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Abstract. In this paper, we investigate the existence, uniqueness and stability of forced

waves for the Fisher-KPP equation in a shifting environment without imposing the mono-

tonicity condition on the shifting intrinsic growth term. First, the existence of forced waves

for some range of shifting speeds is proved. Then we prove the uniqueness of saturation

forced waves. Moreover, a new method is introduced to derive the non-existence of forced

waves. Finally, we derive the stability of forced waves under certain perturbation of a class

of initial data.

1. Introduction

Consider the Fisher-KPP equation [14, 20] in a shifting environment

(1.1) ut = uxx + u[h(x− st)− u], x ∈ R, t > 0,

in which u is the density of a species and the intrinsic growth rate is given by a function h

of spatial-temporal variable x− st with a real constant s representing the shifting speed of

the environment. In this paper, we shall always assume the following conditions on h:

(h1) h is bounded and continuous in R such that h(−∞) = 1;

(h2) h(z) < 0 for all z ≥ K for some positive constant K.

Therefore, the favorable habitat of species u, {(x, t) | h(x − st) > 0}, can be expanding

or shrinking in time in the horizontal axis depending on the sign of s. Notice that the

monotonicity condition is not imposed on h.

A forced wave is a traveling wave solution of (1.1) in the form

u(x, t) = ϕ(z), z := x− st,

for some function ϕ (the wave profile). Specifically, the wave speed s is the same as the

environmental shifting speed. Note that ϕ satisfies

(1.2) ϕ′′(z) + sϕ′(z) + ϕ(z)[h(z)− ϕ(z)] = 0, z ∈ R.
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Throughout this paper, we shall focus on the forced waves u(x, t) = ϕ(x − st) of (1.1)

satisfying (1.2) and

(1.3) ϕ(∞) = 0 < ϕ(z) < 1 = ϕ(−∞), ∀ z ∈ R.

In this setting, there are two different types of forced waves as follows. When s < 0, since

u(x, t) = ϕ(x− st) → 0 as t→ ∞ for all x ∈ R, it is the extinction type. While, when s > 0,

it is the saturation type, since u(x, t) → 1 as t→ ∞ for all x ∈ R.
For the study of forced waves, we refer the reader to, e.g., [6, 7, 12, 19, 2, 16] for the scalar

equation, [1, 25, 11, 23, 9] for two-species systems and [10, 13, 15] for a three-species system.

In particular, under the extra monotonicity condition on h, the existence of extinction forced

waves of (1.1) for any s < 0 was derived in [12] for h ∈ C1(R) and in [19] for h ∈ C0(R);
while the saturation forced waves of (1.1) exists if any only if s ∈ (0, 2) was proved in [12]

for h ∈ C1(R). Note that, without the monotonicity condition on h, under the assumptions

(h1)-(h2) the existence of forced waves was proved in [16] for s ∈ (0, 1) and in [13] for s < 0

with an extra exponential decay condition for h(−∞).

For the uniqueness and stability of the extinction forced waves (s < 0), we refer the reader

to [24] for both classical diffusion and nonlocal dispersal cases under monotonicity condition

on h. For the existence, multiplicity and attractivity of saturation forced waves (s > 0), we

refer the reader to [2] for a more general nonlinearity of KPP type which includes (1.1) as a

special case. In [2], the nonlinearity is assumed to be C1 and the monotonicity condition on

the shifting term h is also imposed. By a classification of the generalized eigenvalue λ1(s) of

the associated elliptic operator ϕ′′+sϕ′+h(z)ϕ in R, they [2] obtained a complete description

of the global dynamics of (1.2). For the study of the generalized eigenvalues in unbounded

domains, we also refer the reader to, e.g., [4, 5, 3, 8, 12].

However, biologically the intrinsic growth rate h of the species is not necessarily monotone.

The main purpose of this paper is to remove the monotonicity condition on h imposed in,

e.g., [1, 12, 19, 2, 24] for the existence, uniqueness and stability of forced waves of (1.1).

