ϕ

i
≤ ϕi ≤ ϕi in R, i = 1, 2, 3

}
,

which is a non-empty convex closed bounded subset of (X, ∥ · ∥X).
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Then we transform the differential system (1.3) to an integral operator (as in e.g. [17, 21]),

and we will apply a fixed-point theorem in Γ. To do so, we set, for Φ := (ϕ1, ϕ2, ϕ3) ∈ Γ,
F1[Φ](y) := βϕ1(y) + d1N1[ϕ1](y) + r1ϕ1(y) [−1− ϕ1(y)− kϕ2(y) + aϕ3(y)], y ∈ R,
F2[Φ](y) := βϕ2(y) + d2N2[ϕ2](y) + r2ϕ2(y) [−1− hϕ1(y)− ϕ2(y) + aϕ3(y)], y ∈ R,
F3[Φ](y) := βϕ3(y) + d3N3[ϕ3](y) + r3ϕ3(y) [α(y)− bϕ1(y)− bϕ2(y)− ϕ3(y)], y ∈ R,

and then

P [Φ] := (P1[Φ], P2[Φ], P3[Φ]),

where

Pi[Φ](z) :=
eβz/s

s

∫ +∞

z

e−βy/sFi[Φ](y) dy =
1

s

∫ +∞

0

e−βu/sFi[Φ](z + u) du, z ∈ R, i = 1, 2, 3.

For each Φ ∈ Γ, the functions Fi[Φ] are bounded and continuous in R and then so are the

functions Pi[Φ], for i = 1, 2, 3. Furthermore, the functions Pi[Φ] are actually of class C1(R).
It is straightforward to check that a fixed point Φ = (ϕ1, ϕ2, ϕ3) of P in Γ is a C1(R) solution
of (1.3) such that ϕ

i
≤ ϕi ≤ ϕi in R for i = 1, 2, 3.

To derive a fixed point of P in Γ, we first show that P maps Γ into Γ. To this aim, we let

Φ ∈ Γ. Then, using β ≥ σ1 in (2.7)-(2.8) together with the definition of Γ, we get that

F1[Φ](z) ≥ F1[(ϕ1
, ϕ2, ϕ3

)](z),

hence P1[Φ](z) ≥ P1[(ϕ1
, ϕ2, ϕ3

)](z), for all z ∈ R. On the other hand, by the definition of

upper-lower solutions, especially (2.4) and the finiteness of the set E in Definition 2.1, we

have

P1[(ϕ1
, ϕ2, ϕ3

)](z) =
1

s

∫ +∞

z

eβ(z−y)/sF1[(ϕ1
, ϕ2, ϕ3

)](y) dy

= lim
ε↓0

∫
[z,+∞)\∪t∈E(t−ε,t+ε)

eβ(z−y)/s
F1[(ϕ1

, ϕ2, ϕ3
)](y)

s
dy

≥ lim inf
ε↓0

∫
[z,+∞)\∪t∈E(t−ε,t+ε)

eβ(z−y)/s
(
− ϕ′

1
(y) +

β

s
ϕ
1
(y)

)
dy = ϕ

1
(z)

for all z ∈ R, since ϕ
1
is continuous in R. Hence, P1[Φ](z) ≥ ϕ

1
(z) for all z ∈ R. Similarly,

we can derive 
P1[Φ] ≤ P1[(ϕ1, ϕ2

, ϕ3)] ≤ ϕ1 in R,
ϕ
2
≤ P2[(ϕ1, ϕ2

, ϕ
3
)] ≤ P2[Φ] ≤ P2[(ϕ1

, ϕ2, ϕ3)] ≤ ϕ2 in R,
ϕ
3
≤ P3[(ϕ1, ϕ2, ϕ3

)] ≤ P3[Φ] ≤ P3[(ϕ1
, ϕ

2
, ϕ3)] ≤ ϕ3 in R,

by the choice of β in (2.7)-(2.8) and the definition of upper-lower solutions. Hence, we finally

obtain that P (Γ) ⊂ Γ.

Now, we observe that, from the definition of Γ and the boundedness of the functions ϕ
i
and

ϕi (i = 1, 2, 3), there is a positive constant M such that |Fi[Φ](z)| ≤ M for all Φ ∈ Γ, z ∈ R
and i = 1, 2, 3, hence |Pi[Φ](z)| ≤ M/β and |Pi[Φ]

′(z)| = |βPi[Φ](z) − Fi[Φ](z)|/s ≤ 2M/s

for all Φ ∈ Γ, z ∈ R and i = 1, 2, 3. Therefore, from Arzelà-Ascoli theorem (applied in each

compact interval [−m,m] with m ∈ N), together with a diagonal extraction process and the
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definition (2.9) of the norm ∥·∥X in X, it follows that each sequence in P (Γ) has a converging

subsequence in (X, ∥ · ∥X) (the limit then belongs to Γ from the previous paragraph and the

closedness of Γ).

Furthermore, for any Φ ∈ Γ and any sequence (Φn)n∈N in Γ such that ∥Φn − Φ∥X → 0

as n → +∞, one has in particular Φn(z) → Φ(z) as n → +∞ in R3 for every z ∈ R
and, together with the boundedness of the sequence (Φn)n∈N in L∞(R)3 and the Lebesgue

dominated convergence theorem, one gets that Fi[Φn](z) → Fi[Φ](z) as n → +∞ for every

z ∈ N and i = 1, 2, 3. With the boundedness of the sequence (F1[Φn], F2[Φn], F3[Φn])n∈N in

L∞(R)3, one infers that P [Φn](z) → P [Φ](z) as n → +∞ in R3 for every z ∈ R. Therefore,
each converging subsequence of the sequence (P [Φn])n∈N in (X, ∥ · ∥X) must converge to the

unique possible limit P [Φ], and finally P [Φn] → P [Φ] in X as n → +∞.

We conclude from the previous two paragraphs that P : Γ → Γ is completely continuous. It

thus follows from the Schauder fixed-point theorem that P has a fixed-point Φ = (ϕ1, ϕ2, ϕ3)

in Γ, which is then a C1(R) solution of (1.3) such that ϕ
i
≤ ϕi ≤ ϕi in R for i = 1, 2, 3. This

completes the proof of the lemma. �
Moreover, due to the negativity of α(−∞), we have the following universal result for the

left-hand tail limit. Since its proof is almost the same as that of [10, (3.19)] (see also [32]),

we omit it here safely.

Proposition 2.3. It holds (ϕ1, ϕ2, ϕ3)(−∞) = (0, 0, 0) for any nonnegative bounded solution

(ϕ1, ϕ2, ϕ3) of (1.3).

Note that any nonnegative nontrivial (in the sense that each component is not identically 0

in R) solution (ϕ1, ϕ2, ϕ3) of (1.3) must be positive (in the sense that ϕi > 0 in R for i =

1, 2, 3), by a property similar to the strong maximum principle: indeed, if ϕi(z0) = 0 for some

i ∈ {1, 2, 3} and z0 ∈ R, then ϕ′
i(z0) = 0, and (Ji∗ϕi)(z0) = 0 from the equation, hence ϕi = 0

in [z0−y±i −ηi, z0−y±i +ηi] with ηi > 0 and −∞ < y−i < 0 < y+i < +∞ as in (J1); one would

then get that ϕi = 0 in [z0−ky−i −kηi, z0−ky−i +kηi] for all k ∈ N by an immediate induction;

by choosing positive integers n and k such that z0+ny+i ∈ [z0−ky−i −kηi, z0−ky−i +kηi], it

follows that ϕi(z0+ny+i ) = 0, and then ϕi = 0 in [z0+(n−1)y+i −ηi, z0+(n−1)y+i +ηi] and

also ϕi = 0 in [z0 − nηi, z0 + nηi] by induction; finally the non-empty set {z ∈ R : ϕi(z) = 0}
would be both open and closed (by continuity of ϕi), hence ϕi ≡ 0 in R, a contradiction.

It is interesting to note from the boundedness of α (since it is continuous and has finite

limits at ±∞) and (α2) that α(+∞)−α(z) ≤ Ce−ρz for all z ∈ R, if we choose the constant C
larger. Then for any positive constant A it holds

α(z + A) ≥ α(+∞)− εe−ρz for all z ∈ R, with ε := Ce−ρA.

Observe that ε > 0 can be made as small as we want, if we choose A large enough. We further

note that (ϕ1, ϕ2, ϕ3)(·+A) is a solution of (1.3) if and only if (ϕ1, ϕ2, ϕ3) is a solution of (1.3)

with α replaced by α(· + A). Therefore, in the sequel, (up to a translation) condition (α2)

can be rephrased without loss of generality as

(2.10) α(z) ≥ α(+∞)− εe−ρz for all z ∈ R,

for a suitable choice of ε > 0 as small as we need.
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Now, we consider the following scalar equation

(2.11) −sϕ′(z) = dN [ϕ](z) + rϕ(z) [α(z)− ϕ(z)], z ∈ R,

where parameters s, d, r are positive constants, and

N [ϕ](z) :=

∫
R
J(y)ϕ(z − y)dy − ϕ(z)

in which the kernel J is assumed to satisfy (J1)-(J3) with some constants η > 0, −∞ <

y− < 0 < y+ < +∞ in (J1), and −∞ ≤ λ̃ < 0 < λ̂ ≤ +∞ in (J3), and the continuous

heterogeneous function α is assumed to satisfy (α1)-(α2), but its limit at +∞ is not assumed

to be equal to 1 in general, that is, (1.4) is not assumed here. Recall from [27, Theorem 4.5]

that a positive nondecreasing solution ϕ of (2.11) satisfying

(2.12) ϕ(−∞) = 0 and ϕ(+∞) = α(+∞),

is known to exist when J is assumed to be even and compactly supported and when α is

assumed to be nondecreasing. Without the symmetry of J and the assumption of compact

support of J , and without the monotonicity of α, we still get the existence of a forced wave

for (2.11)-(2.12) (which may nevertheless not be monotone in general):

Proposition 2.4. Under assumptions (J1)-(J3) on J , with some constants η > 0, −∞ <

y− < 0 < y+ < +∞ in (J1), and −∞ ≤ λ̃ < 0 < λ̂ ≤ +∞ in (J3), and under condi-

tions (α1)-(α2) on α, problem (2.11)-(2.12) with s > 0 admits a positive C1(R) solution ϕ

such that α(+∞) ≥ ϕ(z) ≥ α(+∞)−Be−λ0z for all z ∈ R, for some λ0 > 0 and B > 0.

