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Abstract. This paper is concerned with the existence and non-existence of forced waves

for a three species predator-prey system in a shifting environment. The speed of these

forced waves is the same as the shifting speed of the living environment of these species. We

assume that their habitat changes to the hostile environment as time increases. This makes

all species go extinction eventually. Under certain conditions on parameters, we obtain two

different types (front and mixed front-pulse types) forced waves that connecting different

constant states and the extinction state. Moreover, we are able to characterize the minimal

shifting speed for each mixed front-pulse type forced waves.

1. Introduction

Global warming is one of the major long-term threats and challenges worldwide. Climate

change causes environmental changes such as sea level rise, precipitation change, and deser-

tification. This indeed is one of the major challenges in ecology, because it directly affects

the survival and extinction of species. In addition, as many species become extinct due to

climate change, species diversity is expected to decrease which would cause an irreversible

influence of the ecological system. Recently, mathematical biologists have established and

studied various mathematical models for climate change and its effect on species ecology.

For a single species model, the following scalar equation is considered:

ut(x, t) = duxx(x, t) + u(x, t)f(x− st, u(x, t))

in which t is the time variable and x is the spatial variable. Here, s is the climate change

speed, f models a population growth depending on the climate change and d is the diffusion

coefficient of the species u.

For the scalar model, Berestycki et al. [1] considered the discontinuous moving habitat

patch, and showed that minimum patch size for the persistence of species. For a continuous

population growth, authors in [12, 16] studied the existence of forced waves for Fisher’s

equation with

f(x− st, u) = α(x− st)− u,
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where α is a monotone bounded function which takes both positive and negative values.

Here a forced wave is a traveling wave solution with wave speed s (the given climate change

speed). A single species model with some general KPP type nonlinearity was investigated in

[2]. In [3, 4], authors studied the forced waves in higher spatial dimension with general type

of functional response. In addition, propagation of species in time-periodic shifting habitat is

studied in [13]. See also [20, 23, 21, 5, 25, 9] for some more related works on scalar equation.

For two interacting species, most works on the climate change were in competition and

cooperative models. We refer the reader to [27] for a cooperative model; the existence of

forced wave [24, 10] and the persistence and extinction of species [29, 28, 26] for a competition

model; and a gap formation in competition model when the species’ favorable habitats shift

with opposite directions [1]. We also refer the reader to [19, 11, 17, 18] for the study of

forced waves in a free boundary formulation.

However, due to the lack of comparison principle, predator-prey models with the climate

change effect were not studied too much. Not until recently, Choi et al. [8] investigated the

existence of forced waves and the persistence of species for a two-species predator-prey model

with either local or nonlocal dispersal. To our knowledge, three or more species predator-prey

models with climate change have not been studied so far. For the studies of traveling waves

on predator-prey models without the climate change (i.e., in the homogeneous environment),

we refer the reader to, e.g., the survey paper [14] and references cited therein.

In this paper, we consider the following diffusive predator-prey model with two preys and

one predator:

(1.1)


ut(x, t) = d1uxx(x, t) + r1u(x, t)[α(x− st)− (u+ hv + aw)(x, t)], x ∈ R, t > 0,

vt(x, t) = d2vxx(x, t) + r2v(x, t)[α(x− st)− (ku+ v + aw)(x, t)], x ∈ R, t > 0,

wt(x, t) = d3wxx(x, t) + r3w(x, t)(−1 + bu+ bv − w)(x, t), x ∈ R, t > 0,

where the unknown functions u, v and w respectively stand for the population densities of two

preys and predator species at position x and time t. Parameters d1, d2, d3, r1, r2, r3, h, k, a, b

are positive and represent the diffusion coefficients, intrinsic growth rates, competing rates,

predation rate and conversion rate, respectively. The given positive constant s denotes the

climate change speed.

The function α(·) models the climate change which depends on a shifting variable, and

throughout the paper we assume that it satisfies the following properties:

(α1) α is continuous and nondecreasing in R;
(α2) −∞ < α(−∞) < 0 < α(∞) < ∞;

(α3) There exist C > 0 and ρ > 0 such that α(∞)− α(z) ≤ Ce−ρz for large z.

This means that the environment is favourable to the prey ahead of the climate change, then

gradually deteriorates until it becomes hostile to the species. Here, without loss of generality

(up to a rescaling) we choose α(∞) = 1.

In this paper, we assume that two preys compete weakly, i.e. h, k < 1. For a given pair

(h, k), we impose the following condition on the parameters a and b:

(1.2) 0 < a < min
{1− h

2b
,
1− k

2b

}
.
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In addition, we assume that b > 1, which means the predator can survive in given system

when at least one prey exists.

We are mainly interested in the existence of forced waves for (1.1), namely, a solution of

(1.1) in the form (u, v, w)(x, t) = (ϕ1, ϕ2, ϕ3)(z), z := st− x. Then (ϕ1, ϕ2, ϕ3) satisfies

(1.3)


sϕ′

1(z) = d1ϕ
′′
1(z) + r1ϕ1(z)[α(−z)− ϕ1(z)− hϕ2(z)− aϕ3(z)], z ∈ R,

sϕ′
2(z) = d2ϕ

′′
2(z) + r2ϕ2(z)[α(−z)− kϕ1(z)− ϕ2(z)− aϕ3(z)], z ∈ R,

sϕ′
3(z) = d3ϕ

′′
3(z) + r3ϕ3(z)[−1 + bϕ1(z) + bϕ2(z)− ϕ3(z)], z ∈ R.

Due to the hostile environment (by the assumption on α), all species go extinction eventually.

This is equivalent to the boundary condition (ϕ1, ϕ2, ϕ3)(+∞) = (0, 0, 0).

We shall consider the following possible limiting behaviors at z = −∞:

E1 = (1, 0, 0), E2 =
( 1− h

1− hk
,
1− k

1− hk
, 0
)
, E3 =

( 1 + a

1 + ab
, 0,

b− 1

1 + ab

)
,

E4 =
( (1 + a)(1− h)

1− hk + ab(2− h− k)
,

(1 + a)(1− k)

1− hk + ab(2− h− k)
,
b(2− h− k)− 1 + hk

1− hk + ab(2− h− k)

)
.

In fact, there are two other possible limits

Ê1 = (0, 1, 0), Ê3 =
(
0,

1 + a

1 + ab
,
b− 1

1 + ab

)
.

Since these two cases can be treated similarly, we omit it here.

Biologically, the state E1 at z = −∞ can be thought as a saturated aboriginal prey living

in the habitat and there are one invading alien predator along with one invading alien prey;

while E2: two competing aboriginal co-existent preys and an invading alien predator; and

E3: a pair of aboriginal co-existent predator-prey and an invading alien prey.

For a scalar wave profile ϕ(x− st), it is called a front type if ϕ(−∞) 6= ϕ(+∞); and it is

a pulse type if ϕ(±∞) = 0. We now describe our main results as follows.

First, for the front type (for all components) waves, we have

Theorem 1.1. Suppose that b > 1 and (1.2) hold. If we assume further that

(1.4) a <
−1 + b(2− h− k)

2b(2b− 1)
, b >

1

2− h− k
,

then there exists a positive solution (ϕ1, ϕ2, ϕ3) of (1.3) such that

(ϕ1, ϕ2, ϕ3)(−∞) = E4, (ϕ1, ϕ2, ϕ3)(+∞) = (0, 0, 0)

for any s > 0.

Next, we consider the mixed front-pulse type waves. For waves connecting E1, we let

s∗2 := 2
√

d2r2(1− k), s∗3 := 2
√

d3r3(b− 1).

Also, we assume without loss of generality that s∗3 ≥ s∗2 and define

s∗0(ρ) :=

{
d3ρ+ r3(b− 1)/ρ, if ρ < ρ∗∗,

s∗3, if ρ ≥ ρ∗∗,

where the constant ρ is defined in (α3) and ρ∗∗ :=
√

r3(b− 1)/d3.
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Theorem 1.2. Given ρ > 0 in (α3). Suppose b > 1, (1.2) and

(1.5) d2 = d3 ≥ d1, r2(1− k) = r3(b− 1)

hold. Then there exists a positive solution (ϕ1, ϕ2, ϕ3) of (1.3) with

(1.6) (ϕ1, ϕ2, ϕ3)(−∞) = E1, (ϕ1, ϕ2, ϕ3)(+∞) = (0, 0, 0),

provided that s ≥ s∗0(ρ) and s > s∗3 = s∗2. Moreover, in addition to (1.5), if we further assume

d1 = d2 = d3, then a positive solution with (1.6) exists for s = s∗0(ρ) = s∗3 = s∗2.

For the waves connecting E2, we let

s∗∗3 := 2
√

d3r3β2, β2 := −1 + b(uc + vc), (uc, vc) :=

(
1− h

1− hk
,
1− k

1− hk

)
and define

s∗c(ρ) :=

{
d3ρ+ r3β2/ρ, if ρ ∈ (0, ρ∗),

s∗∗3 , if ρ ≥ ρ∗,

where ρ∗ :=
√

r3β2/d3. Then we have

Theorem 1.3. Given ρ > 0 in (α3). Suppose b > 1, d3 ≥ max{d1, d2}/2 and (1.2) hold.

Then there exists a positive solution (ϕ1, ϕ2, ϕ3) of (1.3) such that

(1.7) (ϕ1, ϕ2, ϕ3)(−∞) = E2, (ϕ1, ϕ2, ϕ3)(+∞) = (0, 0, 0),

provided s ≥ s∗c(ρ) and s > s∗∗3 . Moreover, if we further assume that d3 ≤ min{d1, d2}, then
a positive solution with (1.7) exists for s = s∗c(ρ) = s∗∗3 .