In this paper, we first derive the existence of forced waves for any s ∈ (−2, 2) without

assuming the monotonicity condition on h. More precisely, we have

Theorem 1.1. Under the assumptions (h1)-(h2), (1.2)-(1.3) has a solution for any s ∈
(−2, 2).

Next, for the uniqueness and non-existence of forced waves we have

Theorem 1.2. Assume, in addition to (h1)-(h2), that

(1.4) h(∞) exists and h(∞) ∈ (−∞, 0).

Then there exists at most one solution ϕ of (1.2)-(1.3) for any s > 0. Moreover, no solution

of (1.2)-(1.3) exists when s ≥ 2, if we assume further that h(z) ≤ h(−∞) = 1 for all z ∈ R.

Finally, we study the stability of forced waves. Let u be a positive solution of (1.1) for a

given s. Then, using the moving coordinate z = x− st, u = u(z, t) satisfies

(1.5) ut = uzz + suz + u[h(z)− u], z ∈ R, t > 0.
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Recall the classical Lyapunov function g(y) := y − 1− ln(y), y > 0. Note that g(y) ≥ 0 for

all y > 0 and g(y) = 0 if and only if y = 1. Note also that ϕ is a stationary solution of (1.5).

Then we have the following stability theorem for extinction forced waves.

Theorem 1.3. Let (h1)-(h2) be enforced. Let ϕ be a solution of (1.2)-(1.3) for some s < 0

and let u be a solution of (1.5) with a positive initial data u0 at t = 0. If exp(sz/2)ϕg(u0/ϕ) ∈
L2(R), then u(z, t) → ϕ(z) as t → ∞ locally uniformly for z ∈ R and uniformly for z ∈
(−∞, l] for any l ∈ R.

For the stability of saturation forced waves, we have

Theorem 1.4. Assume, in addition to (h1)-(h2), that (1.4) is enforced. Let ϕ be a solution

of (1.2)-(1.3) for some s ∈ (0, 2) and let u be a solution of (1.5) with a positive initial data

u0 at t = 0. Suppose that there exist a constant ε ∈ (0, 1) and a sufficiently large R > 0 such

that u0(z) ≥ ε for all z ≤ −R. Then u(z, t) → ϕ(z) as t→ ∞ for every z ∈ R.

Note that the convergence in Theorem 1.4 is only locally uniformly in R.

Remark 1.1. For the reader’s convenience, we quote some results in [2] for (1.2) with

s ≥ 0 and h is a bounded monotone C1 function in R as follows. Set α := h(−∞) = 1 and

β := h(+∞). We only concern the case when β < 0. Recall from [12] that λ1(s) = −α+s2/4.
Hence s ∈ [0, 2) implies that λ1(s) < 0. Then [2, Theorem 1.3 (i)] tells us that (1.2) has a

unique positive bounded solution ϕ satisfying ϕ(+∞) = 0. On the other hand, [2, Theorem

1.4] gives the non-existence of positive bounded solutions to (1.2) when s ≥ 2. Lastly, [2,

Theorem 1.5 (ii)] provides the convergence (locally uniformly in R) to the positive bounded

solution of (1.2) as t → ∞ for any solution of (1.5) with a positive bounded continuous

initial data at t = 0, when s ∈ [0, 2).

The rest of this paper is organized as follows. A proof of Theorem 1.1 is given in §2. As

remarked in [16], the key of the proof of Theorem 1.1 is to construct a suitable sub-solution of

(1.2). A simple sub-solution is constructed here. This answers a question left in [16]. Then

we provide a proof of Theorem 1.2 in §3. The proof relies on a key lemma (Lemma 3.1)

on the uniform boundedness of ϕ′/ϕ in R for any solution ϕ of (1.2)-(1.3). Also, using the

limit of the ratio ϕ′/ϕ at ∞ (see (3.3) below), we provide a new proof of the non-existence

of forced waves for s ≥ 2 without monotonicity condition on h. Finally, in §4, we first prove
Theorem 1.3 by a spectrum analysis. Then a proof of Theorem 1.4 is given. The proof of

Theorem 1.4 is different from that of Theorem 1.3 and it relies on the uniqueness of forced

waves (Theorem 1.2).