Proof. First, we give a pair of super-sub-solutions to (2.11) as follows. It is clear that the

constant function ϕ(z) ≡ α(+∞) is a super-solution of (2.11), in the sense that

dN [ϕ](z) + sϕ
′
(z) + rϕ(z) [α(z)− ϕ(z)] ≤ 0 for all z ∈ R.

For the sub-solution, we consider the nonnegative bounded function

ϕ(z) := max{α(+∞)− e−λ0z, 0}

for some small positive constant λ0 ∈ (0, ρ), where ρ > 0 is the positive constant appearing

in (α2). To choose λ0, we let

g(λ) := d[I(λ)− 1]− sλ, I(λ) :=

∫
R
J(y)eλydy, λ ∈ [0, λ̂).

Note that g(0) = 0 and g′(0) = −s, since

g′(λ) = d

∫
R
yJ(y)eλydy − s and

∫
R
yJ(y)dy = 0

due to the assumptions (J1)-(J3). Hence there is a λ0 ∈ (0,min{ρ, λ̂}) such that g(λ0) < 0.

Now, we choose ε > 0 small enough such that

(2.13) g(λ0) + rεα(+∞)ρ/λ0 = g(λ0) + rεe(ρ/λ0) lnα(+∞) < 0
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and (2.10) holds for this ε. Then for z > −λ−1
0 lnα(+∞) =: z0 we have ϕ(z) = α(+∞) −

e−λ0z > 0 and, since ϕ(x) ≥ α(+∞)− e−λ0x for all x ∈ R, we get that

dN [ϕ](z) + sϕ′(z) + rϕ(z)[α(z)− ϕ(z)]

≥ d

∫
R
J(y)(α(+∞)−e−λ0(z−y))dy − d(α(+∞)−e−λ0z) + sλ0e

−λ0z + rϕ(z)[α(z)−ϕ(z)]

= −e−λ0z{d[I(λ0)− 1]− sλ0}+ r (α(+∞)− e−λ0z) (α(z)− α(+∞) + e−λ0z)

≥ −e−λ0z{d[I(λ0)− 1]− sλ0} − rε(α(+∞)− e−λ0z)e−ρz

≥ −e−λ0z{d[I(λ0)−1]−sλ0+rεα(+∞)e−(ρ−λ0)z}≥−e−λ0z[g(λ0)+rεe(ρ/λ0) lnα(+∞)]>0,

using (2.10) and (2.13), together with λ0 < ρ and z > z0 = −λ−1
0 lnα(+∞). Furthermore,

for z < z0, we have ϕ = 0 in a neighborhood of z and dN [ϕ](z)+sϕ′(z)+rϕ(z)[α(z)−ϕ(z)] =

d(J ∗ ϕ)(z) ≥ 0. Hence ϕ is a sub-solution of (2.11), in a sense similar to Definition 2.1,

that is, it is continuous in R, of class C1 in R \ {z0}, and it satisfies dN [ϕ](z) + sϕ′(z) +

rϕ(z)[α(z)− ϕ(z)] ≥ 0 for all z ∈ R \ {z0}.
Next, since 0 ≤ ϕ ≤ ϕ = α(+∞), it follows with the same arguments as in the proof of

Lemma 2.2 that there is a C1(R) solution ϕ of (2.11) such that 0 ≤ ϕ ≤ ϕ ≤ ϕ = α(+∞)

in R. Hence, ϕ(+∞) = α(+∞), since ϕ(+∞) = ϕ(+∞) = α(+∞). Furthermore, from the

definition of ϕ and the boundedness of ϕ, there is B ≥ 1 such that ϕ(z) ≥ α(+∞)−Be−λ0z for

all z ∈ R. Finally, ϕ is positive due to the strong maximum principle (as for the proof of the

positivity of (ϕ1, ϕ2, ϕ3) after the statement of Proposition 2.3) and the property ϕ(−∞) = 0

can be proved in the same way as that in [10, (3.19)] (see also [32]), since α(−∞) < 0. We

omit it here. This completes the proof of the proposition. �

We remark here that the solution ϕ of (2.11)-(2.12) obtained in Proposition 2.4 also

satisfies condition of the type (α2) by construction, since it is trapped between ϕ(z) =

max{ϕ(+∞)− e−λ0z, 0} and ϕ(z) = ϕ(+∞).

3. Proof of Theorem 1.1

Throughout this section, we suppose (1.2) and (1.4)-(1.5). The proof of Theorem 1.1 is

similar to that of [10, Theorem 2.1]. We only provide here a brief outline of the proof as

follows. We fix any s > 0. Recall from (1.2) and (1.5) that

γ3 := 1− 2b(a− 1) > 0, γ2 := (1− h− 2ab)(a− 1) > 0, γ1 := (1− k − 2ab)(a− 1) > 0.

First, let ϕ
3
be a positive C1(R) solution of{

−sϕ′
3
(z) = d3N3[ϕ3

](z) + r3ϕ3
(z) [α(z)− 2b(a− 1)− ϕ

3
(z)], z ∈ R,

ϕ
3
(−∞) = 0, ϕ

3
(+∞) = γ3.

Such ϕ
3
exists, by Proposition 2.4 applied with the continuous function α−2b(a−1) instead

of α, with limit γ3 = α(+∞) − 2b(a − 1) = 1 − 2b(a − 1) > 0 at +∞ and limit α(−∞) −
2b(a − 1) < 0 at −∞. Furthermore, by Proposition 2.4, ϕ

3
is constructed such that ϕ

3
≤

ϕ
3
(+∞) = γ3 in R, and ϕ

3
converges to γ3 exponentially at +∞.
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Next, note that the continuous bounded function aϕ
3
− 1− h(a− 1) is such that

aϕ
3
(−∞)− 1− h(a− 1) = −1− h(a− 1) < 0, aϕ

3
(+∞)− 1− h(a− 1) = γ2 > 0,

and aϕ
3
− 1 − h(a − 1) ≤ aϕ

3
(+∞) − 1 − h(a − 1) in R. By Proposition 2.4 again, there

exists a positive C1(R) solution ϕ
2
of{

−sϕ′
2
(z) = d2N2[ϕ2

](z) + r2ϕ2
(z) [aϕ

3
(z)− 1− h(a− 1)− ϕ

2
(z)], z ∈ R,

ϕ
2
(−∞) = 0, ϕ

2
(+∞) = γ2,

such that ϕ
2
≤ ϕ

2
(+∞) = γ2 in R and ϕ

2
converges to γ2 exponentially at +∞. Similarly,

there exists a positive C1(R) solution ϕ
1
of{

−sϕ′
1
(z) = d1N1[ϕ1

](z) + r1ϕ1
(z)[aϕ

3
(z)− 1− k(a− 1)− ϕ

1
(z)], z ∈ R,

ϕ
1
(−∞) = 0, ϕ

1
(+∞) = γ1 > 0,

such that ϕ
1
≤ ϕ

1
(+∞) = γ1 in R and ϕ

1
converges to γ1 exponentially at +∞.

It is straightforward to verify that (ϕ1, ϕ2, ϕ3) ≡ (a− 1, a− 1, 1) and (ϕ
1
, ϕ

2
, ϕ

3
) are a pair

of C1(R) nonnegative bounded upper-lower-solutions of (1.3), such that ϕ
i
≤ ϕi in R for all

i = 1, 2, 3 (the last property holds since (γ1, γ2, γ3) < (a−1, a−1, 1) componentwise). Hence

the existence of positive wave profile (ϕ1, ϕ2, ϕ3) of (1.3) follows from Lemma 2.2, with

0 < ϕ
i
≤ ϕi ≤ ϕi in R for i = 1, 2, 3.

Note that

ϕ−
i := lim inf

z→+∞
ϕi(z) ≥ γi > 0, i = 1, 2, 3.

