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Abstract. In this paper, we derive the existence of forced waves for diffusive competition
systems in shifting environments. First, we derive two different classes of forced waves for
a 3-species competition system. Then we obtain forced waves for 2-species competition
systems with at least one weak competitor. In all cases, the minimal environmental shifting
speeds are determined under the equal diffusivities condition.

1. Introduction

In this paper, we study the following diffusive Lotka-Volterra competition system in a

shifting environment

(1.1)


ut = d1uxx + r1u[α1(x− st)− u− a2v − a3w], x ∈ R, t > 0,

vt = d2vxx + r2v[α2(x− st)− b1u− v − b3w], x ∈ R, t > 0,

wt = d3wxx + r3w[α3(x− st)− c1u− c2v − w], x ∈ R, t > 0,

where u, v, w, functions of (x, t), are three competing species and all parameters di, ri, ai, bj, ck

in (1.1) are positive constants in which, for each i = 1, 2, 3, di stands for the diffusion

coefficient and riαi is the intrinsic growth rate which is spatially and temporally dependent.

Parameters ai, bj, ck are inter-specific competition coefficients. The functions {α1, α2, α3}
model the shifting of their habitat with the same speed s > 0. We refer the reader to [2]

and the references cited therein for the biological modeling view point of system (1.1) due

to climate change.

Throughout this paper, for each i we assume αi is continuous in R such that

(a1) the limits αi(±∞) exist such that αi(−∞) < 0, αi(+∞) = 1 and αi(z) ≤ αi(+∞)

for all z ∈ R;

(a2) there exist Ci > 0 and ρi > 0 such that

(1.2) αi(+∞)− αi(z) ≤ Cie
−ρiz for all large z.
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Note that the constant ρi in condition (1.2) provides the decay rate of αi(+∞) − αi(·). In

particular, (1.2) holds with ρi replaced by any exponent ρ̂ ≤ ρi.

We are concerned with the existence of forced wave, namely, a traveling wave solution

(u, v, w) of (1.1) in the form

(u, v, w)(x, t) = (φ1, φ2, φ3)(z), z := x− st,

with wave speed the same as the environmental shifting speed s and wave profiles {φ1, φ2, φ3}.
Hence we are looking for unknown {φ1, φ2, φ3} that satisfies

(1.3)


d1φ

′′
1 + sφ′1 + r1φ1(α1 − φ1 − a2φ2 − a3φ3) = 0, z ∈ R,

d2φ
′′
2 + sφ′2 + r2φ2(α2 − b1φ1 − φ2 − b3φ3) = 0, z ∈ R,

d3φ
′′
3 + sφ′3 + r3φ3(α3 − c1φ1 − c2φ2 − φ3) = 0, z ∈ R.

For the study of forced waves, we refer the reader to [4, 2, 5, 3, 20] for scalar equations,

[1, 19, 11] for 2-species competition systems, [21] for a cooperative model and [9, 10] for

predator-prey systems.

Due to the assumption αi(−∞) < 0 in (a1), any positive solution (φ1, φ2, φ3) of (1.3) must

satisfy the condition

(1.4) (φ1, φ2, φ3)(−∞) = (0, 0, 0).

This can be verified in the same manner as that of [10, Proposition 2.2] and we omit its proof

here. Hereafter (φ1, φ2, φ3) is a positive solution of (1.3) means φi > 0 in R for i = 1, 2, 3.

Note that, by the strong maximum principle, φi > 0 in R if (φ1, φ2, φ3) is bounded, φi ≥ 0

and φi 6≡ 0 in R.

It is easy to see that the following homogeneous system

(1.5)


ut = d1uxx + r1u(1− u− a2v − a3w), x ∈ R, t > 0,

vt = d2vxx + r2v(1− b1u− v − b3w), x ∈ R, t > 0,

wt = d3wxx + r3w(1− c1u− c2v − w), x ∈ R, t > 0,

always has the constant equilibria {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)}. When b3, c2 < 1,

system (1.5) has the semi-co-existence state Ec := (0, vc, wc), where

vc :=
1− b3

1− b3c2
∈ (0, 1), wc :=

1− c2
1− b3c2

∈ (0, 1).

The state (0, 0, 0) is always unstable for the (diffusion-free) ODE system of (1.5). Moreover,

it is easy to check that (0, 0, 1) is unstable, if either a3 < 1 or b3 < 1; (0, 1, 0) is unstable, if

either a2 < 1 or c2 < 1; while (1, 0, 0) is unstable, if either b1 < 1 or c1 < 1. When b3, c2 < 1,

the condition

(1.6) β := 1− a2vc − a3wc > 0
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implies that the state Ec is unstable for the ODE system of (1.5). We are interested in

forced waves with the limit at z =∞ being one of the above (unstable) nontrivial constant

equilibria of system (1.5).

In particular, in the absence of species v, system (1.1) is reduced to

(1.7)

{
ut = d1uxx + r1u[α1(x− st)− u− a3w], x ∈ R, t > 0,

wt = d3wxx + r3w[α3(x− st)− c1u− w], x ∈ R, t > 0.

The existence and non-existence of forced waves of system (1.7) was studied in [11] for two

different cases, namely, one superior with one inferior case and two weak competitors case.