2. Existence of forced waves

In this section, we provide a proof of the existence of forced waves for s ∈ (−2, 2).

Proof of Theorem 1.1. Given s ∈ (−2, 2). As remarked in [16], all we need is to construct a

nontrivial sub-solution ϕ to (1.2) such that lim infz→−∞ ϕ(z) > 0.
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First, since |s| < 2, there is a sufficiently small ε ∈ (0, 1) such that 1− 2ε > s2/4. It then

follows from condition (h1) that there exists z̄ ∈ R such that

(2.1) h(z) ≥ 1− ε for all z ≤ z̄.

Motivated by [1], we introduce

ϕ̂(z) = e−
s
2
z cos(ωz), z ∈ (−π/(2ω), π/(2ω)), ω :=

√
(1− 2ε)− s2/4 > 0.

Note that ϕ̂ satisfies

(2.2) ϕ̂′′ + sϕ̂′ + (1− 2ε)ϕ̂ = 0 in (−π/(2ω), π/(2ω)).

Also, since

ϕ̂′(z) = −e−
s
2
z
[s
2
cos(ωz) + ω sin(ωz)

]
= 0, z ∈ (−π/(2ω), π/(2ω)),

if and only if z = −γ/ω := ẑ, where γ ∈ (−π/2, π/2) is uniquely determined by

sin γ =
s/2√
1− 2ε

,

we have

∥ϕ̂∥L∞(− π
2ω

, π
2ω

) = ϕ̂(ẑ) = e
sγ
2ω cos(−γ).

Next, we choose a constant z0 such that z0 +
π
2ω

≤ z̄, and define

ϕ(z) =


ε, z ≤ z0 + ẑ,

εϕ̂(z − z0)/ϕ̂(ẑ), z0 + ẑ < z < z0 +
π
2ω
,

0, z ≥ z0 +
π
2ω
.

Then one can check that ϕ is continuous in R and, using (2.1), ϕ ≤ ε, and (2.2), ϕ satisfies

ϕ′′(z) + sϕ′(z) + ϕ(z)[h(z)− ϕ(z)]

≥ ϕ′′(z) + sϕ′(z) + ϕ(z)[1− ε− ϕ(z)]

≥ ϕ′′(z) + sϕ′(z) + ϕ(z)(1− 2ε) ≥ 0, ∀ z ∈ R \ {z0 + ẑ, z0 + π/(2ω)}.

Note that

ϕ′(z0 + ẑ) = 0, lim
z→(z0+π/(2ω))−

ϕ′(z) < 0 = lim
z→(z0+π/(2ω))+

ϕ′(z).

This shows that ϕ is a sub-solution of (1.2). By the results of [16], we conclude that there

exists a solution ϕ to (1.2) such that ϕ(∞) = 0 and ϕ(−∞) = 1. The proof is complete. □

3. Proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2. First, we prepare the following lemma

which plays an essential role in the latter proofs.

Lemma 3.1. Assume, in addition to (h1)-(h2), that (1.4) holds. Let ϕ be a solution of

(1.2)-(1.3) for a given s ∈ R. Then the function ϕ′(z)/ϕ(z) is uniformly bounded in R.
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Proof. To prove this lemma, we first set ψ(z) := ϕ′(z)/ϕ(z). Then it is easy to check that ψ

satisfies

(3.1) ψ′(z) + ψ2(z) + sψ(z) + [h(z)− ϕ(z)] = 0, z ∈ R.

Recall that

h(∞) < 0, h(−∞) = 1, ϕ(−∞) = 1, ϕ(∞) = 0, 0 < ϕ(z) < 1, ∀ z ∈ R.

From (1.2) and (h2) it follows that ϕ′′(z) > 0 for any point z ∈ [K,∞) such that ϕ′(z) = 0.