With this information, the same proof of [10, Lemma 3.4] can be applied to derive that

(ϕ1, ϕ2, ϕ3)(+∞) = E4. We also refer the reader to the proof of [21, (4,1)]. Indeed, setting

ϕ+
i := lim sup

z→+∞
ϕi(z), i = 1, 2, 3,

picking any ε > 0 small enough and considering the family of contracting parallelepipeds∏3
i=1[mi(θ),Mi(θ)] (with θ ∈ [0, 1]) defined by

m1(θ) := θu∗ + (1− θ)(γ1 − ε), M1(θ) := θu∗ + (1− θ)(a− 1 + ε),

m2(θ) := θv∗ + (1− θ)(γ2 − ε), M2(θ) := θv∗ + (1− θ)(a− 1 + ε),

m3(θ) := θw∗ + (1− θ)(γ3 − ε2), M3(θ) := θu∗ + (1− θ)(1 + ε2),

we can show that 0 ∈ Θ and supΘ = 1, where

Θ := {θ ∈ [0, 1) | mi(θ) < ϕ−
i ≤ ϕ+

i < Mi(θ), i = 1, 2, 3}.

The details can be found in [10, 21]. We omit them here. Hence (ϕ1, ϕ2, ϕ3)(+∞) =

(u∗, v∗, w∗) = E4, and the proof of Theorem 1.1 is complete, thanks to Proposition 2.3.
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4. Proof of Theorem 1.2

Throughout this section, we suppose (1.2) and (1.4). For the sufficiency part, let us assume

without loss of generality that s∗1 ≥ s∗2, with s∗1 and s∗2 defined by (1.6), and let us then fix

s > s∗1. First, we set

(4.1) gi(λ) := di[Ii(λ)− 1]− sλ+ ri(a− 1), i = 1, 2, λ ∈ [0, λ̂i).

From (1.2) and (J1)-(J3) (and the comments after (J1)-(J3)), there exist 0 < λ1 < λ2 < λ̂1

such that g1(λ1) = g1(λ2) = 0, g1(λ) < 0 if and only if λ ∈ (λ1, λ2), and g1(λ) ≤ 0 if and

only if λ ∈ [λ1, λ2]. Similarly, since s > s∗2, the equation g2(λ) = 0 has two positive roots

λ3, λ4 with 0 < λ3 < λ4 < λ̂2. Moreover, g2(λ) < 0 if and only if λ ∈ (λ3, λ4), and g2(λ) ≤ 0

if and only if λ ∈ [λ3, λ4]. Set now

(4.2) g3(λ) := d3[I3(λ)− 1]− sλ.

Note that g3(0) = 0 and g′3(0) = −s < 0. Hence we can choose

(4.3) 0 < λ0 < min{λ1, λ3, ρ, λ̂3}

such that

g3(λ0) < 0,

where ρ > 0 is as in (α2). We then define, for z ∈ R,

(4.4)


ϕ1(z) = min{(a− 1)e−λ1z, a− 1}, ϕ

1
(z) = max{(a− 1)e−λ1z − p1e

−µ1z, 0},
ϕ2(z) = min{(a− 1)e−λ3z, a− 1}, ϕ

2
(z) = max{(a− 1)e−λ3z − p2e

−µ2z, 0},
ϕ3(z) = 1, ϕ

3
(z) = max{1− e−λ0z, 0},

where the positive constants µi, pi, i = 1, 2, are chosen (in the following order) such that

λ1 < µ1 < min{λ2, λ1 + λ0},(4.5)

p1 > max

{
a− 1,

r1(a− 1)[2a− 1 + k(a− 1)]

−g1(µ1)

}
,(4.6)

λ3 < µ2 < min{λ4, λ3 + λ0},(4.7)

p2 > max

{
a− 1,

r2(a− 1)[2a− 1 + h(a− 1)]

−g2(µ2)

}
.(4.8)

Note that the continuous functions ϕ
i
and ϕi are nonnegative, bounded in R, of class C1

except at finitely many real numbers, and that ϕ
i
≤ ϕi in R, for i = 1, 2, 3.

Then we have

Lemma 4.1. With s > s∗1 ≥ s∗2 and the above notations, there exists a positive solution

(ϕ1, ϕ2, ϕ3) of (1.3) such that ϕ
i
≤ ϕi ≤ ϕi in R, i = 1, 2, 3.

Proof. We choose ε > 0 small enough such that

(4.9) g3(λ0) + εr3 < 0.

Also, up to a translation, condition (2.10) holds for this ε.
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We now verify (2.1)-(2.6) hold for (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) defined in (4.4) for all z ∈ R

except finitely many points. For (2.1), the inequality is obvious for z < 0 since ϕ1 ≤ a − 1

in R, ϕ1 = a − 1 in (−∞, 0], and ϕ3 ≡ 1 in R. It then suffices to consider z > 0. As in the

proof of Proposition 2.4, using ϕ1(y) ≤ (a − 1)e−λ1y for all y ∈ R and ϕ1(z) = (a − 1)e−λ1z

for all z > 0, we have

(4.10) d1N1[ϕ1](z) + sϕ
′
1(z) ≤ (a− 1)e−λ1z{d1[I1(λ1)− 1]− sλ1} for all z > 0,

and thus

(4.11)
d1N1[ϕ1](z) + sϕ

′
1(z) + r1ϕ1(z) [−1− ϕ1(z)− kϕ

2
(z) + aϕ3(z)]

≤ (a− 1)e−λ1z{d1[I1(λ1)− 1]− sλ1 + r1(−1 + a)} = 0.

Hence (2.1) holds for all z ̸= 0. Similarly, (2.2) holds for all z ̸= 0, using

(4.12) g2(λ3) = d2[I2(λ3)− 1]− sλ3 + r2(a− 1) = 0.

It is trivial that (2.3) holds for all z ∈ R, since α(z) ≤ α(+∞) = 1 and ϕ
1
(z) ≥ 0, ϕ

2
(z) ≥ 0

for all z ∈ R.
For (2.4), since p1>a−1>0 and µ1>λ1>0 there is a unique z1 :=(µ1−λ1)

−1 ln(p1/(a−1))>0

such that ϕ
1
(z) = 0 for all z ≤ z1 and

ϕ
1
(z) = (a− 1)e−λ1z − p1e

−µ1z > 0 for all z > z1.

It is trivial that (2.4) holds for z < z1. On the other hand, since ϕ
1
(y) ≥ (a−1)e−λ1y−p1e

−µ1y

for all y ∈ R with equality in [z1,+∞), with 0 < λ1 < µ1 < λ2 < λ̂1, it follows that, for

every z > z1,

(4.13) d1N1[ϕ1
](z)+sϕ′

1
(z) ≥ (a−1)e−λ1z{d1[I1(λ1)−1]−sλ1}−p1e

−µ1z{d1[I1(µ1)−1]−sµ1},

and

r1ϕ1
(z) [−1− ϕ

1
(z)− kϕ2(z) + aϕ

3
(z)]

≥ r1[(a− 1)e−λ1z − p1e
−µ1z]{−1− (a− 1)e−λ1z − k(a− 1)e−λ3z + a− ae−λ0z}

≥ r1(a− 1)[(a− 1)e−λ1z − p1e
−µ1z]− r1(a− 1)e−λ1z[(a− 1)(e−λ1z + ke−λ3z) + ae−λ0z].

Hence, since g1(λ1) = 0, we have, for z > z1,

L1(z) ≥ e−µ1z{−p1g1(µ1)−r1(a−1)[(a−1)(e(µ1−2λ1)z+ke(µ1−λ1−λ3)z)+ae(µ1−λ1−λ0)z]}
≥ e−µ1z{−p1g1(µ1)− r1(a− 1)[2a− 1 + k(a− 1)]} > 0,

due to (4.3) and (4.5)-(4.6). Hence (2.4) holds for all z ̸= z1.

Similarly, since p2>a−1>0 and µ2>λ3>0, there is a unique z2 :=(µ2−λ3)
−1ln(p2/(a−1))>

0 such that ϕ
2
(z) = 0 for all z ≤ z2 and

ϕ
2
(z) = (a− 1)e−λ3z − p2e

−µ2z > 0 for all z > z2.

Then, as in the previous paragraph, we can easily check that (2.5) holds for all z ̸= z2,

using (4.3) and (4.7)-(4.8), together with g2(λ3) = 0. We omit the details.
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Finally, (2.6) holds trivially for z < 0. For z > 0, we compute, using (1.4) and (2.10),

L3(z) = d3N3[ϕ3
](z) + sϕ′

3
(z) + r3ϕ3

(z)[α(z)− bϕ1(z)− bϕ2(z)− ϕ
3
(z)]

≥ −e−λ0z{d3[I3(λ0)− 1]− sλ0}
+r3(1− e−λ0z)[1− εe−ρz − b(a− 1)e−λ1z − b(a− 1)e−λ3z − 1 + e−λ0z]

≥ −e−λ0z{d3[I3(λ0)− 1]− sλ0} − εr3(1− e−λ0z)e−ρz,

using 2b(a − 1) < 1 (by (1.2)) and e−λ0z ≥ e−λjz for z > 0 (since λ0 < λj) for j = 1, 3.

Moreover, since 0 < λ0 < ρ by (4.3), we deduce that

L3(z) ≥ −e−λ0z{d3[I3(λ0)− 1]− sλ0 + r3ε} > 0 for all z > 0,

by the choice of ε in (4.9). Hence (2.6) holds for all z ̸= 0.

Lemma 2.2 then yields the existence of a nonnegative bounded solution (ϕ1, ϕ2, ϕ3) of (1.3)

such that ϕ
i
≤ ϕi ≤ ϕi in R for i = 1, 2, 3. In particular, each function ϕi is nonnegative

and nontrivial, hence it is positive in R by the strong maximum principle, as explained after

Proposition 2.3. The proof of Lemma 4.1 is thereby complete. �

Proof of Theorem 1.2. By Lemma 4.1 and the definition of the upper-lower-solutions in (4.4),

the positive solution (ϕ1, ϕ2, ϕ3) of (1.3) given in Lemma 4.1 satisfies

(ϕ1, ϕ2, ϕ3)(+∞) = (0, 0, 1) = E1.