In [11], the competition system is transformed to a cooperative system. However, this idea

is only applicable for 2-species case, but not for 3-species competition system. Also, forced

waves with critical speed was not addressed in [11]. In fact, with the application of Schauder’s

fixed point theorem and replacing the super-sub solutions by the so-called generalized upper-

lower solutions, the idea of [11] can be extended to non-cooperative systems. We refer the

reader to, e.g., [18, 16, 15, 17, 23, 22, 8, 12, 6, 7, 9, 10] for the application of this method to

derive the existence of traveling waves in various ecological systems.

Motivated by [11, 10], the aim of this paper is twofold, namely, to derive the forced

waves with critical speed for two species competition system and to extend the two species

case to three species. It is surprising that the forms of generalized upper-lower solutions

constructed in [10] for predator-prey systems are in some sense universal. It works well here

for competition systems, once the parameters in the generalized upper-lower solutions can

be chosen appropriately. On the other hand, after a carefully checking, the monotonicity

condition on the shifting function(s) is not needed in [10]. Therefore, we do not impose the

monotonicity condition on αi for any i in this paper. Moreover, we allow each species has

its own different shifting function, but with the same shifting speed.

Throughout this paper we let κ+ := max{0, κ} for a real number κ. Now, we describe our

main results of this paper as follows.

First, for forced waves connecting (0, 0, 1) for system (1.1) with a3 < 1, we set

Q1(ρ) :=

{
d1ρ+ r1(1− a3)/ρ, if ρ ∈ (0, λ∗),

s∗1 := 2
√
d1r1(1− a3), if ρ ≥ λ∗ :=

√
r1(1− a3)/d1.

Then we have

Theorem 1.1. Suppose that a3 < 1, b3 < 1, Q1(ρi) ≤ s for ρi in (1.2), i = 1, 2, 3, and

(1.8) d2 = d1 ≥ d3, r2(1− b3) = r1(1− a3) > r3(c1 + c2 − 1)+.

Then there exists a positive solution (φ1, φ2, φ3) of (1.3) satisfying (1.4) and

(1.9) (φ1, φ2, φ3)(∞) = (0, 0, 1),
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for s > s∗1; and for s = s∗1, if we further impose that d3 = d2 = d1.

It is worth to note that φi > 0 in R for i = 1, 2, 3 for all solutions (φ1, φ2, φ3) obtained in

Theorem 1.1. Moreover, these waves are of mixed front-pulse types in the sense that φi is of

pulse type vanishing at both tails for i = 1, 2 and φ3 is of front type connecting two different

constants at ±∞.

Biologically, condition d2 = d1 ≥ d3 in (1.8) is natural, since both species u and v must

keep pace with species w in order to survive in the favorable habitat. A similar theorem on

forced waves with (φ1, φ2, φ3)(∞) = (0, 1, 0) to Theorem 1.1 can be proved by exchanging

the roles of species v and w. Same for the case (1, 0, 0). We omit the details.

Secondly, for forced waves connecting (0, vc, wc) for system (1.1) with β > 0, we set

Q2(ρ) :=

{
d1ρ+ r1β/ρ, if ρ ∈ (0, λ∗),

s∗∗1 := 2
√
d1r1β, if ρ ≥ λ∗ :=

√
r1β/d1.

Then we have

Theorem 1.2. Suppose b3 < 1, c2 < 1, (1.6) holds, Q2(ρi) ≤ s for ρi in (1.2), i = 1, 2, 3,

and

(1.10) d1 ≥ max{d2, d3}, r1β > max{r2(b1 + b3c2vc), r3[c1 + c2(1− vc)]}.

Then there exists a positive solution (φ1, φ2, φ3) of (1.3) satisfying (1.4) and

(1.11) (φ1, φ2, φ3)(∞) = (0, vc, wc),

for s > s∗∗1 ; and for s = s∗∗1 , if we further impose that d3 = d2 = d1.

Again, all wave profiles (φ1, φ2, φ3) obtained in Theorem 1.2 satisfy φi > 0 in R for

i = 1, 2, 3. They are also of mixed front-pulse types. Also, condition d1 ≥ max{d2, d3} in

(1.10) is natural, biologically it means that in order to survive species u must keep pace with

both species v and w. Since the non-existence of forced waves can be proved by exactly

the same manner as that of [10, Proposition 4.3], Theorems 1.1 and 1.2 also determine

the minimal environmental shifting speeds for both classes of forced waves under the equal

diffusivities condition.

Recently, various traveling waves of the limiting system (1.5) of (1.1) with d1 = d2 = d3 = 1

are derived in [13]. We make some comments on the differences between traveling waves of

(1.5) and those forced waves of (1.1) obtained in Theorems 1.1 and 1.2 as follow. We only

consider the equal diffusivities case. First, one should note that at −∞ we always have

condition (1.4) for forced waves, but we have a stable constant equilibrium of (1.5) for

traveling waves of (1.5). The stable constant equilibrium of (1.5) can be either (0, 0, 1) or

the positive co-existence state (u∗, v∗, w∗), under appropriate conditions. Secondly, there is

a positive constant (the minimal wave speed) s∗ = s∗1 (s∗ = s∗∗1 , rep.) such that a traveling
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wave {s, (φ1, φ2, φ3)} of (1.5) satisfying (1.9) ((1.11), rep.) exists if and only if its wave speed

s ≥ s∗ (s ≥ s∗, rep.). However, the wave speed s of forced waves of (1.1) is prescribed a

priori by the environmental shifting speed. Moreover, the condition s ≥ s∗1 (or, s ≥ s∗∗1 )

gives the admissible environmental shifting speeds for which forced waves do exist. Thirdly,

the shapes of waves for (1.1) and (1.5) are different, due to the different conditions of wave

tails at −∞. For example, as mentioned earlier forced waves are all of mixed front-pulse

types, but traveling waves with wave tail (u∗, v∗, w∗) at −∞ are purely of front types.