On the other hand, it follows from∫ ∞

K

ϕ′(z)dz = −ϕ(K) < 0

that ϕ′(z1) < 0 for some z1 > K. Similarly, for a given zn with n ≥ 1, it follows from∫ ∞

zn+1

ϕ′(z)dz = −ϕ(zn + 1) < 0

that ϕ′(zn+1) < 0 for some zn+1 > zn + 1. By induction, we can find a strictly increasing

sequence {zn} such that ϕ′(zn) < 0 for each n ≥ 1 and zn → ∞ as n→ ∞.

We claim that ϕ′(z) < 0 for all z ≥ z1. For contradiction, we assume that ϕ′(y0) ≥ 0

for some y0 ∈ (zn, zn+1) for some n ≥ 1. Then there must be a point y1 ∈ (y0, zn+1) such

that ϕ′(y1) > 0, due to ϕ′′(y0) > 0. It follows from the continuity of ϕ′ that ϕ′(y2) = 0

for some y2 ∈ (y1, zn+1). Without loss of generality, we may assume that ϕ′(z) < 0 for all

z ∈ (y2, zn+1), by choosing

y2 = max{z ∈ [y1, zn+1] | ϕ′(z) ≥ 0}.

But, this contradicts that ϕ′′(y2) > 0. Hence we conclude that ϕ′(z) < 0 for all z ≥ z1. As a

by-product, ψ is bounded above by 0 over [z1,∞).

To obtain a lower bound for ψ, we write (3.1) as

ψ′(z) = −ψ2(z)− sψ(z) + ϕ(z)− h(z) ≤ −ψ2(z)− sψ(z) + α,

where α := supz∈R[ϕ(z)− h(z)]. Note that α ∈ (0,∞). Then we choose M ≫ 1 such that

−sy + α ≤ y2/2, ∀ y ≤ −M.

We claim that ψ(z) ≥ −M for all z ∈ [K,∞). For contradiction, we assume that there is

z0 ∈ [K,∞) such that ψ(z0) < −M . Then ψ is decreasing for z > z0 and ψ(z) < −M for all

z ≥ z0. It follows that ψ satisfies

ψ′(z) ≤ −ψ2(z)/2, ∀ z ≥ z0.

This implies that ψ(z) tends to −∞ as z ↑ z1 for some z1 ∈ (z0,∞). This is a contradiction,

since ψ(z) is defined for all z ∈ R. Hence we have proved that ψ is bounded below on [K,∞).

We conclude that ψ is bounded on [K,∞).

Now, let λ0 be the unique negative root of λ2 + sλ+ h(∞) = 0, i.e.,

(3.2) λ20 + sλ0 + h(∞) = 0, λ0 =
−s−

√
s2 − 4h(∞)

2
.
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Using h(z)− ϕ(z) → h(∞) < 0 as z → ∞, by (1.4), we claim that

(3.3) lim
z→∞

ψ(z) exists and lim
z→∞

ψ(z) = λ0.

Since ψ < 0 in [z1,∞), it is clear (3.3) holds when ψ is monotone ultimately at z = ∞.

When ψ is oscillatory near z = ∞, by (3.1) any sequence {zn} of critical points of ψ satisfy

ψ2(zn) + sψ(zn) + [h(zn)− ϕ(zn)] = 0, ∀n.

Hence the quantities

ψ− := lim inf
z→∞

ψ(z), ψ+ := lim sup
z→∞

ψ(z)

are solutions of λ2 + sλ + h(∞) = 0. Since ψ± ≤ 0, by (3.2) we must have ψ− = λ0 = ψ+.

Thus (3.3) is proved.

To proceed further, we let

ζ(z) := ϕ(−z), θ(z) := ζ ′(z)

ζ(z)
.

Then θ satisfies

(3.4) θ′(z) = −θ2(z) + sθ(z)− h(−z) + ζ(z) ≤ −θ2(z) + sθ(z) + α,

where α = supz∈R[ζ(z)− h(−z)] = supz∈R[ϕ(−z)− h(−z)] as defined before. Note that

ζ(−∞) = 0, θ(−∞) = −λ0 > 0.