Then, together with Proposition 2.3, the existence part of Theorem 1.2 follows.

For the only if part, we follow the idea of [10, Theorem 3.5]. Assume that there exists a

positive solution (ϕ1, ϕ2, ϕ3) of (1.3) and (1.7) for some s > 0, and assume that (λ̃i, λ̂i) =

(−∞,+∞) for some i ∈ {1, 2}. Without loss of generality, let us assume that i = 1. Set

ζ(z) := ϕ′
1(z)/ϕ1(z). Then ζ satisfies

−sζ(z) = d1

[∫
R
J1(y)e

∫ z−y
z ζ(x)dxdy − 1

]
+ r1[−1− ϕ1(z)− kϕ2(z) + aϕ3(z)], z ∈ R.

It follows from [36, Proposition 3.7]2 that the limit −λ := limz→+∞ ζ(z) exists in R (neces-

sarily, λ ≥ 0, since ϕ1 > 0 in R and ϕ1(+∞) = 0) and λ satisfies

sλ = d1[I1(λ)− 1] + r1(a− 1).

Since I1(0) = 1 and r1(a− 1) > 0, it follows that λ > 0, hence we obtain that s ≥ s∗1, owing

to the definition of s∗1 in (1.6). Thereby the proof is complete. �

5. Proof of Theorem 1.3

Throughout this section, we suppose (1.2) and (1.4), together with (1.10)-(1.11). For the

sufficiency part, let us assume that s ≥ R2(ρ) and s > s∗∗2 , where ρ > 0 is the constant

2Notice that, in addition to the assumption (λ̃1, λ̂1) = (−∞,+∞), J1 is assumed to be even and of

class C1(R) in [36], but the proof of [36, Proposition 3.7] still works under assumptions (J1)-(J3) for J1,

under the assumption (λ̃1, λ̂1) = (−∞,+∞).
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in (α2), and R2 and s∗∗2 are defined in (1.9). We recall that β2 > 0 is defined in (1.8). From

(J1)-(J3) and (1.2), the function G2 defined by

(5.1) G2(λ) := d2[I2(λ)− 1]− sλ+ r2β2, λ ∈ [0, λ̂2),

has two positive zeroes λ5, λ6 such that 0 < λ5 < λ6 < λ̂2. Note that G2(λ) < 0 if and only

if λ ∈ (λ5, λ6), and G2(λ) ≤ 0 if and only if λ ∈ [λ5, λ6]. Since s ≥ R2(ρ) and ρ > 0, one

necessarily has ρ < λ̂2 and G2(ρ) ≤ 0, hence ρ ≥ λ5.

We recall that up = (a− 1)/(ab+ 1) and wp = (b+ 1)/(ab+ 1) and we define, for z ∈ R,

(5.2)


ϕ1(z) := min{up + Ae−λ5z, a− 1}, ϕ

1
(z) := max{up(1− e−λ5z), 0},

ϕ2(z) := min{(a− 1)e−λ5z, a− 1}, ϕ
2
(z) := max{(a− 1)e−λ5z − qe−νz, 0},

ϕ3(z) := min{wp + bupe
−λ5z, 1}, ϕ

3
(z) := max{wp(1− e−λ5z), 0},

where

(5.3) A := a− 1− up

and the positive constants ν and q are chosen to satisfy

(5.4) λ5 < ν < min{λ6, 2λ5}, q > max

{
a− 1,

r2(a− 1)[(1 + h)(a− 1) + awp]

−G2(ν)

}
.

Note that 0 < up < a− 1 (hence, A > 0), 0 < wp < 1, wp + bup = 1, and that all functions

ϕ
i
and ϕi are continuous, nonnegative, bounded in R, of class C1 except at finitely many

points, with ϕ
i
≤ ϕi in R for i = 1, 2, 3.

Then we have

Lemma 5.1. With s > s∗∗2 , s ≥ R2(ρ) and the above notations, there exists a positive

solution (ϕ1, ϕ2, ϕ3) of (1.3) such that ϕ
i
≤ ϕi ≤ ϕi in R, i = 1, 2, 3.

Proof. Choose ε ∈ (0, r2β2/r3) so that, up to a translation, (2.10) holds for this ε. We verify

(2.1)-(2.6) hold for (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) defined in (5.2) for all z ∈ R except finitely

many points.

That (2.1)-(2.3) hold for z < 0 is trivial. For z > 0, since

−1− ϕ1(z)− kϕ
2
(z) + aϕ3(z) ≤ −1− up − Ae−λ5z + awp + abupe

−λ5z = 0,

we obtain

U1(z) ≤ Ae−λ5z{d1[I1(λ5)−1]−sλ5} ≤ Ae−λ5z{d2[I2(λ5)−1]−sλ5} < Ae−λ5zG2(λ5) = 0,

since I1(λ5)−1 ≥ 0 (from the general properties explained after (J1)-(J3)) and since d1 ≤ d2
and J1 = J2 in R by (1.10). Hence (2.1) holds for all z ̸= 0.

For z > 0, we compute

U2(z) ≤ (a− 1)e−λ5z{d2[I2(λ5)− 1]− sλ5}
+r2(a− 1)e−λ5z{(−1− hup + awp) + [hup − (a− 1) + abup]e

−λ5z}
= r2(a− 1)e−2λ5z[hup − (a− 1) + abup] ≤ 0,

using −1− hup + awp = β2, G2(λ5) = 0 and hup − (a− 1)+ abup < (1+ ab)up − (a− 1) = 0.

Hence (2.2) holds for all z ̸= 0.
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Still for z > 0, we have

α(z)− bϕ
1
(z)− bϕ

2
(z)− ϕ3(z) ≤ 1− bup(1− e−λ5z)− wp − bupe

−λ5z = 0,

hence

U3(z) ≤ bupe
−λ5z{d3[I3(λ5)− 1]− sλ5} ≤ bupe

−λ5z{d2[I2(λ5)− 1]− sλ5} < 0,

since I3(λ5)− 1 ≥ 0, d3 ≤ d2 and J3 = J2 in R, by (1.10). Hence (2.3) holds for all z ̸= 0.

For (2.4), it is trivial for z < 0. For z > 0, we have

d1N1[ϕ1
](z) + sϕ′

1
(z) ≥ −upe

−λ5z{d1[I1(λ5)− 1]− sλ5}

and

r1ϕ1
(z) [−1− ϕ

1
(z)− kϕ2(z) + aϕ

3
(z)] = r1up(1− e−λ5z)[−1− k(a− 1)]e−λ5z,

using −1− up + awp = 0. Hence we obtain

L1(z) ≥ −upe
−λ5z{d1[I1(λ5)− 1]− sλ5 + r1[1 + k(a− 1)]}

≥ −upe
−λ5z{d2[I2(λ5)− 1]− sλ5 + r2β2]} = 0,

since I1(λ5) − 1 ≥ 0, d1 ≤ d2, J1 = J2 in R and r1[1 + k(a − 1)] ≤ r2β2, by (1.10)-(1.11).

Hence (2.4) holds for all z ̸= 0.

Note that, since q > a− 1 and ν > λ5, there is a unique z1 := (ν−λ5)
−1 ln(q/(a− 1)) > 0

such that

ϕ
2
(z) =

{
(a− 1)e−λ5z − qe−νz > 0, z > z1,

0, z ≤ z1.

Clearly, (2.5) holds for z < z1. For z > z1, we compute

d2N2[ϕ2
](z) + sϕ′

2
(z) ≥ (a− 1)e−λ5z{d2[I2(λ5)− 1]− sλ5} − qe−νz{d2[I2(ν)− 1]− sν},

using ϕ
2
(y) ≥ (a − 1)e−λ5y − qe−νy for all y ∈ R, with equality at z. Also, we have, since

β2 = −1− hup + awp,

r2ϕ2
(z)[−1− hϕ1(z)− ϕ

2
(z) + aϕ

3
(z)]

= r2ϕ2
(z){β2 − h(a− 1)e−λ5z + hupe

−λ5z − (a− 1)e−λ5z + qe−νz − awpe
−λ5z}

≥ r2[(a− 1)e−λ5z − qe−νz]{β2 − [(1 + h)(a− 1) + awp]e
−λ5z}

≥ r2β2[(a− 1)e−λ5z − qe−νz]− r2(a− 1)[(1 + h)(a− 1) + awp]e
−2λ5z,

for all z > z1. Hence, using G2(λ5) = 0, we obtain, for z > z1,

L2(z) ≥ e−νz{−qG2(ν)− r2(a− 1)[(1 + h)(a− 1) + awp]e
(ν−2λ5)z}

≥ e−νz{−qG2(ν)− r2(a− 1)[(1 + h)(a− 1) + awp]} > 0,

using ν < 2λ5 and (5.4). Hence (2.5) holds for all z ̸= z1.
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Finally, we consider (2.6). It suffices to consider the case z > 0. For z > 0, we have

ϕ
3
(z) = wp − wpe

−λ5z > 0, while ϕ
3
(y) ≥ wp − wpe

−λ5y for all y ∈ R. Hence

d3N3[ϕ3
](z) + sϕ′

3
(z) ≥ −wpe

−λ5z{d3[I3(λ5)− 1]− sλ5}

≥ −wpe
−λ5z{d2[I2(λ5)− 1]− sλ5} = r2β2wpe

−λ5z,

since I3(λ5) − 1 ≥ 0, d3 ≤ d2, J3 = J2 by (1.10), and G2(λ5) = 0. Also, for z > 0, using

1 − bup − wp = 0, A = a − 1 − up and 2b(a − 1) < 1, together with (1.4) and (2.10), we

compute

r3ϕ3
(z)[α(z)− bϕ1(z)− bϕ2(z)− ϕ

3
(z)] ≥ r3ϕ3

(z){−εe−ρz + [1− 2b(a− 1)]e−λ5z}

≥ −r3wpεe
−ρz ≥ −r3wpεe

−λ5z,

due to ρ ≥ λ5. Hence, for z > 0, L3(z) ≥ r2β2wpe
−λ5z − r3wpεe

−λ5z > 0 since ε < r2β2/r3.