Lastly, for forced wave for two species competition system (1.7) with a3 < 1, as a corollary

of Theorem 1.1 we obtain

Corollary 1.3. Suppose that a3 < 1, Q1(ρi) ≤ s for ρi in (1.2), i = 1, 3, and

(1.12) d1 ≥ d3, r1(1− a3) > r3(c1 − 1)+.

Then (1.7) has a forced wave (u, v)(x, t) = (φ1, φ2)(x − st) satisfying (φ1, φ2)(−∞) = (0, 0)

and (φ1, φ2)(∞) = (0, 1) for s > s∗1; and for s = s∗1, if we further impose that d3 = d1.

Corollary 1.3 contains both c1 > 1 (one superior with one inferior) and c1 < 1 (two weak

competitors) cases. When c1 < 1, by exchanging the roles of u and w we also obtain the forced

waves with critical speed 2
√
d3r3(1− c1) connecting (0, 0) and (1, 0). Forced waves for s > s∗1

in Corollary 1.3 was already obtained in [11]. Note that the decay condition Q1(ρi) ≤ s,

i = 1, 3, is weaker than that in [11]. But, on admissible parameters {d1, d3, r1, r3, a3, c1},
condition (1.12) is stronger than that in [11]. A detailed discussion is given in §4.

The rest of this paper is organized as follows. First, in §2, some preliminaries are given,

including the notion of generalized upper-lower solutions, an existence theorem for solutions

of (1.3) and a remark on condition (1.2). Next, we construct various generalized upper-lower

solutions for three species competition system (1.1) in §3 to prove Theorems 1.1 and 1.2.

The verifications of these generalized upper-lower solutions are quite similar to that in [10]

for predator-prey systems. However, conditions imposed on parameters here are different

from that in [10], certain modifications are needed here. To support Theorems 1.1 and 1.2,

we present some numerical simulations for forced waves of (1.1) at the end of §3. Finally,

we study forced waves for two species competition systems and give a proof of Corollary 1.3

in §4.

2. Preliminaries

We first introduce the definition of generalized upper-lower solutions as follows.

Definition 2.1. Continuous functions (φ1, φ2, φ3) and (φ
1
, φ

2
, φ

3
) are called a pair of gen-

eralized upper-lower solutions of (1.3) if φ
′′
i , φ

′′
i
, φ

′
i, φ

′
i
, i = 1, 2, 3, are bounded in R and
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the following inequalities

U1(z) := d1φ
′′
1(z) + sφ

′
1(z) + r1φ1(z)[α1(z)− φ1(z)− a2φ2

(z)− a3φ3
(z)] ≤ 0,(2.1)

U2(z) := d2φ
′′
2(z) + sφ

′
2(z) + r2φ2(z)[α2(z)− b1φ1

(z)− φ2(z)− b3φ3
(z)] ≤ 0,(2.2)

U3(z) := d3φ
′′
3(z) + sφ

′
3(z) + r3φ3(z)[α3(z)− c1φ1

(z)− c2φ2
(z)− φ3(z)] ≤ 0,(2.3)

L1(z) := d1φ
′′
1
(z) + sφ′

1
(z) + r1φ1

(z)[α1(z)− φ
1
(z)− a2φ2(z)− a3φ3(z)] ≥ 0,(2.4)

L2(z) := d2φ
′′
2
(z) + sφ′

2
(z) + r2φ2

(z)[α2(z)− b1φ1(z)− φ
2
(z)− b3φ3(z)] ≥ 0,(2.5)

L3(z) := d3φ
′′
3
(z) + sφ′

3
(z) + r3φ3

(z)[α3(z)− c1φ1(z)− c2φ2(z)− φ
3
(z)] ≥ 0,(2.6)

hold for z ∈ R\{zj | j = 1, · · · ,m} with some finite positive integer m.

Then we have the following existence theorem for system (1.3), by a standard argument

from, e.g., [18, 15].

Proposition 2.2. Given s > 0. If (1.3) has a pair of generalized upper-lower solutions

(φ1, φ2, φ3) and (φ
1
, φ

2
, φ

3
) such that

φ
i
≤ φi, i = 1, 2, 3,(2.7)

lim
z→z+j

φ
′
i(z) ≤ lim

z→z−j
φ
′
i(z), lim

z→z−j
φ′
i
(z) ≤ lim

z→z+j
φ′
i
(z), ∀ j = 1, · · · ,m, i = 1, 2, 3,(2.8)

then (1.3) has a solution (φ1, φ2, φ3) such that φ
i
≤ φi ≤ φi, i = 1, 2, 3.

Recall (1.2). Note that, by a suitable translation of system (1.3) and using αi(∞) = 1,

condition (1.2) can be rephrased as

(2.9) αi(z) ≥ 1− εe−ρ̂z for all z > 0, i = 1, 2, 3,

for any given positive constant ε as we need and for any positive constant ρ̂ ≤ ρi for all

i = 1, 2, 3. Indeed, given a positive constant ρ̂ ≤ min{ρi | i = 1, 2, 3} and a constant ε > 0.