Define

µ± :=
s±

√
s2 + 4α

2
,

which are two roots of µ2 − sµ − α = 0. Since α ≥ −h(∞), it holds −λ0 ≤ µ+. By

comparison, θ(z) ≤ µ+ for all z ∈ R, since y(z) ≡ µ+ is a solution of

y′(z) = −y2(z) + sy(z) + α = [y(z)− µ−] · [µ+ − y(z)].

On the other hand, there is a constant L≫ 1 such that

sy + α ≤ y2/2, ∀ y ≤ −L.

Hence, by a similar argument as before, we can deduce that θ(z) ≥ −L for all z ∈ R. We

conclude that θ (and so ϕ′/ϕ) is bounded in R. Thus, the lemma is proved. □

With Lemma 3.1, we are ready to prove Theorem 1.2 as follows.

Proof of Uniqueness. Let ϕ1 and ϕ2 be two solutions to (1.2)-(1.3) for some s > 0. Define

Φi = e
s
2
zϕi for i = 1, 2. Then Φi satisfies

(3.5) Φ′′
i +

(
h− s2

4

)
Φi − e−

s
2
zΦ2

i = 0.

Multiplying (3.5) with i = 1 by Φ2 and (3.5) with i = 2 by Φ1, by taking the difference we

obtain

(3.6) Φ′′
1Φ2 − Φ′′

2Φ1 = e−
s
2
zΦ1Φ2(Φ1 − Φ2).
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First, we claim that

(3.7) Φi(±∞) = 0, Φ′
i(±∞) = 0, i = 1, 2.

It is clear that Φi(−∞) = 0, since ϕi(−∞) = 1 and s > 0. Also, from

Φ′
i(z) =

s

2
e

s
2
zϕi(z) + e

s
2
zϕ′

i(z) =
s

2
e

s
2
zϕi(z) + e

s
2
zϕi(z)

ϕ′
i(z)

ϕi(z)

and Lemma 3.1 it follows that Φ′
i(−∞) = 0. On the other hand, we deduce from (3.3) that

(3.8) e
s
2
zϕi(z) ≤ Ce

−
√

s2−4h(∞)
4

z, ∀ z ≫ 1,

for some positive constant C. To see this, since

λ0 < −s
2
−

√
s2 − 4h(∞)

4
:= λ1,

it follows from (3.3) that

(3.9) [ln(ϕi(z)]
′ =

ϕ′
i(z)

ϕi(z)
≤ λ1, ∀ z ≥M,

for some M ≫ 1. By an integration of (3.9) from M to z ≥M , we obtain

ϕi(z) ≤ ϕi(M)eλ1(z−M) = ϕi(M)e−λ1Meλ1z, ∀ z ≥M.

This implies (3.8). Thus Φi(∞) = Φ′
i(∞) = 0 and so (3.7) is proved.

Next, for a contradiction we assume that Φ1 ̸= Φ2. We divide our discussion into the

following cases

Case 1. There are at least two intersection points of the graphs of Φ1 and Φ2. Without loss

of generality, we may assume that there exist a, b with a < b such that

(3.10) Φ1(a) = Φ2(a), Φ1(b) = Φ2(b), Φ1(z) > Φ2(z), ∀ z ∈ (a, b).

Then, by an integration of (3.6), we get

(3.11) [Φ′
1Φ2 − Φ′

2Φ1](b)− [Φ′
1Φ2 − Φ′

2Φ1](a) =

∫ b

a

e−
s
2
zΦ1Φ2(Φ1 − Φ2) dz.

However, from (3.10) we have

Φ′
1(b)Φ2(b)− Φ′

2(b)Φ1(b) = [Φ′
1(b)− Φ′

2(b)]Φ1(b) ≤ 0,

Φ′
1(a)Φ2(a)− Φ′

2(a)Φ1(a) = [Φ′
1(a)− Φ′

2(a)]Φ1(a) ≥ 0.