We conclude that (2.6) holds for all z ̸= 0.

Since 0 ≤ ϕ
i
≤ ϕi in R for i = 1, 2, 3, and each function ϕ

i
is nontrivial, the conclusion of

Lemma 5.1 follows from Lemma 2.2, as at the end of the proof of Lemma 4.1. �

With Lemma 5.1, Theorem 1.3 can be proved in the same way as that of Theorem 1.2.

We safely omit it here.

6. Waves with critical speed

This section is devoted to the proofs of Theorems 1.4-1.6 on the existence of forced waves

with critical speeds. Three cases are considered: two of them are concerned with waves

connecting the trivial state (0, 0, 0) and the predator-free state E1 = (0, 0, 1), and the last

one is concerned with waves connecting the trivial state (0, 0, 0) and the mixed state E2 =

(up, 0, wp). Throughout this section, in addition to (1.2) and (1.4), we assume that J1 is

compactly supported. Hence there is a positive constant S > 0 such that

(6.1) J1(y) = 0 for almost every |y| > S.

In particular, λ̃1 = −∞ and λ̂1 = +∞ in (J3).

6.1. Waves connecting (0, 0, 0) and E1 = (0, 0, 1) in the case s∗1 = s∗2: proof of

Theorem 1.4. In this subsection, we assume that s∗1 = s∗2, with s∗i > 0 defined in (1.6),

and that J2 is also compactly supported. Even if it means increasing S > 0, we can assume

without loss of generality that

(6.2) J2(y) = 0 for almost every |y| > S.

We consider the critical speed

s = s∗1 = s∗2.

For i = 1, 2, let λ∗
i > 0 be the unique minimum of Qi in (0, λ̂i) = (0,+∞) given by (1.6).

With gi defined in (4.1) with s = s∗1 = s∗2, one has gi(λ
∗
i ) = 0, and λ∗

i is the unique positive

root of this equation. Since Q′
i(λ

∗
i ) = 0 for i = 1, 2, we also have

(6.3) s = s∗1 = s∗2 = d1

∫
R
J1(y)ye

λ∗
1ydy = d2

∫
R
J2(y)ye

λ∗
2ydy.
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With ρ > 0 as in (α2) and g3 as in (4.2), we choose a constant λ0 > 0 such that

0 < λ0 < min{λ∗
1, λ

∗
2, ρ} and g3(λ0) = d3[I3(λ0)− 1]− sλ0 < 0.

We then define

(6.4)



ϕ1(z) =

{
(a− 1)Bze−λ∗

1z, z > z1,

a− 1, z ≤ z1,
ϕ2(z) =

{
(a− 1)Bze−λ∗

2z, z > z2,

a− 1, z ≤ z2,

ϕ
1
(z) =

{
(a− 1)Bze−λ∗

1z − p3z
1/2e−λ∗

1z, z > z3,

0, z ≤ z3,

ϕ
2
(z) =

{
(a− 1)Bze−λ∗

2z − p4z
1/2e−λ∗

2z, z > z4,

0, z ≤ z4,

ϕ3(z) = 1, ϕ
3
(z) = max{1− e−λ0(z−z0), 0},

where the parameters B, z1, z2, z0, p3, z3, p4, z4 are chosen in the following order:

• B > max{λ∗
1e, λ

∗
2e} large enough such that z1 − z′1 > S and z2 − z′2 > S, where

0 < z′1 < 1/λ∗
1 < z1, 0 < z′2 < 1/λ∗

2 < z2, and

(6.5) B =
eλ

∗
1z1

z1
=

eλ
∗
1z

′
1

z′1
=

eλ
∗
2z2

z2
=

eλ
∗
2z

′
2

z′2

(notice that the smallest positive root z′i of each equation B = eλ
∗
i z/z actually does

not appear in (6.4), but it will play a role in the proof of Lemma 6.1 below; observe

also that eλ
∗
i z/z ≤ B for z ∈ [z′i, zi], and that zi > z′i + S > S, for i = 1, 2);

• z0 > max{z1, z2} such that

(6.6) b(a− 1)Bz
(
e−λ∗

1z + e−λ∗
2z
)
≤ e−λ0(z−z0) for all z ≥ z0

(the choice of z0 is possible since 0 < λ0 < min{λ∗
1, λ

∗
2});

• p3 > 0 large enough such that z3 := {p3/[(a− 1)B]}2 > z0 and

(6.7) p3 >
8r1B(a−1)×max

z≥0

{
(z+S)3/2[(a−1)Bz2(e−λ∗

1z+ke−λ∗
2z)+aze−λ0(z−z0)]

}
d1

∫
R
J1(y)y

2eλ
∗
1ydy

;

• p4 > 0 large enough such that z4 := {p4/[(a− 1)B]}2 > z0 and

(6.8) p4>
8r2B(a−1)×max

z≥0

{
(z+S)3/2[(a−1)Bz2(e−λ∗

2z+he−λ∗
1z)+aze−λ0(z−z0)]

}
d2

∫
R
J2(y)y

2eλ
∗
2ydy

.

It is straightforward to check that the functions ϕ
i
and ϕi are continuous in R, nonnegative,

bounded, of class C1 except at finitely many points, and that ϕ
i
≤ ϕi in R, for i = 1, 2, 3.

Lemma 6.1. Under the above assumptions and notations, there exists a positive solution

(ϕ1, ϕ2, ϕ3) of (1.3) such that ϕ
i
≤ ϕi ≤ ϕi in R, i = 1, 2, 3.
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Proof. We choose ε > 0 small enough such that

(6.9) eλ0z0g3(λ0) + εr3 < 0.

Also, up to a translation, condition (2.10) holds for this ε.

We now verify (2.1)-(2.6) for (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) defined in (6.4), for all z ∈ R

except finitely many points. First of all, it is trivial that (2.1) and (2.2) hold for z < z1 and

z < z2 respectively, since ϕ1 = a−1 in (−∞, z1), ϕ2 = a−1 in (−∞, z2), and since ϕ1 ≤ a−1,

ϕ2 ≤ a − 1, ϕ3 = 1, ϕ
1
≥ 0 and ϕ

2
≥ 0 in R. For z > z1, we have ϕ1(z) = (a − 1)Bze−λ∗

1z

and, since z − y > z1 − S > z′1 for all y ∈ [−S, S], we also have

ϕ1(z − y) ≤ (a− 1)B(z − y)e−λ∗
1(z−y) for all y ∈ [−S, S]

(indeed, if z − y > z1, we have equality in the above inequality, and if z′1 < z − y ≤ z1, we

have eλ
∗
1(z−y)/(z − y) ≤ B and ϕ1(z − y) = a− 1 ≤ (a− 1)B(z − y)e−λ∗

1(z−y)). Hence, for all

z > z1, using J1 = 0 almost everywhere outside [−S, S],

(6.10)

N1[ϕ1](z) ≤ (a− 1)B

[∫ S

−S

J1(y)(z − y)e−λ∗
1(z−y)dy − ze−λ∗

1z

]
= (a− 1)B

[∫
R
J1(y)(z − y)e−λ∗

1(z−y)dy − ze−λ∗
1z

]
= (a−1)Bze−λ∗

1z

[∫
R
J1(y)e

λ∗
1ydy − 1

]
− (a−1)Be−λ∗

1z

∫
R
J1(y)ye

λ∗
1ydy.

This implies, using ϕ1(z) ≥ 0, ϕ
2
(z) ≥ 0 and ϕ3(z) = 1,

(6.11)

U1(z) ≤ (a− 1)Bze−λ∗
1z {d1 [I1(λ∗

1)− 1]− sλ∗
1 + r1(a− 1)}

−(a− 1)Be−λ∗
1z

[
d1

∫
R
J1(y)ye

λ∗
1ydy − s

]
= 0,

because of (6.3) and g1(λ
∗
1) = 0. Hence (2.1) holds for all z ̸= z1. Similarly, we have

U2(z) ≤ 0 for all z > z2, because g2(λ
∗
2) = 0 and (6.2)-(6.3) hold. Hence (2.2) holds for all

z ̸= z2. That (2.3) holds for all z ∈ R is trivial, since α(z) ≤ 1, ϕ3(z) = 1, ϕ
1
(z) ≥ 0 and

ϕ
2
(z) ≥ 0 for all z ∈ R.
It remains to check (2.4)-(2.6). Since ϕ

1
= 0 in (−∞, z3] and ϕ

1
≥ 0 in R, (2.4) clearly

holds for z < z3. For z > z3 (> 0), we have ϕ
1
(z) = (a− 1)Bze−λ∗

1z − p3z
1/2e−λ∗

1z. Note also

from the definitions of ϕ
1
and z3 that

ϕ
1
(x) ≥ (a− 1)Bxe−λ∗

1x − p3x
1/2e−λ∗

1x for all x > 0.