By (1.2), there is a constant K � 1 such that

1− αi(z +K) ≤ Cie
−ρi(z+K) ≤ Cie

−ρiKe−ρ̂z ≤ εe−ρ̂z, ∀ z > 0, i = 1, 2, 3,

if we make K larger so that Cie
−ρiK ≤ ε for all i. Then a forced wave (φ1, φ2, φ3)(z) of the

translated system:
d1φ

′′
1(z) + sφ′1(z) + r1φ1(z)[α1(z +K)− φ1(z)− a2φ2(z)− a3φ3(z)] = 0, z ∈ R,

d2φ
′′
2(z) + sφ′2(z) + r2φ2(z)[α2(z +K)− b1φ1(z)− φ2(z)− b3φ3(z)] = 0, z ∈ R,

d3φ
′′
3(z) + sφ′3(z) + r3φ3(z)[α3(z +K)− c1φ1(z)− c2φ2(z)− φ3(z)] = 0, z ∈ R,

renders a forced wave (φ1, φ2, φ3)(z −K) of the original system (1.3). Note that this idea is

already used in [10].
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3. Forced waves for system (1.1)

3.1. Case (0, 0, 1) with supercritical speed.

Let s > s∗1. Recall from (1.8) that

A1(λ) := d1λ
2 − sλ+ r1(1− a3) = d2λ

2 − sλ+ r2(1− b3).

Since s > s∗1, there exist λ1 and λ2 with 0 < λ1 < λ2 < ∞ such that A1(λi) = 0, i = 1, 2,

and A1(λ) < 0 for all λ ∈ (λ1, λ2).

Recall (1.8). We may choose ε > 0 such that

(3.1) r3ε < r1(1− a3)− r3(c1 + c2 − 1)+

and (2.9) holds for this ε with ρ̂ = λ1, using ρi ≥ λ1 by the assumption Q1(ρi) ≤ s for all i.

Let

µ1 ∈ (λ1,min{λ2, 2λ1}).

Define

(3.2)


φ1(z) := min{e−λ1z, 1}, φ

1
(z) := max{e−λ1z − p1e−µ1z, 0},

φ2(z) := min{e−λ1z, 1}, φ
2
(z) := max{e−λ1z − p2e−µ1z, 0},

φ3(z) := 1, φ
3
(z) := max{1− e−λ1z, 0},

where p1, p2 are constants satisfying

p1 > max

{
1,
r1(1 + ε+ a2)

−A1(µ1)

}
,(3.3)

p2 > max

{
1,
r2(1 + ε+ b1)

−A1(µ1)

}
.(3.4)

Then we have

Lemma 3.1. Under condition (1.8), the functions defined in (3.2) is a pair of upper-lower-

solutions of (1.3) for a given s > s∗1 such that (2.7) and (2.8) hold.

Proof. Note that it suffices to check (2.1)-(2.6) for non-constant parts.

For z > 0, we compute

U1(z) ≤ e−λ1z(d1λ
2
1 − sλ1) + r1e

−λ1z{1− e−λ1z − a3 + a3e
−λ1z}

= −r1e−λ1z(1− a3)e−λ1z ≤ 0,

using φ
2
≥ 0, α1 ≤ 1, A1(λ1) = 0 and a3 < 1. Hence (2.1) holds for all z 6= 0.

Similarly, we can show that (2.2) holds for all z 6= 0, using φ
1
≥ 0, α2 ≤ 1, A1(λ1) = 0

and b3 < 1.

It is trivial that U3(z) ≤ 0 for all z ∈ R.
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For L1, first note that φ
1
(z) = e−λ1z − p1e−µ1z for z > z1 and φ

1
(z) = 0 for z ≤ z1 for

some z1 > 0, using p1 > 1 and µ1 > λ1. Then, for z > z1, we compute

L1(z) ≥ e−λ1z(d1λ
2
1 − sλ1)− p1e−µ1z(d1µ2

1 − sµ1)

+r1φ1
(z){1− εe−λ1z − φ

1
(z)− a2e−λ1z − a3}

= −p1e−µ1zA1(µ1)− r1e−λ1z(εe−λ1z + e−λ1z + a2e
−λ1z)

≥ e−µ1z{p1[−A1(µ1)]− r1(ε+ 1 + a2)} ≥ 0,

using A1(λ1) = 0, (2.9) with ρ̂ = λ1, the choice of µ1 and (3.3). Hence (2.4) holds for all

z 6= z1,

Similarly, there exists z2 > 0 such that (2.5) holds for all z 6= z2, by using A1(λ1) = 0,

(2.9) with ρ̂ = λ1, the choice of µ1 and (3.4).

Finally, for z > 0, we compute

L3(z) ≥ −e−λ1z(d1λ21 − sλ1) + r3(1− e−λ1z){−εe−λ1z − (c1 + c2 − 1)e−λ1z},

using (2.9) and d3 ≤ d1. When c1 + c2 ≤ 1, we obtain

L3(z) ≥ e−λ1z{r1(1− a3)− r3ε} ≥ 0, z > 0,

due to (3.1). When c1 + c2 > 1, we get

L3(z) ≥ e−λ1z[r1(1− a3)− r3(c1 + c2 − 1)− r3ε] ≥ 0, z > 0,

by (3.1) again. Hence (2.6) holds for all z 6= 0. The proof is complete. �

3.2. Case (0, 0, 1) with critical speed.

For s = s∗1, A1(λ) = 0 has a double root λ = λ∗.