Thus the left-hand side of (3.11) is non-positive. But, the right-hand side of (3.11) is positive,

a contradiction.

Case 2. There is exactly one intersection point a ∈ R of the graphs of Φ1 and Φ2. Without

loss of generality, we may assume that [Φ1(z) − Φ2(z)](z − a) > 0 for all z ̸= a. Then we

have [Φ′
1(a)− Φ′

2(a)] ≥ 0. An integration of (3.6) from a to ∞ and using (3.7), we obtain

0 ≥ −[Φ′
1(a)− Φ′

2(a)] =

∫ ∞

a

e−
s
2
zΦ1Φ2(Φ1 − Φ2) dz > 0,

a contradiction.
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Case 3. There is no intersection of the graphs of Φ1 and Φ2. Without loss of generality, we

may assume that Φ1 > Φ2 in R. Then an integration of (3.6) over R, using (3.7), gives

0 =

∫ ∞

−∞
e−

s
2
zΦ1Φ2(Φ1 − Φ2) dz > 0,

a contradiction again.

We conclude that Φ1 = Φ2 and so ϕ1 = ϕ2. Thus, the uniqueness part of the forced waves

in Theorem 1.2 is proved. □

Next, we provide a proof of the non-existence of forced waves (cf. [12]), but without the

monotonicity condition on h.

Proof of Non-existence. Assume on the contrary that there exists a solution ϕ(z) of (1.2)-

(1.3) for some s ≥ 2.

First, we define

Q(z) := e

(
−s/2+

√
s2/4−1

)
z
.

Then Q satisfies

Q′′ + sQ′ +Q = 0.

Moreover, the function AQ(z) is a super-solution of (1.2) for any A > 0, since

AQ′′ + sAQ′ + AQ(h(z)− AQ) ≤ AQ′′ + sAQ′ + AQ = 0,

using the assumption that h ≤ h(−∞) = 1.

Next, note that ϕ(−∞) = 1, Q(−∞) = ∞ and, by (3.8), ϕ(z) < AQ(z) for all z ≫ 1 for

any A > 0, since

−s/2−
√
s2 − 4h(∞)/4 < −s/2 +

√
s2/4− 1.

Hence, by choosing A > 0 large enough, we have

ϕ(z) ≤ AQ(z), z ∈ R.

Therefore, the quantity

A∗ := inf{A > 0 | ϕ(z) ≤ AQ(z), z ∈ R}

is well-defined and A∗ ∈ (0,∞).

Note that ϕ(z) ≤ A∗Q(z) for all z ∈ R, and ϕ(z∗) = A∗Q(z∗) for some z∗ ∈ R, by the

definition of A∗. Thus, by the strong maximum principle, ϕ(z) = A∗Q(z) for all z ∈ R. This
contradicts ϕ(−∞) = 1 < A∗Q(−∞) = ∞. Thereby, the non-existence part in Theorem 1.2

is proved. □
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4. Stability of forced waves

This section is devoted to the proof for the stability of forced waves.

First, we provide a proof of Theorem 1.3 as follows.

Proof of Theorem 1.3. Let ϕ be a solution of (1.2)-(1.3) for some s < 0 and let u be a

solution of (1.5) with a positive initial data u0 at t = 0.

First, we let

V (z, t) := u(z, t)− ϕ(z)− ϕ ln
u(z, t)

ϕ(z)
.

By a simple calculation, we have

Vt = ut −
ϕ

u
ut, Vz = uz −

ϕ

u
uz − ϕ′ ln

u

ϕ
,

Vzz = uzz −
ϕ

u
uzz − ϕ′′ ln

u

ϕ
+ ϕ

[uz
u

− ϕ′

ϕ

]2
.

It follows from (1.2) and (1.5) that

Vt − Vzz − sVz ≤ u(h− u)− ϕ(h− u)− (h− ϕ)ϕ ln
u

ϕ

= (h− ϕ)V − (u− ϕ)2 ≤ (h− ϕ)V,

i.e., V satisfies

(4.1) Vt − Vzz − sVz ≤ (h− ϕ)V in R.