For E3, we let

s∗∗2 := 2
√

d2r2δ2, δ2 := 1− kup − awp, (up, wp) :=
( 1 + a

1 + ab
,
b− 1

1 + ab

)
and define

s∗p(ρ) :=

{
d2ρ+ r2δ2/ρ, if ρ ∈ (0, ρ∗),

s∗∗2 , if ρ ≥ ρ∗,

where ρ∗ :=
√

r2δ2/d1. Then we have

Theorem 1.4. Given ρ > 0 in (α3). Suppose b > 1 and

(1.8) d2 ≥ max{d1, d3}, r2δ2 > max{r1a(2b− 1), r3}.

Then there exists a positive solution (ϕ1, ϕ2, ϕ3) of (1.3) with

(1.9) (ϕ1, ϕ2, ϕ3)(−∞) = E3, (ϕ1, ϕ2, ϕ3)(+∞) = (0, 0, 0),

provided s ≥ s∗p(ρ) and s > s∗∗2 . Moreover, if we assume that

(1.10) d1 = d2 ∈ (d3/2, d3], r2δ2(2− d3/d2) ≥ r3bup, r2δ2 > r1a(2b− 1)

holds, then a positive solution exists for s = s∗p(ρ) = s∗∗2 .
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Since our model is a non-monotone system, the classical monotone iteration method to de-

rive the existence of traveling waves cannot be applied. To overcome it, we apply Schauder’s

fixed point theorem with the help of generalized upper-lower solutions [22] to derive the

existence of forced waves. This method has been proved to be very successful in dealing

with non-monotone systems. However, due to the climate change involved, some more cares

are needed for the mixed type waves. In particular, with the exponential decay condition on

α, we introduce a shifted system (see (4.2)) to derive the existence of forced waves for this

new system first. Then by shifting back we are able to obtain the existence of forced waves

for the original system.

In this paper, we construct the suitable upper-lower solutions pairs not only for the front

type waves but also for the mixed front-pulse type waves. With the shifting heterogeneity,

the dynamics of this three-species predator-prey system is much more complex than the

corresponding homogeneous case. Moreover, we also obtain the minimal shifting speed for

each mixed front-pulse type waves under a faster exponential decay condition on α and cer-

tain conditions on the parameters of predator-prey model. The characterization of minimal

speeds for the existence of mixed type forced waves are stated and proved in Propositions 4.3,

4.6 and 4.9 (see §4 below). A new idea of the proof of non-existence of forced waves (see

Proposition 4.3) is introduced.

The remainder of this paper is organized as follows. Some preliminary results are presented

in Section 2. In Section 3, we study the existence of front type forced waves that connect

(0, 0, 0) to E4. Then the proofs of Theorems 1.2-1.4, the existence and non-existence of

mixed front-pulse type waves for (1.1) connecting (0, 0, 0) to E1, E2 and E3, respectively, are

given in Section 4.

2. Preliminaries

We first introduce the following notion of (generalized) upper-lower solutions of (1.3).

Definition 2.1. Continuous functions (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) are called a pair of upper

and lower solutions of (1.3) if ϕi ≥ ϕi, i = 1, 2, 3, and the following inequalities

sϕ
′
1(z) ≥ d1ϕ

′′
1(z) + r1ϕ1(z)[α(−z)− ϕ1(z)− hϕ

2
(z)− aϕ

3
(z)],(2.1)

sϕ
′
2(z) ≥ d2ϕ

′′
2(z) + r2ϕ2(z)[α(−z)− kϕ

1
(z)− ϕ2(z)− aϕ

3
(z)],(2.2)

sϕ
′
3(z) ≥ d3ϕ

′′
3(z) + r3ϕ3(z)[−1 + bϕ1(z) + bϕ2(z)− ϕ3(z)],(2.3)

sϕ′
1
(z) ≤ d1ϕ

′′
1
(z) + r1ϕ1

(z)[α(−z)− ϕ
1
(z)− hϕ2(z)− aϕ3(z)],(2.4)

sϕ′
2
(z) ≤ d2ϕ

′′
2
(z) + r2ϕ2

(z)[α(−z)− kϕ1(z)− ϕ
2
(z)− aϕ3(z)],(2.5)

sϕ′
3
(z) ≤ d3ϕ

′′
3
(z) + r3ϕ3

(z)[−1 + bϕ
1
(z) + bϕ

2
(z)− ϕ

3
(z)](2.6)

hold for all z ∈ R \ E for some finite subset E of R.

Then we have the following lemma for the existence of wave profiles. Since its proof by

now is standard, we omit it and refer the reader to, e.g., [22].
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Lemma 2.1. Let s > 0 be given. Let (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) be a pair of upper and

lower solutions of (1.3) satisfying, for i = 1, 2, 3,

(2.7) ϕ
′
i(z−) ≥ ϕ

′
i(z+) and ϕ′

i
(z−) ≤ ϕ′

i
(z+) for z ∈ E.

Then (1.3) admits a solution (ϕ1, ϕ2, ϕ3) such that ϕ
i
(z) ≤ ϕi(z) ≤ ϕi(z) for all z ∈ R for

i = 1, 2, 3.

Next, we provide a proof of the right-hand tail limit as follows.

Proposition 2.2. It holds (ϕ1, ϕ2, ϕ3)(∞) = (0, 0, 0) for any nonnegative solution (ϕ1, ϕ2, ϕ3)

of (1.3).

Proof. For contradiction, we assume that ϕ+
1 := lim supz→∞ ϕ1(z) > 0. When ϕ1 is oscillatory

near z = +∞, there is a maximal sequence {zn} of ϕ1 such that zn → ∞ and ϕ1(zn) → ϕ+
1

as n → ∞. It follows from the ϕ1-equation of (1.3) and α(−∞) < 0 that

0 = lim sup
n→∞

{d1ϕ′′
1(zn) + r1ϕ1(zn)[α(−zn)− ϕ1(zn)− hϕ2(zn)− aϕ3(zn)]}

≤ r1ϕ
+
1 [α(−∞)− ϕ+

1 − h lim inf
n→∞

ϕ2(zn)− a lim inf
n→∞

ϕ3(zn)] < 0,

a contradiction. The inequality holds because d1ϕ
′′
1(zn) ≤ 0 for maximally chosen zn.

On the other hand, suppose that ϕ1 is monotone ultimately at z = +∞. Then ϕ1(z) → ϕ+
1

as z → ∞. Also, we can find a sequence {zn} with zn → ∞ such that ϕ′
1(zn) → 0 as n → ∞.

Integrating the ϕ1-equation in (1.3) from 0 to zn, we obtain

(2.8) d[ϕ′
1(0)−ϕ′

1(zn)]+ s[ϕ1(zn)−ϕ1(0)] = r1

∫ zn

0

{ϕ1(y)[α(−y)− (ϕ1+hϕ2+aϕ3)(y)]}dy.

By taking K � 1 so that ϕ1(y) ≥ ϕ+
1 /2 and α(−y) ≤ 0 for all y ≥ K, we get

ϕ1(y)[α(−y)− (ϕ1 + hϕ2 + aϕ3)(y)] ≤ −ϕ2
1(y) ≤ −(ϕ+

1 )
2/4 < 0, ∀ y ≥ K.

Hence the integral ∫ ∞

0

{ϕ1(y)[α(−y)− (ϕ1 + hϕ2 + aϕ3)(y)]}dy

diverges. However, the left-hand side of (2.8) is uniformly bounded with respect to n, a

contradiction. This proves that ϕ1(∞) = 0. Similarly, we obtain limz→∞ ϕ2(z) = 0.

Next, we assume for contradiction that ϕ+
3 := lim supz→∞ ϕ3(z) > 0. When ϕ3 is oscillatory

near z = +∞, we have a maximal sequence {zn} of ϕ3 such that zn → ∞ and ϕ3(zn) → ϕ+
3

as n → ∞. It follows from the ϕ3-equation of (1.3) that

0 = lim sup
n→∞

{d3ϕ′′
3(zn) + r3ϕ3(zn)[−1 + b(ϕ1(zn) + ϕ2(zn))− ϕ3(zn)]}

≤ r3ϕ
+
3 (−1− ϕ+

3 ) < 0,

a contradiction again. The case when ϕ3 is monotone ultimately at z = +∞ can be treated

as the above argument for ϕ1. Hence ϕ3(∞) = 0 and so we have proved

(2.9) (ϕ1, ϕ2, ϕ3)(∞) = (0, 0, 0)

for any nonnegative solution (ϕ1, ϕ2, ϕ3) of (1.3). �
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We remark here, by the strong maximum principle, that any nonnegative nontrivial solu-

tion (ϕ1, ϕ2, ϕ3) of (1.3) must be positive (in the sense that ϕi > 0 in R for all i = 1, 2, 3).

We shall consider separately two different classes of forced waves in the following sections.

3. Front type forced waves

Recall (1.2) and (1.4). First, it follows from [16, Theorem 1.1] with z 7→ −z that there is

a non-increasing functions ϕ
1
and ϕ

2
such that

sϕ′
1
(z) = d1ϕ

′′
1
(z) + r1ϕ1

(z)[α(−z)− h− a(2b− 1)− ϕ
1
(z)], z ∈ R,(3.1)

sϕ′
2
(z) = d2ϕ

′′
2
(z) + r2ϕ2

(z)[α(−z)− k − a(2b− 1)− ϕ
2
(z)], z ∈ R,(3.2)

and

lim
z→−∞

ϕ
1
(z) = 1− h− a(2b− 1) > 0, lim

z→∞
ϕ
1
(z) = 0,

lim
z→−∞

ϕ
2
(z) = 1− k − a(2b− 1) > 0, lim

z→∞
ϕ
2
(z) = 0.