Choose ε > 0 such that (due to (1.8))

(3.5) r3ε < e[r1(1− a3)− r3(c1 + c2 − 1)+]

and (2.9) holds for this ε with ρ̂ = λ∗, using s ≥ Q1(ρi). Set B∗ := λ∗e, z∗ := 1/λ∗ and

define

(3.6)



φ1(z) :=

{
B∗ze

−λ∗z, z > z∗,

1, z ≤ z∗
φ
1
(z) :=

{
B∗ze

−λ∗z − p3
√
ze−λ∗z, z > z3,

0, z ≤ z3,

φ2(z) :=

{
B∗ze

−λ∗z, z > z∗,

1, z ≤ z∗
φ
2
(z) :=

{
B∗ze

−λ∗z − p4
√
ze−λ∗z, z > z4,

0, z ≤ z4,

φ3(z) := 1, φ
3
(z) :=

{
1−B∗ze−λ∗z, z > z∗,

0, z ≤ z∗,
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where z3 := (p3/B∗)
2, z4 := (p4/B∗)

2, p3 > e
√
λ∗, p4 > e

√
λ∗ and

p3 >
4

d
r1B∗

{
B∗(1 + a2)

(
7

2λ∗e

)7/2

+ ε

(
5

2λ∗e

)5/2
}
,(3.7)

p4 >
4

d
r2B∗

{
B∗(1 + b1)

(
7

2λ∗e

)7/2

+ ε

(
5

2λ∗e

)5/2
}
.(3.8)

Then we have

Lemma 3.2. In addition to (1.8), we assume that d1 = d2 = d3. Then the functions defined

in (3.6) is a pair of upper-lower-solutions of (1.3) for s = s∗1 such that (2.7) and (2.8) hold.

Proof. As before, it suffices to check (2.1)-(2.6) for non-constant parts.

Let d1 = d2 = d3 = d. Note that, using r2(1− b3) = r1(1− a3), s = 2dλ∗ and A1(λ∗) = 0,

d(B∗ze
−λ∗z)′′ + s(B∗ze

−λ∗z)′ = −r1(1− a3)B∗ze−λ∗z = −r2(1− b3)B∗ze−λ∗z, z ∈ R,

d(
√
ze−λ∗z)′′ + s(

√
ze−λ∗z)′ = −d

4
z−3/2e−λ∗z − r1(1− a3)

√
ze−λ∗z, z > 0.

For z > z∗ = 1/λ∗, we compute

U1(z) ≤ −r1(1− a3)B∗ze−λ∗z + r1B∗ze
−λ∗z{1−B∗ze−λ∗z − a3 + a3B∗ze

−λ∗z} ≤ 0,

using α1 ≤ 1, φ
2
≥ 0 and a3 < 1.

Similarly, we have U2(z) ≤ 0 for z > z∗, using α2 ≤ 1, φ
1
≥ 0 and b3 < 1.

It is clearly that U3(z) ≤ 0 for all z ∈ R.

Next, for z > z3, we have

L1(z) ≥ 1

4
dp3z

−3/2e−λ∗z − r1(B∗z − p3z1/2){ε+B∗z + a2B∗z}e−2λ∗z

≥ 1

4
dp3z

−3/2e−λ∗z − r1B∗ze−2λ∗z{ε+ (1 + a2)B∗z}

=
1

4
z−3/2e−λ∗z

{
dp3 − 4r1B∗[εz

5/2e−λ∗z +B∗(1 + a2)z
7/2e−λ∗z]

}
≥ 1

4
z−3/2e−λ∗z

{
dp3 − 4r1B∗

[
ε
( 5

2λ∗e

)5/2
+B∗(1 + a2)

( 7

2λ∗e

)7/2]}
≥ 0,

using (2.9) with ρ̂ = λ∗, the fact

(3.9) max
z>0

{
zγe−λ∗z

}
≤
(
γ

λ∗e

)γ
, γ > 0,

and (3.7).

A similar calculation also leads L2(z) ≥ 0 for all z > z4, using (3.8) instead of (3.7).

Finally, for z > z∗, by the same argument as that in the proof of Lemma 3.1 we obtain

L3(z) ≥ r1(1− a3)B∗zeλ∗z + r3(1−B∗zeλ∗z){−εe−λ∗z − (c1 + c2 − 1)B∗ze
λ∗z} ≥ 0,



10 J.-S. GUO, K. GUO, AND M. SHIMOJO

using (2.9) with ρ̂ = λ∗, B∗z > e for all z > z∗, (1.8) and (3.5). The lemma is thus

proved. �

It is clear that the functions defined in both (3.2) and (3.6) satisfy

(φ1, φ2, φ3)(+∞) = (φ
1
, φ

2
, φ

3
)(+∞) = (0, 0, 1).

Then Theorem 1.1 is proved by combining Lemmas 3.1 and 3.2 with Proposition 2.2.