Now, we consider the linear equation

(4.2) V̄t = V̄zz + sV̄z + (h− ϕ)V̄ in R.

Note that ϕ(z) is a stationary solution of (4.2). Setting W := e
s
2
zV̄ , (4.2) is transformed to

(4.3) Wt = Wzz +
(
h− ϕ− s2

4

)
W in R.

Note that this equation has a stationary solution e
s
2
zϕ(z). We then define a linear differential

operator L : H2(R) → L2(R) by

Lw = w′′ + (h− ϕ− s2

4
)w,

which is a self-adjoint operator on L2(R). Hence all eigenvalues of the operator L are real.

Next, we show that 0 is not an eigenvalue of the operator L when s < 0. Indeed, using

that the function e
s
2
zϕ(z) is a solution of

(4.4) v′′ +
(
h− ϕ− s2

4

)
v = 0,

and the reduction of order, the general solution to equation (4.4) is represented as

(4.5) v(z) = e
s
2
zϕ(z)

(
a

∫ z

0

dz

eszϕ2(z)
+ b

)
, z ∈ R,
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for some constants a and b. Recall

(4.6) e
s
2
zϕ(z) = O(e

s
2
z) as z → −∞,

and, by (3.8),

(4.7) e
s
2
zϕ(z) = O

(
e−

√
s2−4h(∞)

2
z

)
as z → +∞.

Thus

e
s
2
zϕ(z)

∫ z

0

dz

eszϕ2(z)
= O

(
e

√
s2−4h(∞)

2
z

)
as z → +∞.

Therefore, the only H2 solution to equation (4.4) is v ≡ 0. We conclude that 0 is not an

eigenvalue of L when s < 0.

To proceed further, we show that there does not exist any positive eigenvalue of the

operator L. Assume, on the contrary, there exists an eigenvalue λ > 0 and a function

ψ ∈ H2(R) such that (L− λ)ψ = 0. Then the asymptotic decaying behavior of the function

ψ at space infinity is given by

ψ = O(e−γ+z) as z → +∞,(4.8)

ψ = O(eγ−z) as z → −∞,(4.9)

where

γ+ = γ+(λ) :=
√
λ+ s2/4− h(+∞), γ− = γ−(λ) :=

√
λ+ s2/4,

Now we define a function

P (z) =
ψ(z)

e
s
2
zϕ(z)

.

Then (4.6) and (4.9) imply that

P (z) = O(e(γ−(λ)−γ−(0))z) → 0 as z → −∞,

while (4.7) and (4.8) imply that

P (z) = O(e−(γ+(λ)−γ+(0))z) → 0 as z → +∞.

In addition, P (z) satisfies

P ′′(z) + 2
d
dz

(
e

s
2
zϕ(z)

)
e

s
2
zϕ(z)

P ′(z) = λP (z).

We claim that P ≡ 0, which implies ψ ≡ 0. If this does not hold, then there exists a positive

maximal point zm ∈ R of P such that

P ′′(zm) ≤ 0 = P ′(zm) < P (zm).

Here we have applied the condition P (±∞) = 0. This and λ > 0 immediately give us

0 ≥ P ′′(zm) + 2
d
dz

(
e

s
2
zmϕ(zm)

)
e

s
2
zϕ(zm)

P ′(zm) = λP (zm) > 0,

which is a contradiction. As a conclusion, there does not exist any positive eigenvalue for

the operator L.
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Finally, we consider the essential spectrum of L. The associated limiting operators L± of

L are defined by

L+w = w′′ +
(
h(+∞)− s2

4

)
w, L−w = w′′ − s2

4
w.

Then

S+ := {λ ∈ C | λ = −k2 +
(
h(+∞)− s2

4

)
for some k ∈ R} =

(
−∞, h(+∞)− s2

4

]
,

S− := {λ ∈ C | λ = −k2 − s2

4
for some k ∈ R} =

(
−∞,−s

2

4

]
,

and so the essential spectrum of L is contained in (−∞,−s2/4], by Theorem A.2 in Chapter

5 of [18]. We conclude that there exists ω > 0 such that σ(L) ⊂ (−∞,−ω) when s < 0.