Also, it follows from [16, Theorem 1.1] again that there exists a non-increasing function ϕ
3

such that

(3.3) sϕ′
3
(z) = d3ϕ

′′
3
(z) + r3ϕ3

(z)[−1 + b(ϕ
1
(z) + ϕ

2
(z))− ϕ

3
(z)], z ∈ R,

and

lim
z→−∞

ϕ
3
(z) = −1 + b[2− h− k − 2a(2b− 1)] > 0, lim

z→∞
ϕ
3
(z) = 0.

With the function (ϕ
1
, ϕ

2
, ϕ

3
), we have

Lemma 3.1. Suppose that (1.2) holds. Then there exists a solution (ϕ1, ϕ2, ϕ3) of (1.3) such

that ϕ
1
≤ ϕ1 ≤ 1, ϕ

2
≤ ϕ2 ≤ 1 and ϕ

3
≤ ϕ3 ≤ 2b− 1 in R.

Proof. Let (ϕ1, ϕ2, ϕ3) = (1, 1, 2b− 1). Then, by (3.1)-(3.3), (2.4)-(2.6) hold for all z ∈ R.
It remains to show (ϕ1, ϕ2, ϕ3) and (ϕ

1
, ϕ

2
, ϕ

3
) satisfy (2.1)-(2.3). Since α(−z) ≤ 1 for

z ∈ R,

d1ϕ
′′
1(z) + r1ϕ1(z)[α(−z)− ϕ1(z)− hϕ

2
(z)− aϕ

3
(z)] ≤ r1[α(−z)− 1] ≤ 0 = sϕ

′
1(z),

d2ϕ
′′
2(z) + r2ϕ2(z)[α(−z)− kϕ

1
(z)− ϕ2(z)− aϕ

3
(z)] ≤ r2[α(−z)− 1] ≤ 0 = sϕ

′
2(z),

and so (2.1) and (2.2) hold for all z ∈ R. Finally, it is easy to check that

d3ϕ
′′
3(z) + r3ϕ3(z)[−1 + bϕ1(z) + bϕ2(z)− ϕ3(z)]

= r2(2b− 1)[−1 + 2b− (2b− 1)] = 0 = sϕ
′
3(z).

Since ϕi ≥ ϕi, i = 1, 2, 3, (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) are a pair of upper and lower solutions.

Clearly, condition (2.7) in Lemma 2.1 holds. Hence, by Lemma 2.1, the proof is done. �

In the sequel, we set

ϕ+
i := lim sup

z→−∞
ϕi(z), ϕ−

i := lim inf
z→−∞

ϕi(z), i = 1, 2, 3,
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for a solution (ϕ1, ϕ2, ϕ3) of (1.3). Since ϕi ≥ ϕ
i
, we have

(3.4) ϕ−
i ≥ γi for i = 1, 2, 3,

where

γ1 := 1− h− a(2b− 1), γ2 := 1− k − a(2b− 1),

γ3 := −1 + bγ1 + bγ2 = −1 + b[2− h− k − 2a(2b− 1)]

are all positive due to (1.2) and (1.4). Then the following lemma can be proved by a similar

argument to that in [7, 15, 6] with some modifications.

Lemma 3.2. Assume the condition (1.2) is enforced. Let (ϕ1, ϕ2, ϕ3) be a solution of (1.3)

obtained from Lemma 3.1. Then (ϕ1, ϕ2, ϕ3)(−∞) = E4 =: (u∗, v∗, w∗).

Proof. Consider the following functions

m1(θ) := θu∗ + (1− θ)(γ1 − ε), M1(θ) := θu∗ + (1− θ)(1 + ε), θ ∈ [0, 1],

m2(θ) := θv∗ + (1− θ)(γ2 − ε), M2(θ) := θv∗ + (1− θ)(1 + ε), θ ∈ [0, 1],

m3(θ) := θw∗ + (1− θ)(γ3 − τ1ε), M3(θ) := θw∗ + (1− θ)(2b− 1 + τ2ε), θ ∈ [0, 1],

where

τ1 := max{3b, 2(1− h)/a, 2(1− k)/a}, τ2 := (2b+min{(1− h)/a, (1− k)/a})/2

and ε is chosen to satisfy

(3.5) 0 < ε < min

{
γ1, γ2,

γ3
τ1
,
hγ2 + aγ3
aτ1 − 1 + h

,
kγ1 + aγ3
aτ1 − 1 + k

}
.

Note that

(3.6) τ2 ∈ (2b,min{(1− h)/a, (1− k)/a})

due to (1.2).

By (3.4), it is obvious that

(3.7) mi(θ) < ϕ−
i ≤ ϕ+

i < Mi(θ),

holds for θ = 0 for i = 1, 2, 3. Hence the quantity

θ0 := sup{θ ∈ [0, 1) : (3.7) holds for i = 1, 2, 3}

is well-defined. Note that u∗ < 1, v∗ < 1 and w∗ < 2b− 1. Since (u∗, v∗, w∗) satisfies

u∗ = 1− hv∗ − aw∗, v∗ = 1− ku∗ − aw∗, w∗ = −1 + b(u∗ + v∗),

we have u∗ > 1−h−a(2b−1) = γ1, v
∗ > 1−k−a(2b−1) = γ2 and w∗ > −1+b(γ1+γ2) = γ3.

Then the function mi(θ) (resp. −Mi(θ)) is increasing in θ ∈ [0, 1], i = 1, 2, 3. Moreover,

m1(1) = M1(1) = u∗, m2(1) = M2(1) = v∗ and m3(1) = M3(1) = w∗. Therefore, we only

need to show that θ0 = 1.

For contradiction, we suppose that θ0 < 1. By passing to limit, we have

mi(θ0) ≤ ϕ−
i ≤ ϕ+

i ≤ Mi(θ0)
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for i = 1, 2, 3. By the definition of θ0 and the continuity of mi(θ) and Mi(θ), (3.7) cannot

hold for θ = θ0 for all i = 1, 2, 3. This means that at least one of the following equalities

holds:

(3.8) ϕ−
i = mi(θ0), ϕ+

i = Mi(θ0), i = 1, 2, 3.

First, we assume that ϕ−
1 = m1(θ0). If ϕ1 is eventually monotone, then ϕ1(−∞) exists,

and lim infz→−∞ ϕ′
1(z) = 0 or lim supz→−∞ ϕ′

1(z) = 0. Then there exists a sequence {zn}
with zn → −∞ as n → ∞ such that limn→∞ ϕ′

1(zn) = 0 and limn→∞ ϕ1(zn) = m1(θ0). Since

lim supn→∞ ϕ2(zn) ≤ M2(θ0) and lim supn→∞ ϕ3(zn) ≤ M3(θ0), we have

lim inf
n→∞

[α(−zn)− ϕ1(zn)− hϕ2(zn)− aϕ3(zn)]

≥ 1− [θ0u
∗ + (1− θ0)(γ1 − ε)]− h[θ0v

∗ + (1− θ0)(1 + ε)]

−a[θ0w
∗ + (1− θ0)(2b− 1 + τ2ε)]

= ε(1− h− aτ2)(1− θ0) > 0.

The last inequality holds by the choice of τ2 and (3.6). By integrating the ϕ1-equation of

(1.3) from 0 to zn, we have

ϕ′
1(zn)− ϕ′

1(0)− s(ϕ1(zn)− ϕ1(0)) = −r1

∫ zn

0

ϕ1(z)[α(−z)− ϕ1(z)− hϕ2(z)− aϕ3(z)]dz.

Since the right hand side goes to +∞ as n → ∞ and the left hand side is bounded, we have

a contradiction.

Next, we assume that ϕ1 is oscillatory at −∞. Then we can choose a sequence {zn} of

minimal points of ϕ1 with zn → −∞ as n → ∞ such that limn→∞ ϕ1(zn) = m1(θ0). Since zn
is a minimal point of ϕ1, ϕ

′
1(zn) = 0 and ϕ′′

1(zn) ≥ 0 for all n. Similarly, we obtain from the

first equation of (1.3) that

0 = lim inf
n→∞

sϕ′
1(zn) ≥ lim inf

n→∞
{r1ϕ1(zn)[α(−zn)− ϕ1(zn)− hϕ2(zn)− aϕ3(zn)]} > 0,

a contradiction. Hence ϕ−
1 = m1(θ0) cannot happen.