3.3. Case (0, vc, wc) with supercritical speed.

Given s > s∗∗1 . Let λi, i = 3, 4, be the two positive solutions of

A2(λ) := d1λ
2 − sλ+ r1β = 0

such that λ3 < λ4. Note that A2(λ) < 0 for λ ∈ (λ3, λ4). Due to (1.10), we may choose

ε > 0 such that

(3.10) ε < min{r1β/r2 − (b1 + b3c2vc), r1β/r3 − [c1 + c2(1− vc)]}

and (2.9) holds for this ε with ρ̂ = λ3, using (1.10) and s ≥ Q2(ρi) for all i. We then define

(3.11)


φ1(z) := min{1, e−λ3z}, φ

1
(z) := max{0, e−λ3z − pe−µ2z},

φ2(z) := min{1, vc + (1− vc)e−λ3z}, φ2
(z) := max{0, vc(1− e−λ3z)},

φ3(z) := min{1, wc + c2vce
−λ3z}, φ

3
(z) := max{0, wc(1− e−λ3z)},

where µ2 ∈ (λ3,min{2λ3, λ4}) (so that A2(µ2) < 0) and p satisfies

(3.12) p > max {1, r1[ε+ 1 + a2(1− vc) + a3c2vc]/[−A2(µ2)]} .

Then we have

Lemma 3.3. Under condition (1.10), the functions defined in (3.11) are a pair of generalized

upper-lower solutions of (1.3) for a given s > s∗∗1 .

Proof. We only need to check (2.1)-(2.6) for non-constant parts.

For z > 0, we compute

U1(z) ≤ e−λ3z(d1λ
2
3 − sλ3) + r1e

−λ3z{1− e−λ3z − a2vc(1− e−λ3z)− a3wc(1− e−λ3z)}

= −r1βe−2λ3z ≤ 0,

using α1 ≤ 1, β = 1− a2vc − a3wc and A2(λ3) = 0. Hence (2.1) holds for all z 6= 0.

For z > 0, since φ
1
≥ 0, we have

U2(z) ≤ (1− vc)e−λ3z(d2λ23 − sλ3) + r2φ2(z){1− vc − (1− vc)e−λ3z − b3wc + b3wce
−λ3z}

≤ (1− vc)e−λ3z(d1λ23 − sλ3) = −r1β(1− vc)e−λ3z ≤ 0,

using α2 ≤ 1, 1− vc − b3wc = 0, d2 ≤ d1 and A2(λ3) = 0. Hence (2.2) holds for z 6= 0.
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For z > 0, we have

U3(z) ≤ c2vce
−λ3z(d3λ

2
3 − sλ3) + r3φ3(z){1− c2vc(1− e−λ3z)− wc − c2vce−λ3z}

≤ c2vce
−λ3z(d1λ

2
3 − sλ3) = −r1βc2vce−λ3z ≤ 0,

using α3 ≤ 1, 1− c2vc − wc = 0, d3 ≤ d1 and A2(λ3) = 0. Hence (2.3) holds for z 6= 0.

Now, for φ
1
, using p > 1, there is z3 > 0 such that φ

1
(z) = e−λ3z − pe−µz for z > z3 and

φ
1
(z) = 0 for z ≤ z3. For z > z3, we compute

L1(z) ≥ e−λ3z(d1λ
2
3 − sλ3)− pe−µ2z(d1µ2

2 − sµ2)

+r1φ1
(z){1− εe−λ3z − e−λ3z − a2vc − a2(1− vc)e−λ3z − a3wc − a3c2vce−λ3z}

= −pe−µ2zA2(µ2) + r1φ1
(z){−ε− 1− a2(1− vc)− a3c2vc}e−λ3z

≥ e−µ2z{−pA2(µ2)− r1[ε+ 1 + a2(1− vc) + a3c2vc]e
(µ2−2λ3)z}

≥ −A2(µ2)e
−µ2z{p− r1[ε+ 1 + a2(1− vc) + a3c2vc]/[−A2(µ2)]} ≥ 0,

using (2.9) with ρ̂ = λ3, the choice of µ2 and (3.12). Hence (2.4) holds for all z 6= z3.

For z > 0, we calculate, using 1− vc − b3wc = 0,

L2(z) ≥ −vce−λ3z(d2λ23 − sλ3) + r2φ2
(z){−εe−λ3z − b1e−λ3z + vce

−λ3z − b3c2vce−λ3z}

≥ r1βvce
−λ3z − r2vc(ε+ b1 + b3c2vc)e

−λ3z ≥ 0,

due to d2 ≤ d1, A2(λ3) = 0, (1.10) and (3.10). Hence (2.5) holds for all z 6= 0.

Finally, for z > 0, we compute, using A2(λ3) = 0 and 1− c2vc − wc = 0,

L3(z) ≥ r1βwce
−λ3z − r3wc[ε+ c1 + c2(1− vc)]e−λ3z ≥ 0,

using again (1.10) and (3.10). Hence (2.6) holds for all z 6= 0. This completes the proof of

the lemma. �

3.4. Case (0, vc, wc) with critical speed.

For s = s∗∗1 , A2(λ) = 0 has a double root λ∗ > 0. Note that s∗∗1 = 2d1λ
∗.