Then, using z > z3 > z0 > z1 > S, we have

ϕ
1
(z − y)J1(y) ≥

[
(a−1)B(z−y)e−λ∗

1(z−y)−p3(z−y)1/2e−λ∗
1(z−y)

]
J1(y) for all y ∈ [−S, S].
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Using J1(y) = 0 for almost every y ̸∈ [−S, S], it follows that, for all z > z3,

(6.12)

d1N1[ϕ1
](z)+sϕ′

1
(z) ≥ (a− 1)Bze−λ∗

1z{d1[I1(λ∗
1)− 1]− sλ∗

1}

−(a− 1)Be−λ∗
1z

{
d1

∫
R
J1(y)ye

λ∗
1ydy − s

}
+ p3d1z

1/2e−λ∗
1z

−p3e
−λ∗

1z

{
d1

∫
R
J1(y)(z − y)1/2eλ

∗
1ydy − sλ∗

1z
1/2 +

s

2z1/2

}
.

On the other hand, we have, for all z > z3 (> z0 > max{z1, z2}),

r1ϕ1
(z)[−1− ϕ

1
(z)− kϕ2(z) + aϕ

3
(z)]

≥ r1(a− 1)ϕ
1
(z)− r1ϕ

2

1(z)− r1kϕ1(z)ϕ2(z)− r1aϕ1(z)e
−λ0(z−z0)

= r1(a− 1)2Bze−λ∗
1z − r1(a− 1)p3z

1/2e−λ∗
1z − r1(a− 1)2B2z2(e−2λ∗

1z + ke−(λ∗
1+λ∗

2)z)

−r1a(a− 1)Bze−λ∗
1z−λ0(z−z0).

Hence we deduce from g1(λ
∗
1) = 0 and (6.3) that, for all z > z3,

L1(z) ≥ e−λ∗
1z[p3A1(z)− A2(z)],

where

(6.13)

A1(z) := d1

[
z1/2 −

∫
R
J1(y)(z − y)1/2eλ

∗
1ydy

]
+ sλ∗

1z
1/2 − s

2z1/2
− r1(a− 1)z1/2,

A2(z) := r1(a− 1)2B2z2(e−λ∗
1z + ke−λ∗

2z) + r1a(a− 1)Bze−λ0(z−z0).

Now, using g1(λ
∗
1) = 0 and (6.3) again, we may rewrite A1 as

A1(z)=d1

∫
R
J1(y)

[
z1/2−(z−y)1/2− y

2z1/2

]
eλ

∗
1ydy=d1

∫ S

−S

J1(y)
[
z1/2−(z−y)1/2− y

2z1/2

]
eλ

∗
1ydy.

Since

z1/2 − (z − y)1/2 − y

2z1/2
=

y2

2z1/2(z1/2 + (z − y)1/2)2
≥ y2

8(z + S)3/2
for y ∈ [−S, S],

we obtain that

(6.14) A1(z) ≥
d1

8(z + S)3/2

∫
R
J1(y)y

2eλ
∗
1ydy for all z > z3.

Therefore, L1(z) ≥ 0 for all z > z3, by the choice of p3 in (6.7). Hence (2.4) holds for all

z ̸= z3. Similarly, (2.5) holds for all z ̸= z4, using especially g2(λ
∗
2) = 0 together with (6.3)

and (6.8).

Finally, (2.6) holds trivially for z < z0. For z > z0, using z0 > max{z1, z2} > 0 together

with (1.4), (2.10), (6.6) and λ0 < ρ, we have

α(z)−bϕ1(z)−bϕ2(z)−ϕ
3
(z) ≥ 1−εe−ρz−b(a−1)Bz(e−λ∗

1z+e−λ∗
2z)−1+e−λ0(z−z0)

≥ −εe−ρz ≥ −εe−λ0z.

It follows that, for all z > z0,

(6.15)
L3(z) ≥ −e−λ0(z−z0) {d3[I3(λ0)− 1]− sλ0} − r3ε[1− e−λ0(z−z0)]e−λ0z

≥ −e−λ0z[eλ0z0g3(λ0) + r3ε] ≥ 0,
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due to (6.9). Hence (2.6) holds for all z ̸= z0.

Since 0 ≤ ϕ
i
≤ ϕi in R for i = 1, 2, 3, and each function ϕ

i
is nontrivial, the conclusion of

Lemma 6.1 follows from Lemma 2.2, as at the end of the proof of Lemma 4.1. �

Clearly, the solution (ϕ1, ϕ2, ϕ3) given in Lemma 6.1 satisfies (ϕ1, ϕ2, ϕ3)(+∞) = (0, 0, 1).

Together with Proposition 2.3, Theorem 1.4 follows.

6.2. Waves connecting (0, 0, 0) and E1 = (0, 0, 1) in the case s∗1 > s∗2: proof of

Theorem 1.5. In this subsection, in addition to (6.1), we assume that s∗1 > s∗2, with s∗i > 0

defined in (1.6), and we consider the critical speed

s = s∗1.

We recall that λ∗
1 > 0 is the unique minimum of Q1 in (0, λ̂1) = (0,+∞). Similarly to (6.3),

we also have

(6.16) s = s∗1 = d1

∫
R
J1(y)ye

λ∗
1ydy.

Since s = s∗1 > s∗2, with g2 given by (4.1) in [0, λ̂2), it then follows from (1.2) and (J1)-(J3)

(and the comments after (J1)-(J3)) that there exist 0 < λ3 < λ4 < λ̂2 such that

g2(λ3) = g2(λ4) = 0,

and g2(λ) < 0 if and only if λ ∈ (λ3, λ4). With g3 given by (4.2) in [0, λ̂3), we have g3(0) = 0

and g′3(0) = −s < 0. Hence we can choose a constant λ0 > 0 such that

(6.17) 0 < λ0 < min{λ∗
1, λ3, ρ, λ̂3} and g3(λ0) < 0,

where ρ > 0 is as in (α2). We also fix a real number µ3 such that

λ3 < µ3 < min{λ4, λ3 + λ0}.

We then define

(6.18)



ϕ1(z) =

{
(a− 1)Bze−λ∗

1z, z > z1,

a− 1, z ≤ z1,

ϕ
1
(z) =

{
(a− 1)Bze−λ∗

1z − p5z
1/2e−λ∗

1z, z > z5,

0, z ≤ z5,

ϕ2(z) = min{(a− 1)e−λ3z, a− 1}, ϕ
2
(z) = max{(a− 1)e−λ3z − p6e

−µ3z, 0},

ϕ3(z) = 1, ϕ
3
(z) = max{1− e−λ0(z−z0), 0},

where the parameters B, z1, z0, p5, z5, p6 are chosen in the following order:

• B > λ∗
1e large enough such that z1 − z′1 > S, where S is as in (6.1) and 0 < z′1 <

1/λ∗
1 < z1 are defined by

B =
eλ

∗
1z1

z1
=

eλ
∗
1z

′
1

z′1
;
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• z0 > z1 such that

(6.19) b(a− 1)Bze−λ∗
1z + b(a− 1)e−λ3z ≤ e−λ0(z−z0) for all z ≥ z0

(the choice of z0 is possible since 0 < λ0 < min{λ3, λ
∗
1});

• p5 > 0 large enough such that z5 := {p5/[(a− 1)B]}2 > z0 and

(6.20) p5>
8r1(a−1)B×max

z≥0

{
(z+S)3/2[(a−1)Bz2e−λ∗

1z+k(a−1)ze−λ3z+aze−λ0(z−z0)]
}

d1

∫
R
J1(y)y

2eλ
∗
1ydy

;

• p6 > 0 large enough such that z6 := (µ3 − λ3)
−1 ln(p6/(a− 1)) > z0 and

(6.21) p6 > max

{
a− 1,

r2(a− 1)P6

−g2(µ3)

}
,

with

P6 := max
z≥0

{
h(a−1)Bze−(λ∗

1+λ3−µ3)z+(a−1)e−(2λ3−µ3)z+ae−λ3z−λ0(z−z0)+µ3z
}

(the choice of p6 is possible since µ3 < λ3 + λ0 < min{2λ3, λ
∗
1 + λ3}).

It is straightforward to check that the functions ϕ
i
and ϕi are continuous in R, nonnegative,

bounded, of class C1 except at finitely many points, and that ϕ
i
≤ ϕi in R, for i = 1, 2, 3.

Lemma 6.2. Under the above assumptions and notations, there exists a positive solution

(ϕ1, ϕ2, ϕ3) of (1.3) such that ϕ
i
≤ ϕi ≤ ϕi in R, i = 1, 2, 3.

Proof. As in the beginning of the proof of Lemma 6.1, we first choose ε > 0 small enough

such that (6.9) holds, as well as condition (2.10), up to a translation.