The other cases in (3.8) can be treated similarly using the following inequalities:

(i) for ϕ+
1 = M1(θ0),

lim sup
n→∞

[α(−zn)− ϕ1(zn)− hϕ2(zn)− aϕ3(zn)]

≤ 1− [θ0u
∗ + (1− θ0)(1 + ε)]− h[θ0v

∗ + (1− θ0)(γ2 − ε)]

−a[θ0w
∗ + (1− θ0)(γ3 − τ1ε)]

= (1− θ0)[(aτ1 − 1 + h)ε− (hγ2 + aγ3)] < 0,

using (3.5);
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(ii) for ϕ−
2 = m2(θ0),

lim inf
n→∞

[α(−zn)− ϕ2(zn)− kϕ1(zn)− aϕ3(zn)]

≥ 1− [θ0v
∗ + (1− θ0)(γ2 − ε)]− k[θ0u

∗ + (1− θ0)(1 + ε)]

−a[θ0w
∗ + (1− θ0)(2b− 1 + τ2ε)]

= ε(1− k − aτ2)(1− θ0) > 0,

using (3.6);

(iii) for ϕ+
2 = M2(θ0),

lim sup
n→∞

[α(−zn)− ϕ2(zn)− kϕ1(zn)− aϕ3(zn)]

≤ 1− [θ0v
∗ + (1− θ0)(1 + ε)]− k[θ0u

∗ + (1− θ0)(γ1 − ε)]

−a[θ0w
∗ + (1− θ0)(γ3 − τ1ε)]

= (1− θ0)[(aτ1 − 1 + k)ε− (kγ1 + aγ3)] < 0,

using (3.5);

(iv) for ϕ−
3 = m3(θ0),

lim inf
n→∞

[−1 + b(ϕ1(zn) + ϕ2(zn))− ϕ3(zn)]

≥ −1 + b[θ0u
∗ + (1− θ0)(γ1 − ε)] + b[θ0v

∗ + (1− θ0)(γ2 − ε)]

−[θ0w
∗ + (1− θ0)(γ3 − τ1ε)]

= ε(τ1 − 2b)(1− θ0) > 0,

using τ1 ≥ 3b;

(v) for ϕ+
3 = M3(θ0),

lim sup
n→∞

[−1 + b(ϕ1(zn) + ϕ2(zn))− ϕ3(zn)]

≤ −1 + b[θ0u
∗ + (1− θ0)(1 + ε)] + b[θ0v

∗ + (1− θ0)(1 + ε)]

−[θ0w
∗ + (1− θ0)(2b− 1 + τ2ε)]

= ε(2b− τ2)(1− θ0) < 0,

using (3.6).

Similarly to the case ϕ−
1 = m1(θ0) by using these inequalities, we can show that all cases

in (3.8) are impossible. Therefore, the lemma is proved. �

From Lemma 3.1, Proposition 2.2 and Lemma 3.2, we have proved Theorem 1.1.

4. Mixed front-pulse type forced waves

In this section, we show the existence of mixed front-pulse type forced waves connecting

Ei to (0, 0, 0) for i = 1, 2, 3. Construction of upper and lower solutions are motivated by

[7, 6].
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First, by the assumption (α3), there is a positive constant K such that 1− α(z) ≤ Ce−ρz

for all z ≥ K. By choosing C larger (if necessary), we indeed have 1− α(z) ≤ Ce−ρz for all

z ∈ R. Then we have

α(−z +M) ≥ 1− Ce−ρMeρz, ∀ z ∈ R,

for any constant M . Hence, for a given small ε > 0, we can choose M = M(ε) large enough

such that

(4.1) α(−z +M) ≥ 1− εeρz, ∀ z ∈ R.

With this M , we consider the system

(4.2)


sϕ′

1(z) = d1ϕ
′′
1(z) + r1ϕ1(z)[α(−z +M)− ϕ1(z)− hϕ2(z)− aϕ3(z)], z ∈ R,

sϕ′
2(z) = d2ϕ

′′
2(z) + r2ϕ2(z)[α(−z +M)− kϕ1(z)− ϕ2(z)− aϕ3(z)], z ∈ R,

sϕ′
3(z) = d3ϕ

′′
3(z) + r3ϕ2(z)[−1 + bϕ1(z) + bϕ2(z)− ϕ3(z)], z ∈ R.

To investigate the existence of mixed front-pulse type forced waves, we first show that (2.1)-

(2.6) hold for α(−z) replaced by α(−z + M) for a suitably chosen small ε > 0 and its

corresponding M . Then a solution (ϕ1, ϕ2, ϕ3) of (4.2) renders a solution of (1.3) by a

translation from z to z +M .

4.1. Waves connecting E1.

Note that (α3) holds for any ρ′ ≤ ρ. Hence, when ρ ≥ ρ∗∗, (α3) also holds for ρ replaced

by any ρ ≤ ρ∗∗.

Case 1. s ≥ s∗0(ρ) and s > s∗3.

In this case, there exist λi, i = 1, 2, 3, 4, such that 0 < λ1 < λ2 and 0 < λ3 < λ4 for which{
A1(λi) := d2λ

2
i − sλi + r2(1− k) = 0, i = 1, 2,

A2(λi) := d3λ
2
i − sλi + r3(−1 + b) = 0, i = 3, 4.

Recall from (1.5) that A1 = A2 so that λ1 = λ3 and λ2 = λ4. Choose{
ε ∈ (0, [r3(b− 1)]/r1),

µ̃ ∈ (λ3,min{2λ3, λ4}), µ′ ∈ (λ3,min{2λ3, λ4}).

Since µ̃ ∈ (λ3, λ4) and µ′ ∈ (λ3, λ4), we have A2(µ̃) < 0 and A2(µ
′) < 0. We define

ϕ1(z) ≡ 1, ϕ
1
(z) = max{1− eλ3z, 0},

ϕ2(z) = min{eλ3z, 1}, ϕ
2
(z) = max{eλ3z − q1e

µ̃z, 0},
ϕ3(z) = min{(2b− 1)eλ3z, 2b− 1}, ϕ

3
(z) = max{(2b− 1)eλ3z − q2e

µ′z, 0},

where

(4.3) q1 > max
{
1,

r2[ε+ 1 + a(2b− 1)]

−A2(µ̃)

}
, q2 > max

{
2b− 1,

r3(2b− 1)(3b− 1)

−A2(µ′)

}
.

Note that, by (4.3), there exist z1 < 0 and z2 < 0 such that

eλ3z1 − q1e
µ̃z1 = (2b− 1)eλ3z2 − q2e

µ′z2 = 0.
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Then we have

Lemma 4.1. Suppose s ≥ s∗0(ρ), s > s∗3 and condition (1.5) holds. Then there exists a

solution (ϕ1, ϕ2, ϕ3) of (1.3) such that ϕ
1
≤ ϕ1 ≤ ϕ1, ϕ2

≤ ϕ2 ≤ ϕ2 and ϕ
3
≤ ϕ3 ≤ ϕ3 in R.

Proof. We consider system (4.2) for the corresponding constant M(ε) and show that (2.1)-

(2.6) hold for α(−z) replaced by α(−z +M). Note that, since s ≥ s∗0(ρ), we have ρ ≥ λ3.

Hence we may choose ρ = λ3.

Since ϕ = 1 for z ∈ R and ϕ2 = 1, ϕ3 = 2b − 1 for z > 0, (2.1) holds for z ∈ R and

(2.2)-(2.3) hold for z > 0. For z < 0, we have

d2ϕ
′′
2 − sϕ

′
2 + r2ϕ2[α(−z +M)− kϕ

1
− ϕ2 − aϕ

3
]

≤ eλ3z[d2λ
2
3 − sλ3 + r2(1− k + keλ3z − eλ3z − aϕ

3
)] ≤ 0,

using d2 = d3, r2(1− k) = r3(b− 1) and k < 1. Thus (2.2) holds for z 6= 0. Also, for z < 0,

d3ϕ
′′
3 − sϕ

′
3 + r3ϕ3[−1 + b(ϕ1 + ϕ2)− ϕ3] = r3ϕ3e

λ3z(1− b) ≤ 0.

Hence (2.3) holds for z 6= 0.

Next, it is trivial that (2.4) holds for z > 0. For z < 0, we compute

d1ϕ
′′
1
− sϕ′

1
+ r1ϕ1

[α(−z +M)− ϕ
1
− hϕ2 − aϕ3]

≥ −(d1λ
2
3 − sλ3)e

λ3z + r1(1− eλ3z)[1− εeρz − (1− eλ3z)− heλ3z − a(2b− 1)eλ3z]

≥ −(d3λ
2
3 − sλ3)e

λ3z − r1εe
ρz = eλ3z[r3(b− 1)− r1ε] ≥ 0,

using a(2b − 1) < 2ab < 1 − h (due to (1.2)), d1 ≤ d3, ρ = λ3 and the choice of ε. Hence

(2.4) holds for z 6= 0.

Now, for z > z1, (2.5) immediately hold. Thus we only need to consider z < z1. For

z < z1, we compute, using ρ = λ3, d2 = d3, r2(1− k) = r3(b− 1),

d2ϕ
′′
2
− sϕ′

2
+ r2ϕ2

[α(−z +M)− kϕ1 − ϕ
2
− aϕ3]

≥ eλ3z[d2λ
2
3 − sλ3 + r2(1− k)]− q1e

µ̃z[d2µ̃
2 − sµ̃+ r2(1− k)]

+r2ϕ2
(z)[−εeρz − (eλ3z − q1e

µ̃z)− a(2b− 1)eλ3z]

= −q1e
µ̃zA2(µ̃) + r2e

λ3z[−εeρz − eλ3z − a(2b− 1)eλ3z]

= eµ̃z{−q1A1(µ̃)− r2e
(2λ3−µ̃)z[ε+ 1 + a(2b− 1)]} ≥ 0,

by the choice of µ̃ and (4.3). Hence (2.5) holds for z 6= z1. Similarly, for z < z2 we compute

d3ϕ
′′
3
− sϕ′

3
+ r3ϕ3

[−1 + b(ϕ
1
+ ϕ

2
)− ϕ

3
]

= (2b− 1)eλ3z[d3λ
2
3 − sλ3 + r3(−1 + b)]− q2e

µ′z[d3(µ
′)2 − sµ′ + r3(−1 + b)]

+r3ϕ3
(z)[−beλ3z + bϕ

2
− (2b− 1)eλ3z + q2e

µ′z]

≥ −q2e
µ′zA2(µ

′) + r3(2b− 1)eλ3z[−beλ3z − (2b− 1)eλ3z]

= −q2e
µ′zA2(µ

′) + r3(2b− 1)e2λ3z[−b− (2b− 1)]

≥ eµ
′z[−q2A2(µ

′)− r3(2b− 1)(3b− 1)e(2λ3−µ′)z] ≥ 0,
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by the choice of µ′ and (4.3). Hence (2.6) holds for z 6= z2. Therefore, the lemma follows by

applying Lemma 2.1. �

Case 2. s = s∗0(ρ) = s∗3 and s∗3 = s∗2.