Choose ε > 0 such that

(3.13) ε < e(min{r1β/r2 − (b1 + b3c2vc), r1β/r3 − [c1 + c2(1− vc)]})

and (2.9) holds for this ε with ρ̂ = λ∗, due to (1.10) and s ≥ Q2(ρi) for all i.
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Set B := λ∗e and z∗ := 1/λ∗. We define

(3.14)



φ1(z) :=

{
1, z ≤ z∗,

Bze−λ∗z, z > z∗,
φ
1
(z) :=

{
0, z ≤ ẑ,

Bze−λ∗z − q
√
ze−λ∗z, z > ẑ,

φ2(z) :=

{
1, z ≤ z∗,

vc + (1− vc)Bze−λ∗z, z > z∗,

φ
2
(z) :=

{
0, z ≤ z∗,

vc(1−Bze−λ∗z), z > z∗,

φ3(z) :=

{
1, z ≤ z∗,

wc + c2vcBze
−λ∗z, z > z∗,

φ
3
(z) :=

{
0, z ≤ z∗,

wc(1−Bze−λ∗z), z > z∗,

where q > B/
√
λ∗ so that ẑ := (q/B)2 > z∗ and q satisfies

(3.15) q >
4

d1
r1B

{
B[1 + a2(1− vc) + a3c2vc]

(
7

2λ∗e

)7/2

+ ε

(
5

2λ∗e

)5/2
}
.

Then we have

Lemma 3.4. In addition to (1.10), we assume that d1 = d2 = d3. Then the functions defined

in (3.14) are a pair of generalized upper-lower solutions of (1.3) for s = s∗∗1 .

Proof. As before, it suffices to check (2.1)-(2.6) for non-constant parts.

Let d1 = d2 = d3 = d. The following identity shall be used in our computations:

(3.16) d(Bze−λ∗z)′′ + s(Bze−λ∗z)′ = −r1βBze−λ∗z,

using s = s∗∗1 = 2dλ∗ and A2(λ
∗) = 0.

For z > z∗, we compute

U1(z) ≤ −r1βBze−λ∗z + r1Bze
−λ∗z{(1− a2vc − a3wc)−Bze−λ∗z(1− a2vc − a3wc)}

= −r1Bze−λ∗z{βBze−λ∗z} ≤ 0,

using α1 ≤ 1 and 1− a2vc − a3wc = β. Hence (2.1) holds for all z 6= z∗.

For z > z∗, using φ
1
≥ 0, we have

U2(z) ≤ −(1− vc)(r1β)Bze−λ∗z + r2φ2(z){(1− vc − b3wc)(1−Bze−λ∗z)}

= −(1− vc)B(r1β)ze−λ∗z ≤ 0,

using α2 ≤ 1 and 1− vc − b3wc = 0. Hence (2.2) holds for all z 6= z∗.

For z > z∗, using again φ
1
≥ 0, we compute

U3(z) ≤ −c2vcr1βBze−λ∗z ≤ 0,

due to α3 ≤ 1 and 1− c2vc − wc = 0. Hence (2.3) holds for all z 6= z∗.
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Next, we note that

d(
√
ze−λ∗z)′′ + s(

√
ze−λ∗z)′ = −d

4
z−3/2e−λ∗z − r1β

√
ze−λ∗z, z > 0,

using s = 2dλ∗. Then, for z > ẑ, we have

L1(z) ≥ −r1βBze−λ∗z − q
[
−d

4
z−3/2e−λ∗z − r1β

√
ze−λ∗z

]
+r1φ1

(z){(1− a2vc − a3wc)− εe−λ∗z − [1 + a2(1− vc) + a3c2vc]Bze
−λ∗z}

= q
d

4
z−3/2e−λ∗z − r1φ1

(z){εe−λ∗z + [1 + a2(1− vc) + a3c2vc]Bze
−λ∗z}

≥ d

4
z−3/2e−λ∗z

{
q − 4

d
r1B

(
B[1 + a2(1− vc) + a3c2vc]

(
z7/2e−λ∗z

)
+ ε(z5/2e−λ∗z)

)}
≥ d

4
z−3/2e−λ∗z

{
q − 4

d
r1B

(
B[1 + a2(1− vc) + a3c2vc]

(
7

2λ∗e

)7/2

+ ε

(
5

2λ∗e

)5/2 )}
≥ 0,

using (3.9) and condition (3.15). Hence (2.4) holds for all z 6= ẑ.

For z > z∗, we compute

L2(z) ≥ r1βvcBze
−λ∗z

+r2φ2
(z){(1− vc − b3wc)− εe−λ∗z + vcBze

−λ∗z − (b1 + b3c2vc)Bze
−λ∗z}

≥ {r1β − r2[ε/e+ (b1 + b3c2vc)]}vcBze−λ∗z ≥ 0,

using 1 − vc − b3wc = 0, (3.13) and (1.10). Hence (2.5) holds for all z 6= z∗. Similarly, we

have

L3(z) ≥ wcBze
−λ∗z{r1β − r3ε/e− r3[c1 + c2(1− vc)]} ≥ 0, z > z∗.

Hence (2.6) also holds for all z 6= z∗. Thereby, we complete the proof of the lemma. �

It is clear that the functions defined in both (3.11) and (3.14) satisfy

(φ1, φ2, φ3)(+∞) = (φ
1
, φ

2
, φ

3
)(+∞) = (0, vc, wc).

Then Theorem 1.2 is proved by combining Lemmas 3.3 and 3.4 with Proposition 2.2.