We now verify (2.1)-(2.6) for (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) defined in (6.18), for all z ∈ R

except finitely many points. Firstly, it is trivial that (2.1) holds for z < z1, since ϕ1 ≤ a− 1,

ϕ3 = 1, ϕ
1
≥ 0 and ϕ

2
≥ 0 in R. Secondly, it follows from (6.16) and g1(λ

∗
1) = 0 that (2.1)

holds for all z > z1, doing as in (6.10)-(6.11) in the proof of Lemma 6.1. Hence (2.1) holds

for all z ̸= z1. Thirdly, as in (4.10)-(4.12) in the proof of Lemma 4.1, we have U2(z) ≤ 0,

i.e. (2.2), for all z ̸= 0, using g2(λ3) = 0. Fourthly, that (2.3) holds for all z ∈ R is trivial,

since α ≤ 1, ϕ
1
≥ 0 and ϕ

2
≥ 0 in R.

It remains to show (2.4)-(2.6). Since ϕ
1
(z) = 0 for all z ≤ z5 and ϕ

1
≥ 0 in R, (2.4) clearly

holds for z < z5. For z > z5 (> z0 > 0), we have ϕ
1
(z) = (a− 1)Bze−λ∗

1z − p5z
1/2e−λ∗

1z. Note

also from the definitions of ϕ
1
and z5 that

ϕ
1
(x) ≥ (a− 1)Bxe−λ∗

1x − p5x
1/2e−λ∗

1x for all x > 0.

Then, using z > z5 > z0 > z1 > S, we have

ϕ
1
(z − y)J1(y) ≥

[
(a−1)B(z−y)e−λ∗

1(z−y)−p5(z−y)1/2e−λ∗
1(z−y)

]
J1(y) for all y ∈ [−S, S].
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Using J1(y) = 0 for almost every y ̸∈ [−S, S], it follows that, for all z > z5,

d1N1[ϕ1
](z) + sϕ′

1
(z) ≥ (a− 1)Bze−λ∗

1z{d1[I1(λ∗
1)− 1]− sλ∗

1}

−(a− 1)Be−λ∗
1z

{
d1

∫
R
J1(y)ye

λ∗
1ydy − s

}
+ p5d1z

1/2e−λ∗
1z

−p5e
−λ∗

1z

{
d1

∫
R
J1(y)(z − y)1/2eλ

∗
1ydy − sλ∗

1z
1/2 +

s

2z1/2

}
.

On the other hand, for all z > z5 (> z0 > z1 > 0),

r1ϕ1
(z)[−1− ϕ

1
(z)− kϕ2(z) + aϕ

3
(z)]

≥ r1(a− 1)ϕ
1
(z)− r1ϕ

2

1(z)− r1kϕ1(z)ϕ2(z)− r1aϕ1(z)e
−λ0(z−z0)

= r1(a− 1)2Bze−λ∗
1z − r1(a− 1)p5z

1/2e−λ∗
1z

−r1(a−1)2B2z2e−2λ∗
1z−r1k(a−1)2Bze−(λ∗

1+λ3)z−r1a(a−1)Bze−λ∗
1z−λ0(z−z0).

Hence we deduce from g1(λ
∗
1) = 0 and (6.16) that L1(z) ≥ e−λ∗

1z[p5A3(z) − A4(z)] for all

z > z5, whereA3(z) := d1

[
z1/2 −

∫
R
J1(y)(z − y)1/2eλ

∗
1ydy

]
+ sλ∗

1z
1/2 − s

2z1/2
− r1(a− 1)z1/2,

A4(z) := r1(a− 1)2B2z2e−λ∗
1z + r1k(a− 1)2Bze−λ3z + r1a(a− 1)Bze−λ0(z−z0).

Since A3 has the same expression as A1 in (6.13), we can proceed as in the proof of (6.14),

using g1(λ
∗
1) = 0 and (6.16) again, and we obtain that

A3(z) ≥
d1

8(z + S)3/2

∫
R
J1(y)y

2eλ
∗
1ydy for z > z5.

Then, L1(z) ≥ 0 for z > z5, by the choice of p5 in (6.20). Hence, (2.4) holds for all z ̸= z5.

Now, as in (4.13) in the proof of Lemma 4.1, for every

z > z6 =
1

µ3 − λ3

ln
( p6
a− 1

)
> z0 > z1 > 0,

one has

d2N2[ϕ2
](z)+sϕ′

2
(z)≥(a−1)e−λ3z{d2[I2(λ3)−1]−sλ3}−p6e

−µ3z{d2[I2(µ3)−1]−sµ3},

while

r2ϕ2
(z)[−1− hϕ1(z)− ϕ

2
(z) + aϕ

3
(z)]

≥ r2(a−1)
[
(a−1)e−λ3z−p6e

−µ3z−h(a−1)Bze−(λ∗
1+λ3)z−(a−1)e−2λ3z−ae−λ3z−λ0(z−z0)

]
.

Hence we obtain from g2(λ3) = 0 and (6.21) that

L2(z) ≥ e−µ3z{−p6g2(µ3)− r2(a− 1)P6} ≥ 0 for all z > z6,

Together with the fact that (2.5) holds trivially for z < z6, we obtain (2.5) for all z ̸= z6.
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Finally, (2.6) holds trivially for z < z0. For z > z0, using z0 > z1 > 0 together

with (1.4), (2.10), (6.19) and λ0 < ρ, we have

α(z)−bϕ1(z)−bϕ2(z)−ϕ
3
(z) ≥ 1−εe−ρz−b(a−1)Bze−λ∗

1z−b(a−1)e−λ3z−1+e−λ0(z−z0)

≥ −εe−ρz ≥ −εe−λ0z.

With (6.9), it follows as in (6.15) that L3(z)≥0 for all z>z0. Hence (2.6) holds for all z ̸=z0.

Since 0 ≤ ϕ
i
≤ ϕi in R for i = 1, 2, 3, and each function ϕ

1
is nontrivial, the conclusion of

Lemma 6.1 follows from Lemma 2.2, as at the end of the proof of Lemma 4.1. �

Clearly, the solution (ϕ1, ϕ2, ϕ3) given in Lemma 6.2 satisfies (ϕ1, ϕ2, ϕ3)(+∞) = (0, 0, 1).

Together with Proposition 2.3, Theorem 1.5 follows.

6.3. Waves connecting (0, 0, 0) and E2 = (up, 0, wp): proof of Theorem 1.6. In this

subsection, in addition to (6.1), we assume that d1 = d2 = d3, J1 = J2 = J3 in R, that (1.11)
is satisfied, and that ρ ≥ λ∗∗

2 , where ρ > 0 is as in (α2) and λ∗∗
2 > 0 denotes the unique

minimum of the function R2 defined by (1.9) in (0, λ̂2) = (0,+∞). We here consider the

critical speed

s = s∗∗2 ,

where s∗∗2 > 0 is defined in (1.9) too. With β2 and G2 defined in (1.8) and (5.1) with s = s∗∗2 ,

one has G2(λ
∗∗
2 ) = 0, and λ∗∗

2 is the unique positive root of this equation. Similarly to (6.3),

since R′
2(λ

∗∗
2 ) = 0, we also have

(6.22) s = s∗∗2 = d2

∫
R
J2(y)ye

λ∗∗
2 ydy.

Recalling A = a− 1− up > 0 as in (5.3) and wp + bup = 1, we then define

(6.23)



ϕ1(z) =

{
up + ABze−λ∗∗

2 z, z > z1,

a− 1, z ≤ z1,
ϕ
1
(z) =

{
up − upBze−λ∗∗

2 z, z > z1,

0, z ≤ z1,

ϕ2(z) =

{
(a− 1)Bze−λ∗∗

2 z, z > z1,

a− 1, z ≤ z1,

ϕ
2
(z) =

{
(a− 1)Bze−λ∗∗

2 z − q∗z1/2e−λ∗∗
2 z, z > z∗,

0, z ≤ z∗,

ϕ3(z) =

{
wp + bupBze−λ∗∗

2 z, z > z1,

1, z ≤ z1,
ϕ
3
(z) =

{
wp − wpBze−λ∗∗

2 z, z > z1,

0, z ≤ z1,

where the parameters B, q∗, z∗ are chosen as follows:

• B > λ∗∗
2 e large enough such that z1 − z2 > S, where S is as in (6.2) and 0 < z2 <

1/λ∗∗
2 < z1 are such that

B =
eλ

∗∗
2 z1

z1
=

eλ
∗∗
2 z2

z2
;
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• q∗ > 0 large enough such that z∗ := {q∗/[(a− 1)B]}2 > z1 and

(6.24) q∗ >
8r2(a− 1)(2a− 1)B2 ×max

z≥0
{(z + S)3/2z2e−λ∗∗

2 z}

d2

∫
R
J2(y)y

2eλ
∗∗
2 ydy

.

It is straightforward to check that the functions ϕ
i
and ϕi are continuous in R, nonnegative,

bounded, of class C1 except at finitely many points, and that ϕ
i
≤ ϕi in R, for i = 1, 2, 3.

Lemma 6.3. Under the above assumptions and notations, there exists a positive solution

(ϕ1, ϕ2, ϕ3) of (1.3) such that ϕ
i
≤ ϕi ≤ ϕi in R, i = 1, 2, 3.

Proof. We first choose ε > 0 small enough such that

(6.25) ε ≤ r2β2e

r3
.

Also, up to a translation, condition (2.10) holds for this ε.

Next, we verify (2.1)-(2.6) for the functions defined in (6.23), for all z ∈ R except finitely

many points. As before, we only need to show (2.1)-(2.6) for z > z1 or z > z∗, respectively:

indeed (2.1)-(2.6) hold trivially for z < z1 or z < z∗ respectively since 0 ≤ ϕ
1
≤ ϕ1 ≤ a− 1,

0 ≤ ϕ
2
≤ ϕ2 ≤ a− 1 and 0 ≤ ϕ

3
≤ ϕ3 ≤ 1 in R, together with the precise definitions (6.23).