For s = s∗3, the equation A2(λ) = 0 has a double root λ0 = ρ∗∗. We assume that

d1 = d2 = d3. Note that λ0 satisfies

diλ
2
0 − sλ0 + r2(1− k) = diλ

2
0 − sλ0 + r3(b− 1) = 0, 2diλ0 = s, i = 1, 2, 3.

Let L0 = λ0e. Choose ε ∈ (0, e[1− h− a(2b− 1)]) and

ζ1 > max

{
e(λ0)

1/2, 4r2L0

[
ε
( 5

2L0

)5/2

+ (1 + a(2b− 1))L0

( 7

2L0

)7/2]/
d2

}
,(4.4)

ζ2 > max
{
(2b− 1)e(λ0)

1/2, 4r3(3b− 1)(2b− 1)L2
0

( 7

2L0

)7/2/
d3

}
.(4.5)

Set z3 := −(ζ1/L0)
2 and z4 := −{ζ2/[(2b − 1)L0]}2. Note that z3 < −1/λ0, by (4.4), and

z4 < −1/λ0, by (4.5). We define

ϕ1(z) ≡ 1, ϕ
1
(z) =

{
1− L0(−z)eλ0z, z < −1/λ0,

0, z ≥ −1/λ0,

ϕ2(z) =

{
L0(−z)eλ0z, z < −1/λ0,

1, z ≥ −1/λ0,
ϕ
2
(z) =

{
L0(−z)eλ0z − ζ1(−z)1/2eλ0z, z < z3,

0, z ≥ z3,

ϕ3(z) =

{
(2b− 1)L0(−z)eλ0z, z < −1/λ0,

2b− 1, z ≥ −1/λ0,

ϕ
3
(z) =

{
(2b− 1)L0(−z)eλ0z − ζ2(−z)1/2eλ0z, z < z4,

0, z ≥ z4.

Then we have

Lemma 4.2. Suppose, in addition to (1.5), s = s∗0(ρ) = s∗3 and d1 = d2 = d3. Then there

exists a solution (ϕ1, ϕ2, ϕ3) of (1.3) such that ϕ
1
≤ ϕ1 ≤ ϕ1, ϕ2

≤ ϕ2 ≤ ϕ2 and ϕ
3
≤ ϕ3 ≤ ϕ3

in R.

Proof. Consider (4.2) with the corresponding M(ε). We show that (2.1)-(2.6) hold for α(−z)

replaced by α(−z +M).

First, (2.1) is trivial and (2.2)-(2.3) immediately hold for z > −1/λ0. For z < −1/λ0, we

compute, using ϕ
3
≥ 0, α ≤ 1, d2 = d3, 2d3λ0 = s, k < 1 and A2(λ0) = 0,

d2ϕ
′′
2 − sϕ

′
2 + r2ϕ2[α(−z +M)− kϕ

1
− ϕ2 − aϕ

3
]

≤ ϕ2(z)(d2λ
2
0 − sλ0) + L0e

λ0z(s− 2d2λ0) + r2ϕ2(z)[(1− k) + (k − 1)L0(−z)eλ0z]

≤ 0.
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Hence (2.2) holds for z 6= −1/λ0. For z < −1/λ0, we have

d3ϕ
′′
3 − sϕ

′
3 + r3ϕ3[−1 + b(ϕ1 + ϕ2)− ϕ3]

= (2b− 1)L0(−z)eλ0z[d3λ
2
0 − sλ0 + r3(−1 + b)] + (2b− 1)L0e

λ0z(−2d3λ0 + s)

+r3ϕ3(1− b)L0(−z)eλ0z ≤ 0,

using A2(λ0) = 0, s = 2d3λ0 and b > 1. Hence (2.3) holds for z 6= −1/λ0.

For (2.4), we only need to consider z < −1/λ0. Since s = s∗3 can happen only when

ρ ≥ ρ∗∗, we may set ρ = ρ∗∗ = λ0 in (α3). Hence α(−z +M) ≥ 1− εeλ0z for all z < 0. For

z < −1/λ0, we compute

d1ϕ
′′
1
− sϕ′

1
+ r1ϕ1

[α(−z +M)− ϕ
1
− hϕ2 − aϕ3]

≥ −L0(−z)eλ0z(d1λ
2
0 − sλ0) + L0e

λ0z(2d1λ0 − s)

+r1ϕ1
eλ0z{−ε+ L0(−z)[1− h− a(2b− 1)]}

≥ r3L0(−z)eλ0z(b− 1) + r1ϕ1
eλ0z{−ε+ e[1− h− a(2b− 1)]} > 0,

using d1 = d3, A2(λ0) = 0, 2d3λ0 = s and by the choice of ε. Hence (2.4) holds for z 6= −1/λ0.

Next, (2.5) and (2.6) immediately hold for z > z3 and z > z4, respectively. Note that, due

to s = s∗0(ρ) = s∗3, we have

α(−z +M) ≥ 1− εeλ0z for all z < 0.

Hereafter we use the fact that

(4.6) sup
z≤0

{(−z)νeγz} =

(
ν

γe

)ν

for any given positive constants ν and γ.

For z < z3, we compute

d2ϕ
′′
2
− sϕ′

2
+ r2ϕ2

[α(−z +M)− kϕ1 − ϕ
2
− aϕ3]

≥ 1

4
d2ζ1(−z)−3/2eλ0z + ϕ

2
[d2λ

2
0 − sλ0 + r2(1− k)] + (2d2λ0 − s)[−L0 +

1

2
(−z)−1/2ζ1]e

λ0z

+r2ϕ2
(z)[−εeλ0z − L0(−z)eλ0z + ζ1(−z)1/2eλ0z − a(2b− 1)L0(−z)eλ0z]

≥ 1

4
d2ζ1(−z)−3/2eλ0z − r2L0(−z)eλ0z{εeλ0z + [1 + a(2b− 1)]L0(−z)eλ0z}

≥ 1

4
(−z)−3/2eλ0z

{
d2ζ1 − 4r2L0[ε(−z)5/2eλ0z + (1 + a(2b− 1))L0(−z)7/2eλ0z]

}
≥ 1

4
(−z)−3/2eλ0z

{
d2ζ1 − 4r2L0

[
ε
( 5

2L0

)5/2

+ (1 + a(2b− 1))L0

( 7

2L0

)7/2]}
≥ 0,

by using (4.6) and (4.4). Hence (2.5) holds for z 6= z3.
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Similarly, for z < z4, we compute

d3ϕ
′′
3
− sϕ′

3
+ r3ϕ3

[−1 + b(ϕ
1
+ ϕ

2
)− ϕ

3
]

≥ 1

4
d3ζ2(−z)−3/2eλ0z − r3(3b− 1)(2b− 1)L2

0(−z)2e2λ0z

=
1

4
(−z)−3/2eλ0z

[
d3ζ2 − 4r3(3b− 1)(2b− 1)L2

0(−z)7/2eλ0z
]

≥ 1

4
(−z)−3/2eλ0z

[
d3ζ2 − 4r3(3b− 1)(2b− 1)L2

0

( 7

2L0

)7/2
]
≥ 0,

by (4.6) and (4.5). Hence (2.6) holds for z 6= z4. Therefore, the lemma follows by applying

Lemma 2.1. �

As a summary, we have proved Theorem 1.2.

For the non-existence of forced waves, we have

Proposition 4.3. Suppose s > 0, k < 1 and b > 1. Then (1.3) has a positive solution such

that (1.6) holds only if s ≥ max{s∗2, s∗3}.

Proof. Without loss of generality, we may assume that s∗3 ≥ s∗2. Suppose that there exists a

positive solution (ϕ1, ϕ2, ϕ3) of (1.3) satisfying (1.6) for some s > 0. Set ζ(z) := ϕ′
3(z)/ϕ3(z).

Then ζ satisfies

(4.7) d3ζ
′(z) + d3ζ

2(z)− sζ(z) + r3Φ(z) = 0, z ∈ R,

where Φ(z) := −1+ bϕ1(z)+ bϕ2(z)−ϕ3(z). Since (ϕ1, ϕ2, ϕ3)(−∞) = (1, 0, 0) and b > 1, we

can choose a constant K such that Φ(z) > 0 for all z ∈ (−∞, K]. Hence, by ϕ3-equation in

(1.3), any critical point of ϕ3 in (−∞, K] must be a strict maximal point. Since ϕ3(−∞) = 0

and ϕ3 > 0 in R, this implies that ϕ′
3(z) > 0 for all z ∈ (−∞, K1] for some K1 < K and so

ζ(z) > 0 for z ∈ (−∞, K1]. On the other hand, from

[d3ϕ
′
3(z)− sϕ3(z)]

′ = d3ϕ
′′
3(z)− sϕ′

3(z) = −r3ϕ3(z)Φ(z) < 0, ∀ z ∈ (−∞, K],

and d3ϕ
′
3(z) − sϕ3(z) → 0 as z → −∞, it follows that d3ϕ

′
3(z) − sϕ3(z) < 0 for all z ∈

(−∞, K]. Hence ζ is bounded above by s/d3 in (−∞, K].