3.5. Some numerical simulations for forced waves of (1.1).

In this subsection, we provide some numerical simulations for system (1.1) to demonstrate

forced waves derived in Theorems 1.1 and 1.2. In our numerical simulations, we take the

following shifting functions

αi(z) =
2

π
arctan(10z), z = x− st, i = 1, 2, 3,

for different admissible shifting speeds s.
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For Theorem 1.1, we choose the following parameters{
d1 = d2 = d3 = 1, r1 = r2 = 1, r3 = 0.1,

a2 = 1, a3 = b3 = 0.25, c2 = 2, b1 = 3, c1 = 4.

Hence s∗1 =
√

3. Then the wave profiles of forced waves satisfying

(φ1, φ2, φ3)(−∞) = (0, 0, 0), (φ1, φ2, φ3)(∞) = (0, 0, 1),

for s = 5 > s∗1 and s =
√

3 = s∗1 are shown in Figures 1 and 2, respectively.

Figure 1 : Wave profile of forced wave with the shifting speed s = 5.

Figure 2 : Wave profile of forced wave with the critical shifting speed s =
√

3.
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For Theorem 1.2, we set{
d1 = d2 = d3 = 1, r1 = 1, r2 = 0.1, r3 = 0.12,

b3 = 0.2, c2 = 0.25, b1 = 3, c1 = 4, a2 = a3 = 0.25.

Then s∗∗1 = 2
√

45/76 and the wave profiles of forced waves with

(φ1, φ2, φ3)(−∞) = (0, 0, 0), (φ1, φ2, φ3)(∞) = (0, vc, wc),

for s = 5 > s∗∗1 and s = 2
√

45/76 = s∗∗1 are given in Figures 3 and 4, respectively.

Figure 3 : Wave profile of forced wave with the shifting speed s = 5.

Figure 4 : Wave profile of forced wave with the critical shifting speed s = 2
√

45/76.
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4. Forced waves for system (1.7)

In this section, we shall study the forced waves of (1.7). We are looking for positive

solution (φ1, φ3) of

(4.1)

{
d1φ

′′
1 + sφ′1 + r1φ1(α1 − φ1 − a3φ3) = 0, z ∈ R,

d3φ
′′
3 + sφ′3 + r3φ3(α3 − c1φ1 − φ3) = 0, z ∈ R,

with s ≥ s∗1 such that

(φ1, φ3)(−∞) = (0, 1), (φ1, φ3)(∞) = (0, 0).

For system (1.7), the definition of generalized upper-lower solutions is the same as that

in Definition 2.1 by putting φ2 = φ
2

= a2 = c2 = 0 everywhere. Therefore, Proposition 2.2

also holds for system (1.7). It is interesting to remark that {(φ, 1 − ψ), (φ, 1 − ψ)} is a

pair of generalized upper-lower solutions for a pair of super-sub solutions {(φ, ψ), (φ, ψ)}
constructed in [11] for system (1.7).

Proof of Corollary 1.3. As remarked above, recall from (3.2) and (3.6) that

(4.2)

{
φ1(z) := min{e−λ1z, 1}, φ

1
(z) := max{e−λ1z − p1e−µ1z, 0},

φ3(z) := 1, φ
3
(z) := max{1− e−λ1z, 0},

and

(4.3)


φ1(z) :=

{
B∗ze

−λ∗z, z > z∗,

1, z ≤ z∗
φ
1
(z) :=

{
B∗ze

−λ∗z − p3
√
ze−λ∗z, z > z3,

0, z ≤ z3,

φ3(z) := 1, φ
3
(z) :=

{
1−B∗ze−λ∗z, z > z∗,

0, z ≤ z∗,

are generalized upper-lower solutions of (4.1) for s > s∗1 and s = s∗1, respectively, such that

(φ1, φ3)(+∞) = (φ
1
, φ

3
)(+∞) = (0, 1).

Hence Corollary 1.3 follows from the same proof as that of Theorem 1.1. �

Finally, we make some comments on Corollary 1.3 as follows.

In [11], the following system was considered:

(4.4)

{
Ut = d1Uxx + U{R1(x− st)− U − γ1W},
Wt = d3Wxx +W{R3(x− st)− γ3U −W}.

In fact, by setting

u =
U

R1(∞)
, w =

W

R3(∞)
,
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system (4.4) is equivalent to system (1.7) with

r1 = R1(∞), α1(·) =
R1(·)
R1(∞)

, a3 =
γ1R3(∞)

R1(∞)
,

r3 = R3(∞), α3(·) =
R3(·)
R3(∞)

, c1 =
γ3R1(∞)

R3(∞)
.

Hence the constant µ2(∞) defined in [11] is given by

µ2(∞) =
√
r1(1− a3)/d1 = λ∗.

Since Q1(ρi) ≤ s implies that ρi ≥ λ1 ≥ λ∗, the decay rates of R1 and R3 imposed in [11]

are stronger than that in Corollary 1.3.

On the other hand, condition (LD) in [11] for system (1.7) reads

(4.5) min

{
1, 2− d3

d1

}
≥ r3(a3c1 − 1)+

r1(1− a3)
.

Fixing d1 > 0, the optimal range for admissible d3 is (0, 2d1], when a3c1 ≤ 1. Hence condition

(LD) is weaker than our condition (1.12) in Corollary 1.3.
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