For z > z1, ϕ1(z) = up + ABze−λ∗∗
2 z and

(6.26) ϕ1(z − y) ≤ up + AB(z − y)e−λ∗∗
2 (z−y) for all y ∈ [−S, S]

(indeed, z − y > z1 − S > z2 and if z − y > z1, we have equality in the above inequality,

whereas if z2 < z − y ≤ z1, we have e
λ∗∗
2 (z−y)/(z − y) ≤ B and ϕ1(z − y) = a− 1 = up +A ≤

up + AB(z − y)e−λ∗∗
2 (z−y)). Hence

N1[ϕ1](z) ≤ ABze−λ∗∗
2 z[I1(λ

∗∗
2 )− 1]− ABe−λ∗∗

2 z

∫
R
J1(y)ye

λ∗∗
2 ydy.

Also, using ϕ
2
≥ 0 together with −1− up + awp = 0 and A = a− 1− up = abup, we have

−1− ϕ1(z)− kϕ
2
(z) + aϕ3(z) ≤ −1− up − ABze−λ∗∗

2 z + awp + abupBze−λ∗∗
2 z = 0.

This implies that, using G2(λ
∗∗
2 ) = 0 and (6.22) together with d1 = d2 and J1 = J2,

U1(z) ≤ ABze−λ∗∗
2 z{d1[I1(λ∗∗

2 )− 1]− sλ∗∗
2 } − ABe−λ∗∗

2 z
[
d1

∫
R
J1(y)ye

λ∗∗
2 ydy − s

]
= −ABr2β2ze

−λ∗∗
2 z < 0

for all z > z1. Thus, (2.1) holds for all z ̸= z1.

Similar calculations lead to

U2(z) ≤ (a− 1)Bze−λ∗∗
2 z{d2[I2(λ∗∗

2 )− 1]− sλ∗∗
2 + r2β2}

−(a− 1)Be−λ∗∗
2 z

[
d2

∫
R
ye−λ∗∗

2 yJ2(y)dy − s
]

+[hup − (a− 1) + abup]r2(a− 1)B2z2e−2λ∗∗
2 z < 0
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for all z > z1, using G2(λ
∗∗
2 ) = 0, (6.22) and hup − (a− 1)+ abup < (ab+1)up − (a− 1) = 0.

Therefore, (2.2) holds for all z ̸= z1.

As for (2.3), since ϕ
2
≥ 0 and 1− bup − wp = 0, we get that

α(z)− bϕ
1
(z)− bϕ

2
(z)− ϕ3(z) ≤ 1− bup + bupBze−λ∗∗

2 z − wp − bupBze−λ∗∗
2 z = 0

for every z > z1, and, together with G2(λ
∗∗
2 ) = 0 and (6.22), it follows that

U3(z) ≤ bupBze−λ∗∗
2 z{d3[I3(λ∗∗

2 )− 1]− sλ∗∗
2 } − bupBe−λ∗∗

2 z
[
d3

∫
R
J3(y)ye

λ∗∗
2 ydy − s

]
= −bupBr2β2ze

−λ∗∗
2 z < 0,

since J3 = J2 and d3 = d2. As a consequence, (2.3) holds for all z ̸= z1.

For L1 and (2.4), one has, for every z > z1, ϕ1
(z) = up − upBze−λ∗∗

2 z and

ϕ
1
(z − y) ≥ up − upB(z − y)e−λ∗∗

2 (z−y) for all y ∈ [−S, S]

with the same arguments as for the proof of (6.26), hence

d1N1[ϕ1
](z) + sϕ

1
(z) ≥ −upBze−λ∗∗

2 z{d1[I1(λ∗∗
2 )− 1]− sλ∗∗

2 }

+upBe−λ∗∗
2 z

{
d1

∫
R
J1(y)ye

λ∗∗
2 ydy − s

}
= upBr2β2ze

−λ∗∗
2 z

due to G2(λ
∗∗
2 ) = 0, (6.22), d1 = d2, and J1 = J2. On the other hand, using up − awp = −1,

there holds

−1− ϕ
1
(z)− kϕ2(z) + aϕ

3
(z) = (−1− up + awp) +Bze−λ∗∗

2 z[up − k(a− 1)− awp]

= −[1 + k(a− 1)]Bze−λ∗∗
2 z

for all z > z1, hence

L1(z) ≥ upBr2β2ze
−λ∗∗

2 z − r1(up − upBze−λ∗∗
2 z)[1 + k(a− 1)]Bze−λ∗∗

2 z

≥ upBze−λ∗∗
2 z{r2β2 − r1[1 + k(a− 1)]} ≥ 0,

using r2β2 ≥ r1[1 + k(a− 1)] by (1.11). Thus, (2.4) holds for all z ̸= z1.

To show (2.5) for z > z∗ (> z1), we can proceed for instance as in (6.12) in the proof of

Lemma 6.1 to reach

d2N2[ϕ2
](z) + sϕ′

2
(z) ≥ (a− 1)Bze−λ∗∗

2 z

{
d2

[∫
R
J2(y)e

λ∗∗
2 ydy − 1

]
− sλ∗∗

2

}
−(a− 1)Be−λ∗∗

2 z

{
d2

∫
R
J2(y)ye

λ∗∗
2 ydy − s

}
+ q∗d2e

−λ∗∗
2 zz1/2

−q∗e−λ∗∗
2 z

{
d2

∫
R
J2(y)(z − y)1/2eλ

∗∗
2 ydy − sλ∗∗

2 z1/2 +
s

2z1/2

}
,
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while

r2ϕ2
(z)[−1− hϕ1(z)− ϕ

2
(z) + aϕ

3
(z)]

= r2ϕ2
(z)

[
− 1− hup − hABze−λ∗∗

2 z − ϕ
2
(z) + awp − awpBze−λ∗∗

2 z
]

≥ r2β2ϕ2
(z)− r2ϕ2(z)(hA+ awp)Bze−λ∗∗

2 z − r2ϕ
2

2(z)

≥ r2β2ϕ2
(z)− r2(a− 1)(2a− 1)B2z2e−2λ∗∗

2 z,

using hA+awp+(a−1) < A+awp+(a−1) = 2a−1. It follows from G2(λ
∗∗
2 ) = 0 and (6.22)

that L2(z) ≥ e−λ∗∗
2 z[q∗A5(z)− A6(z)] for z > z∗, where A5(z) := d2

[
z1/2 −

∫
R
J2(y)(z − y)1/2eλ

∗∗
2 ydy

]
+ sλ∗∗

2 z1/2 − s

2z1/2
− r2β2z

1/2,

A6(z) := r2(a− 1)(2a− 1)B2z2e−λ∗∗
2 z.

Then, using G2(λ
∗∗
2 ) = 0 together with (6.22) and (6.24), the same arguments as those in

the proofs of Lemmas 6.1 and 6.2 give L2(z) ≥ 0 for all z > z∗. Therefore, (2.5) holds for

all z ̸= z∗.

Finally, let us consider L3. For z > z1, ϕ3
(z) = wp − wpBze−λ∗∗

2 z and

ϕ
3
(z − y) ≥ wp − wpB(z − y)e−λ∗∗

2 (z−y) for all y ∈ [−S, S],

as in the proof of (6.26) for instance. Then, using d3 = d2 and J3 = J2, together with

G2(λ
∗∗
2 ) = 0 and (6.22), one infers that

d3N3[ϕ3
](z)+sϕ′

3
(z)≥−wpBze−λ∗∗

2 z{d3[I3(λ∗∗
2 )−1]−sλ∗∗

2 }+wpBe−λ∗∗
2 z
{
d3

∫
R
J3(y)ye

λ∗∗
2 ydy−s

}
= wpBr2β2ze

−λ∗∗
2 z

for all z > z1. On the other hand, using (2.10), bup + wp = 1 and 2b(a− 1) < 1, we obtain

α(z)− bϕ1(z)− bϕ2(z)− ϕ
3
(z)

≥ 1− εe−ρz − bup − bABze−λ∗∗
2 z − b(a− 1)Bze−λ∗∗

2 z − wp + wpBze−λ∗∗
2 z ≥ −εe−ρz

for all z > z1, whence

L3(z) ≥ wpBr2β2ze
−λ∗∗

2 z − r3ϕ3
(z)εe−ρz ≥ wpe

−λ∗∗
2 z(Br2β2z1 − r3ε) ≥ 0,

using ρ ≥ λ∗∗
2 and Br2β2z1 ≥ λ∗∗

2 er2β2/λ
∗∗
2 = r2β2e ≥ r3ε (because z1 > 1/λ∗∗

2 , B > λ∗∗
2 e

and because of (6.25)). As a consequence, (2.6) holds for all z ̸= z1.

Since 0 ≤ ϕ
i
≤ ϕi in R for i = 1, 2, 3, and each function ϕ

i
is nontrivial, the conclusion of

Lemma 6.3 follows from Lemma 2.2, as at the end of the proof of Lemma 4.1. �

Clearly, the solution (ϕ1, ϕ2, ϕ3) given in Lemma 6.3 satisfies (ϕ1, ϕ2, ϕ3)(+∞) = (up, 0, wp).

Together with Proposition 2.3, Theorem 1.6 follows.
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