Now, if ζ(z) is monotone ultimately at z = −∞, then the limit λ := limz→−∞ ζ(z) exists

and is finite, due to the boundedness of ζ. Hence we can find a sequence {zn} tending to

−∞ such that ζ ′(zn) → 0 as n → ∞. Passing to the limit in (4.7), λ satisfies

(4.8) d3λ
2 − sλ+ r3(b− 1) = 0.

On the other hand, if ζ(z) is oscillatory at z = −∞, then there is a sequence {zn} such that

zn is a maximal point of ζ for each n and

ζ(zn) → lim sup
z→−∞

ζ(z) =: ζ+ ∈ [0, s/d3].

It follows from (4.7) that ζ+ also satisfies (4.8). Since (4.8) has a nonnegative root only if

s ≥ s∗3, the proposition is proved. �
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4.2. Waves connecting E2.

Recall

β2 = −1 + b(uc + vc), (uc, vc) =

(
1− h

1− hk
,
1− k

1− hk

)
, s∗∗3 = 2

√
d3r3β2.

Since (α3) holds for any ρ′ ≤ ρ, (α3) also holds for ρ = ρ∗ when ρ ≥ ρ∗.

Case 1. s ≥ s∗c(ρ) and s > s∗∗3 .

For s > s∗∗3 , the equation

A3(λ) := d3λ
2 − sλ+ r3β2 = 0

has two positive roots λ1 and λ2 such that 0 < λ1 < λ2. We define
ϕ1(z) = min{uc + hvce

λ1z, 1}, ϕ
1
(z) = max{uc(1− eλ1z), 0},

ϕ2(z) = min{vc + kuce
λ1z, 1}, ϕ

2
(z) = max{vc(1− eλ1z), 0},

ϕ3(z) = min{(2b− 1)eλ1z, 2b− 1}, ϕ
3
(z) = max{(2b− 1)eλ1z − qeλ̃z, 0},

where λ̃ ∈ (λ1,min{2λ1, λ2}) and

(4.9) q > max

{
2b− 1,

r3(2b− 1)[b(uc + vc) + 2b− 1]

−A3(λ̃)

}
.

Note that A3(λ̃) < 0, since λ̃ ∈ (λ1, λ2). Then we have

Lemma 4.4. Suppose d3 ≥ max{d1, d2}/2, s ≥ s∗c(ρ) and s > s∗∗3 . Then there exists a

solution (ϕ1, ϕ2, ϕ3) of (1.3) such that ϕ
1
≤ ϕ1 ≤ ϕ1, ϕ2

≤ ϕ2 ≤ ϕ2 and ϕ
3
≤ ϕ3 ≤ ϕ3 in R.

Proof. We choose a positive constant ε such that

(4.10) ε < 1−max{h, k} − a(2b− 1)

and consider system (4.2) with the corresponding M(ε). We verify that (ϕ1, ϕ2, ϕ3) and

(ϕ
1
, ϕ

2
, ϕ

3
) satisfy (2.1)-(2.6) for α(−z) replaced by α(−z +M).

First, for z > 0, ϕ1 = 1, ϕ2 = 1, ϕ3 = 2b − 1, so (2.1)-(2.3) immediately holds. For

z < 0, since d3 ≥ d1/2, we can easily show that d1λ
2
1 − sλ1 ≤ 0. Then, using α ≤ 1 and

1− uc − hvc = 0,

d1ϕ
′′
1 − sϕ

′
1 + r1ϕ1[α(−z +M)− ϕ1 − hϕ

2
− aϕ

3
] ≤ hvce

λ1z(d1λ
2
1 − sλ1)− ar1ϕ1ϕ3

< 0.

Thus (2.1) holds for z 6= 0. Similarly, (2.2) holds for z 6= 0.

For z < 0, we compute

d3ϕ
′′
3 − sϕ

′
3 + r3ϕ3[−1 + b(ϕ1 + ϕ2)− ϕ3]

= (2b− 1)eλ1z(d3λ
2
1 − sλ1 + r3β2) + r3ϕ3e

λ1z[b(hvc + kuc)− 2b+ 1]

≤ r3ϕ3e
λ1z[−b(2− h− k)/(1− hk) + 1] < 0.

The last inequality holds due to b > 1 and h, k < 1. Hence (2.3) holds for z 6= 0.
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Next, for z < 0, using (4.1) we compute

d1ϕ
′′
1
− sϕ′

1
+ r1ϕ1

[α(−z +M)− ϕ
1
− hϕ2 − aϕ3]

≥ −uce
λ1z(d1λ

2
1 − sλ1) + r1ϕ1

[1− εeρz − uc − hvc + eλ1z(uc(1− hk)− a(2b− 1))]

≥ r1ϕ1
eλ1z[−εe(ρ−λ1)z + (1− h− a(2b− 1))] > 0,

due to ρ ≥ λ1, since s ≥ s∗c(ρ), and (4.10). Hence (2.4) holds for z 6= 0. Similarly, (2.5)

holds for z 6= 0.

Finally, it remains to check (2.6). Since q > 2b− 1, there exists z0 < 0 such that

ϕ
3
(z) =

{
0, z ≥ z0,

(2b− 1)eλ1z − qeλ̃z, z < z0.

Clearly, (2.6) holds for z > z0. For z < z0, we compute

d3ϕ
′′
3
− sϕ′

3
+ r3ϕ3

[−1 + b(ϕ
1
+ ϕ

2
)− ϕ

3
]

= (2b− 1)eλ1z(d3λ
2
1 − sλ1 + r3β2)− qeλ̃z(d3λ̃

2 − sλ̃+ r3β2)

+r3ϕ3
(z)[−b(uc + vc)e

λ1z − (2b− 1)eλ1z + qeλ̃z]

≥ −qeλ̃zA3(λ̃) + r3(2b− 1)e2λ1z[−b(uc + vc)− (2b− 1)]

= eλ̃z[−qA3(λ̃)− r3(2b− 1)e(2λ1−λ̃)z[b(uc + vc) + 2b− 1] ≥ 0.

The last inequality holds due to (4.9) and the choice of λ̃. Hence (2.6) holds for z 6= z0. The

proof is thus complete by applying Lemma 2.1. �

Case 2. s = s∗c(ρ) = s∗∗3 .

For s = s∗∗3 , the equation A3(λ) = 0 has a double root λ∗ = ρ∗. Since this case only happen

when ρ ≥ ρ∗, we may set ρ = λ∗ in (α3). Let L1 = hvcλ∗e, L2 = kucλ∗e, L3 = (2b − 1)λ∗e

and

(4.11) q∗ > max

{
(2b− 1)e(λ∗)

1/2,
[
4r3L3(λ∗e)

( 7

2eλ∗

)7/2

(β2 + 2b)
]/

d3

}
.

We define

ϕ1(z) =

{
uc + L1(−z)eλ∗z, z < −1/λ∗,

1, z ≥ −1/λ∗,
ϕ
1
(z) =

{
uc − ucλ∗e(−z)eλ∗z, z < −1/λ∗,

0, z ≥ −1/λ∗,

ϕ2(z) =

{
vc + L2(−z)eλ∗z, z < −1/λ∗,

1, z ≥ −1/λ∗,
ϕ
2
(z) =

{
vc − vcλ∗e(−z)eλ∗z, z < −1/λ∗,

0, z ≥ −1/λ∗,

ϕ3(z) =

{
L3(−z)eλ∗z, z < −1/λ∗,

2b− 1, z ≥ −1/λ∗,
ϕ
3
(z) =

{
L3(−z)eλ∗z − q∗(−z)1/2eλ∗z, z < z∗,

0, z ≥ z∗,

where, by the choice of q∗, there is a unique z∗ < −1/λ∗ such that

L3(−z∗)e
λ∗z∗ − q∗(−z∗)

1/2eλ∗z∗ = 0.

Then we have
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Lemma 4.5. Suppose max{d1, d2}/2 ≤ d3 ≤ min{d1, d2} and s = s∗c(ρ) = s∗∗3 . Then there

exists a solution (ϕ1, ϕ2, ϕ3) of (1.3) such that ϕ
1
≤ ϕ1 ≤ ϕ1, ϕ2

≤ ϕ2 ≤ ϕ2 and ϕ
3
≤ ϕ3 ≤ ϕ3

in R.

Proof. Choose ε < e[1 − max{h, k} − a(2b − 1)] and consider (4.2) with the corresponding

M(ε). We show that (2.1)-(2.6) hold for α(−z) replaced by α(−z +M).

First, for z > −1/λ∗, since ϕ1 = 1, ϕ2 = 1, ϕ3 = 2b− 1, (2.1)-(2.3) immediately hold. For

z < −1/λ∗,

ϕ
′
1(z) = −L1e

λ∗z + L1(−z)λ∗e
λ∗z, ϕ

′′
1 = −2L1λ∗e

λ∗z + L1(−z)λ2
∗e

λ∗z.

Then we obtain from 2d3λ∗ − s = 0 that

d1ϕ
′′
1 − sϕ

′
1 + r1ϕ1[α(−z +M)− ϕ1 − hϕ

2
− aϕ

3
]

≤ L1(−2d1λ∗ + s)eλ∗z + L1(−z)[d1λ
2
∗ − sλ∗]e

λ∗z + r1ϕ1[−L1(−z)eλ∗z + hvcλ∗e(−z)eλ∗z]

= 2L1λ∗(−d1 + d3)e
λ∗z + L1(−z)λ2

∗(d1 − 2d3)e
λ∗z ≤ 0,

using d3 ∈ [d1/2, d1]. Thus (2.1) holds for z 6= −1/λ∗. Similarly, (2.2) holds for z 6= −1/λ∗.

For z < −1/λ∗, we compute

d3ϕ
′′
3 − sϕ

′
3 + r3ϕ3[−1 + b(ϕ1 + ϕ2)− ϕ3]

= L3(−z)eλ∗z(d3λ
2
∗ − sλ∗ + r3β2) + L3e

λ∗z(−2d3λ∗ + s) + r3ϕ3(−z)eλ∗z(L1b+ L2b− L3)

= r3λ∗eϕ3(−z)eλ∗z
[
− b(2− h− k)

1− hk
+ 1

]
≤ 0,

using b > 1 and h, k < 1. Hence (2.3) holds for z 6= −1/λ∗.

Next, for z < −1/λ∗, using (4.1), 2λ∗d3 = s and d3 ∈ [d1/2, d1], we compute

d1ϕ
′′
1
− sϕ′

1
+ r1ϕ1

[α(−z +M)− ϕ
1
− hϕ2 − aϕ3]

≥ d1[2uceλ
2
∗ − uceλ

3
∗(−z)]eλ∗z − s[uceλ∗ − uceλ

2
∗(−z)]eλ∗z

+r1ϕ1
[1− εeλ∗z − uc − hvc + uceλ∗(−z)eλ∗z − hL2(−z)eλ∗z − aL3(−z)eλ∗z]

= −uceλ
2
∗(−z)[d1λ∗ − s] + uceλ∗e

λ∗z[2d1λ∗ − s]

+r1ϕ1
eλ∗z[−ε+ eλ∗(−z)((1− hk)uc − a(2b− 1))]

≥ r1ϕ1
eλ∗z[−ε+ e[1− h− a(2b− 1)] > 0,

due to the choice of ε. Hence (2.4) holds for all z 6= −1/λ∗. The case for (2.5) can be shown

similarly.
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Finally, (2.6) immediately holds for z > z∗. For z < z∗, we have

d3ϕ
′′
3
− sϕ′

3
+ r3ϕ3

[−1 + b(ϕ
1
+ ϕ

2
)− ϕ

3
]

=
1

4
d3q∗(−z)−3/2eλ∗z + ϕ

3
[d3λ

2
∗ − sλ∗ + r3β2] + (2d3λ∗ − s)[−L3 +

1

2
(−z)−1/2q∗]e

λ∗z

+r3ϕ3
(z)[−b(uc + vc)eλ∗(−z)eλ∗z − L3(−z)eλ∗z + q∗(−z)1/2eλ∗z]

≥ 1

4
d3q∗(−z)−3/2eλ∗z − r3eλ∗L3(−z)2e2λ∗z[β2 + 2b]

≥ d3
4
(−z)−3/2eλ∗z

[
q∗ − 4r3L3(λ∗e)(−z)7/2eλ∗z(β2 + 2b)/d3

]
≥ d3

4
(−z)−3/2eλ∗z

[
q∗ − 4r3L3(λ∗e)

( 7

2eλ∗

)7/2

(β2 + 2b)/d3

]
≥ 0,

by (4.11) and the fact that

(−z)7/2eλ∗z ≤
(

7

2eλ∗

)7/2

for all z ≤ 0.

Hence (2.6) holds for z 6= z∗ and the lemma follows by applying Lemma 2.1. �

Hence Theorem 1.3 is proved.

A similar proof to that of Proposition 4.3, we obtain

Proposition 4.6. Suppose s > 0, b > 1, and 0 < h, k < 1. Then (1.3) has a positive

solution such that (1.7) holds only if s ≥ s∗∗3 .

4.3. Waves connecting E3.

Recall

δ2 = 1− kup − awp, (up, wp) =

(
1 + a

1 + ab
,
b− 1

1 + ab

)
, s∗∗2 = 2

√
d2r2δ2.

Note that (up, wp) satisfies

1− up − awp = 0, −1 + bup − wp = 0.

Case 1. s ≥ s∗p(ρ) and s > s∗∗2 . In this case,

A4(λ) := d2λ
2 − sλ+ r2δ2 = 0

has two positive roots λ3 and λ4 such that λ3 < λ4. Note that ρ ≥ λ3 due to s ≥ s∗p(ρ).

Then, recalling (1.8),

(4.12) d1λ
2
3 − sλ3 + r1a(2b− 1) < 0, d3λ

2
3 − sλ3 + r3 < 0.

We construct
ϕ1(z) = min{up + awpe

λ3z, 1}, ϕ
1
(z) = max{up(1− eλ3z),0}

ϕ2(z) = min{eλ3z, 1}, ϕ
2
(z) = max{eλ3z − η2e

λ′z, 0},
ϕ3(z) = min{wp +Beλ3z, 2b− 1}, ϕ

3
(z) = max{wp(1− eλ3z), 0},
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where B := 2b− 1− wp, λ
′ ∈ (λ3,min{2λ3, λ4}),

(4.13) η2 > max
{
1,

r2[1 + (akwp + 1 + aB)]

−A4(λ′)

}
.

Then we have

Lemma 4.7. Suppose (1.8) holds, s ≥ s∗p(ρ) and s > s∗∗2 . Then there exists a solution

(ϕ1, ϕ2, ϕ3) of (1.3) such that ϕ
1
≤ ϕ1 ≤ ϕ1, ϕ2

≤ ϕ2 ≤ ϕ2 and ϕ
3
≤ ϕ3 ≤ ϕ3 in R.

Proof. Choose ε ∈ (0,min{1, r2δ2/r1 − a(2b − 1))}. We consider system (4.2) for the corre-

sponding constant M(ε) and show that (2.1)-(2.6) hold for α(−z) replaced by α(−z +M).

First, (2.1)-(2.3) immediately holds for z > 0. For z < 0, we compute

d1ϕ
′′
1 − sϕ

′
1 + r1ϕ1[α(−z +M)− ϕ1 − hϕ

2
− aϕ

3
]

≤ awpe
λ3z(d1λ

2
3 − sλ3) + r1(up + awpe

λ3z)[1− up − awpe
λ3z − awp + awpe

λ3z]

= awpe
λ3z(d1λ

2
3 − sλ3) ≤ 0,

due to (4.12). Hence (2.1) holds for z 6= 0.

For z < 0, we have

d2ϕ
′′
2 − sϕ

′
2 + r2ϕ2[α(−z +M)− kϕ

1
− ϕ2 − aϕ

3
]

≤ eλ3z[d2λ
2
3 − sλ3 + r2(1− kup + kupe

λ3z − eλ3z − awp + awpe
λ3z)]

= r2e
2λ3z(kup + awp − 1) ≤ 0,

due to 1− kup − awp > 0. Hence (2.2) holds for z 6= 0.

For z < 0, we compute

d3ϕ
′′
3 − sϕ

′
3 + r3ϕ3[−1 + b(ϕ1 + ϕ2)− ϕ3]

= Beλ3z(d3λ
2
3 − sλ3) + r3ϕ3[−1 + bup − wp + eλ3z((1 + ab)wp − (b− 1))]

= Beλ3z(d3λ
2
3 − sλ3) ≤ 0,

by (4.12). Hence (2.3) holds for z 6= 0.

Next, it is clear that (2.4) holds for z > 0. For z < 0, we compute, using up + awp = 1,

h < 1, d1 ≤ d2 and A4(λ3) = 0,

d1ϕ
′′
1
− sϕ′

1
+ r1ϕ1

[α(−z +M)− ϕ
1
− hϕ2 − aϕ3]

≥ −upe
λ3z(d1λ

2
3 − sλ3) + r1ϕ1

[1− εeρz − up(1− eλ3z)− heλ3z − a(wp +Beλ3z)]

≥ −upe
λ3z(d2λ

2
3 − sλ3) + r1up(1− eλ3z)eλ3z[−εe(ρ−λ3)z−a(2b− 1)]

≥ upe
λ3z[r2δ2 − r1a(2b− 1)− r1ε] ≥ 0,

by the choice of ε. Hence (2.4) holds for z 6= 0.

Now, since η2 > 1, there is z2 < 0 such that

ϕ
2
(z) =

{
0, z ≥ z2,

eλ3z − η2e
λ′z, z < z2.
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For z < z2, we compute, using (4.1),

d2ϕ
′′
2
− sϕ′

2
+ r2ϕ2

[α(−z +M)− kϕ1 − ϕ
2
− aϕ3]

≥ eλ3z(d2λ
2
3 − sλ3 + r2δ2)− η2e

λ′z{d2(λ′)2 − sλ′ + r2δ2}
+r2ϕ2

(z)[−εeρz − akwpe
λ3z − eλ3z + η2e

λ′z − aBeλ3z]

≥ −η2e
λ′zA4(λ

′) + r2e
2λ3z[−εe(ρ−λ3)z − akwp − 1− aB]

≥ eλ
′z[−η2A4(λ

′)− r2e
(2λ3−λ′)z(1 + (akwp + 1 + aB))] ≥ 0,

by the choices of λ′ and η2. Hence (2.5) holds for z 6= z2.

Finally, for z < 0, we have

d3ϕ
′′
3
− sϕ′

3
+ r3ϕ3

[−1 + b(ϕ
1
+ ϕ

2
)− ϕ

3
]

≥ −wpe
λ3z(d3λ

2
3 − sλ3) + r3ϕ3

[−1 + bup(1− eλ3z)−wp(1− eλ3z)]

≥ −wpe
λ3z(d2λ

2
3 − sλ3) + r3ϕ3

eλ3z(−bup+wp)

≥ −wpe
λ3z[(d2λ

2
3 − sλ3) + r3] > 0,

due to (4.12). Hence (2.6) holds for z 6= 0.

Thus the lemma is proved by applying Lemma 2.1. �

Case 2. s = s∗p(ρ) = s∗∗2 . This case happens only when ρ ≥ ρ∗ and we thus set ρ = ρ∗ in

(α3). Since s = s∗∗2 , the equation A4(λ) = 0 has a double root λ5 = ρ∗ > 0. Let L∗ = λ5e
2/2,

B = 2b− 1− wp, and η4 satisfies

(4.14) η4 > max

{
4r2L∗

[( 5

2eλ5

)5/2

+ L∗(1 + a(2b− 1))
( 7

2eλ5

)7/2]
/d2, L∗

√
2

λ5

}
.

Note that, from the choice η4, there exists z4 < −2/λ5 such that

L∗(−z4)e
λ5z4 − η4(−z4)

1/2eλ5z4 = 0.

We define

ϕ1(z) =

{
up + L∗awp(−z)eλ5z, z < −2/λ5,

1, z ≥ −2/λ5,
ϕ
1
(z) =

{
up(1− L∗(−z)eλ5z), z < −2/λ5,

0, z ≥ −2/λ5,

ϕ2(z) =

{
L∗(−z)eλ5z, z < −2/λ5,

1, z ≥ −2/λ5,
ϕ
2
(z) =

{
L∗(−z)eλ5z − η4(−z)1/2eλ5z, z < z4,

0, z ≥ z4,

ϕ3(z) =

{
wp + L∗B(−z)eλ5z, z < −2/λ5,

2b− 1, z ≥ −2/λ5,
ϕ
3
(z) =

{
wp(1− L∗(−z)eλ5z), z < −2/λ5,

0, z ≥ −2/λ5.

Then we have

Lemma 4.8. Suppose (1.8) and (1.10) hold. If s = s∗p(ρ) = s∗∗2 , then there exists a solution

(ϕ1, ϕ2, ϕ3) of (1.3) such that ϕ
1
≤ ϕ1 ≤ ϕ1, ϕ2

≤ ϕ2 ≤ ϕ2 and ϕ
3
≤ ϕ3 ≤ ϕ3 in R.

Proof. Choose ε > 0 such that

ε < min{1, e2[r2δ2/r1 − a(2b− 1)]}
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and consider system (4.2) for the corresponding constant M(ε). We show that (2.1)-(2.6)

hold with α(−z) replaced by α(−z +M).

First, for z > −2/λ5, (2.1)-(2.3) hold, since ϕ1 = 1, ϕ2 = 1, ϕ3 = 2b − 1. For z < −2/λ5,

we have

d1ϕ
′′
1 − sϕ

′
1 + r1ϕ1[α(−z +M)− ϕ1 − hϕ

2
− aϕ

3
]

≤ L∗awp(−2d1λ5 + s)eλ5z + L∗awp(−z)(d1λ
2
5 − sλ5)e

λ5z + r1ϕ1[1− ϕ1 − aϕ
3
]

= −r2δ2L∗awp(−z)eλ5z ≤ 0,

using d1 = d2 and −2d2λ5 + s = 0. Hence (2.1) holds for z 6= −2/λ5.

For z < −2/λ5, we compute

d2ϕ
′′
2 − sϕ

′
2 + r2ϕ2[α(−z +M)− kϕ

1
− ϕ2 − aϕ

3
]

≤ L∗(−2d2λ1 + s)eλ5z + L∗(−z)[d2λ
2
5 − sλ1 + r2δ2]e

λ5z

+r2ϕ2[−L∗(−z)eλ5z + kupL∗(−z)eλ5z + awpL∗(−z)eλ5z]

≤ −r2L∗(−z)eλ5zϕ2(1− kup − awp) ≤ 0,

due to 1− kup − awp > 0. Hence (2.2) holds for z 6= −2/λ5.

For z < −2/λ5, we have

d3ϕ
′′
3 − sϕ

′
3 + r3ϕ3[−1 + b(ϕ1 + ϕ2)− ϕ3]

= L∗B(−2d3λ5 + s)eλ5z + L∗B(−z)(d3λ
2
5 − sλ5)e

λ5z

+r3ϕ3[−1 + b(up + L∗awp(−z)eλ5z + L∗(−z)eλ5z)− wp − L∗B(−z)eλ5z]

= L∗B(−2d3λ5 + s)eλ5z + L∗B(−z)(d3λ
2
5 − sλ5)e

λ5z

+r3L∗(−z)eλ5zϕ3[(ab+ 1)wp − (b− 1)]

= L∗B(−2d3λ5 + s)eλ5z + L∗Bλ2
5(−z)(d3 − 2d2)e

λ5z ≤ 0,

using (ab+ 1)wp = b− 1, s = 2d2λ5 and d2 ≤ d3 < 2d2. Hence (2.3) holds for z 6= −2/λ5.

Next, it is trivial that (2.4) holds for z > −2/λ5. Recall d1 = d2. For z < −2/λ5, we

compute, using up + awp = 1 and h < 1,

d1ϕ
′′
1
− sϕ′

1
+ r1ϕ1

[α(−z +M)− ϕ
1
− hϕ2 − aϕ3]

≥ −upL∗e
λ5z(−2d1λ5 + s)− upL∗(−z)eλ5z(d1λ

2
5 − sλ5)

+r1ϕ1
{1− εeλ5z − up[1− L∗(−z)eλ5z]− hL∗(−z)eλ5z − a[wp + L∗B(−z)eλ5z]}

≥ −upL∗(−z)eλ5z(d2λ
2
5 − sλ5)− r1ϕ1

{
a(2b− 1)L∗(−z)eλ5z + εeλ5z

}
≥ upL∗(−z)eλ5z(r2δ2)− r1up

{
a(2b− 1)L∗(−z)eλ5z + εeλ5z

}
= upL∗(−z)eλ5z {r2δ2 − r1a(2b− 1)− r1ε/[L∗(−z)]}
≥ upL∗(−z)eλ5z[r2δ2 − r1a(2b− 1)− r1ε/e

2] ≥ 0,

using L∗(−z) ≥ e2 for z < −2/λ5, and the choice of ε. Hence (2.4) holds for z 6= −2/λ5.
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For (2.5), we only need to consider z < z4. For z < z4, since z4 < −2/λ5 and k < 1, we

compute

d2ϕ
′′
2
− sϕ′

2
+ r2ϕ2

[α(−z +M)− kϕ1 − ϕ
2
− aϕ3]

≥ 1

4
η4d2(−z)−3/2eλ5z + ϕ

2
(d2λ

2
5 − sλ5 + r2δ2) + (2d2λ5 − s)[−L∗ +

1

2
(−z)−1/2η4]e

λ5z

+r2ϕ2
(z)[−εeλ5z − akL∗wp(−z)eλ5z − L∗(−z)eλ5z + η4(−z)1/2eλ5z − aL∗B(−z)eλ5z]

≥ 1

4
η4d2(−z)−3/2eλ5z + r2L∗(−z)e2λ5z{−1− L∗[1 + a(2b− 1)](−z)}

≥ 1

4
(−z)−3/2eλ5z

{
d2η4 − 4r2L∗

[
(−z)5/2eλ5z + L∗(1 + a(2b− 1))(−z)7/2eλ5z

]}
≥ 1

4
(−z)−3/2eλ5z

{
η4 − 4r2L∗

[( 5

2eλ5

)5/2

+ L∗(1 + a(2b− 1))
( 7

2eλ5

)7/2]}
≥ 0,

due to the choice of η4 in (4.14). Hence (2.5) holds for z 6= z4.

It remains to consider (2.6). It is trivial for z > −2/λ5. For z < −2/λ5, we have

d3ϕ
′′
3
− sϕ′

3
+ r3ϕ3

[−1 + b(ϕ
1
+ ϕ

2
)− ϕ

3
]

≥ −wpL∗e
λ5z(−2d3λ5 + s)− wpL∗(−z)eλ5z(d3λ

2
5 − sλ5)

+r3ϕ3
[−1 + bup(1− L∗(−z)eλ5z)− wp(1− L∗(−z)eλ5z)]

= −wpL∗(−z)eλ5z(d3λ
2
5 − sλ5) + r3ϕ3

L∗(−z)eλ5z(−bup + wp)

≥ −wpL∗(−z)eλ5z(d3λ
2
5 − sλ5)− r3wpL∗(−z)eλ5z(bup)

≥ −wpL∗(−z)eλ5z(d3λ
2
5 − sλ5 + r3bup)

≥ −wpL∗(−z)eλ5z[r2δ2(d3/d2 − 2) + r3bup] ≥ 0,

by using −1 + bup − wp = 0, λ5 =
√

r2δ2/d2 and (1.10). Hence (2.6) holds for z 6= −2/λ5.

The proof is thus complete. �

Therefore, Theorem 1.4 is proved. Moreover, we also obtain

Proposition 4.9. Suppose s > 0, b > 1 and k < 1. Then (1.3) has a positive solution such

that (1.9) holds only if s ≥ s∗∗2 .
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