Furthermore, using this information on the spectrum of L, it follows from [21, Theorem

51.1] that there exist positive constants C ′ and C ′′ such that

∥etLg∥L2 ≤ C ′e−ωt∥g∥L2 , ∥etLg∥H1 ≤ C ′′t−
1
2 e−ωt∥g∥L2 , g ∈ L2,

for all t > 0. Then, using the inequality

∥f∥L∞ ≤ 2
1
2∥f ′∥

1
2

L2∥f∥
1
2

L2 , f ∈ H1(R),

we conclude that there exists a positive constant C such that

∥etL∥L(L2,L∞) ≤ Ct−
1
4 e−ωt for all t > 0.

Thus

∥W (·, t)∥L∞ ≤ Ct−
1
4 e−ωt∥W (·, 0)∥L2 → 0 as t→ ∞,

provided that W (·, 0) ∈ L2(R) and s < 0. By the comparison principle, we conclude that

esz/2V (z, t) → 0 as t→ ∞ uniformly over R. This implies that V (z, t) → 0 locally uniformly

in R as t → ∞. Since s < 0, the convergence is uniformly over (−∞, l] for any l ∈ R. This
completes the proof of the theorem. □

Remark 4.1. In fact, by a simple approach we have another stability theorem, but only

for some extinction forced waves and the perturbation of initial data is different from that

in Theorem 1.3, as follows. Let (h1)-(h2) be enforced. Set ĥ := supz∈R h(z). Let ϕ be a

solution of (1.2)-(1.3) for some s ≤ −2
√
ĥ and let u be a solution of (1.5) with a positive

initial data u0 at t = 0. Set µ := s/2 +
√
s2 − 4ĥ/2. If exp(µz)ϕg(u0/ϕ) ∈ L1(R), then

u(z, t) → ϕ(z) as t → ∞ locally uniformly for z ∈ R and uniformly for z ∈ (−∞, l] for any

l ∈ R.

Proof of Remark 4.1. Although the proof of Remark 4.1 is almost the same as that for [17,

Theorem 1.1], we provide the details here for the reader’s convenience.

Let ϕ be a solution of (1.2)-(1.3) for some s ≤ −2
√
ĥ and let u be a solution of (1.5) with

a positive initial data u0 at t = 0.

First, since ϕ > 0, V > 0 and h(z) ≤ ĥ for all z ∈ R, we obtain from (4.1) that V satisfies

(4.10) Vt ≤ Vzz + sVz + ĥV, z ∈ R, t > 0.
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Let us define the function Q(z, t) := eµzV (z, t), where

µ :=
s+

√
s2 − 4ĥ

2
< 0, µ2 − sµ+ ĥ = 0,

which is well-defined due to s ≤ −2
√
ĥ < 0. Then it follows from (4.10) that

Qt ≤ Qzz −
√
s2 − 4ĥQz, z ∈ R, t > 0.

Now, let Q̂ be the solution of

Q̂t = Q̂zz −
√
s2 − 4ĥQ̂z, z ∈ R, t > 0, Q̂(·, 0) = Q(·, 0).

It follows from the comparison principle that

0 ≤ Q(z, t) ≤ Q̂(z, t) =
1√
4πt

∫
R
exp

{
− (z +

√
s2 − 4ĥ t− y)2

4t

}
Q(y, 0) dy

≤
∥Q(·, 0)∥L1(R)√

4πt
→ 0 as t→ ∞,

using Q(·, 0) ∈ L1(R). This implies that V (z, t) → 0 locally uniformly in R as t→ ∞. Since

µ < 0, the convergence is uniformly over (−∞, l] for any l ∈ R. This proves the remark. □

Next, we consider the case s ∈ (0, 2) for the saturation forced waves.

Proof of Theorem 1.4. First, in the proof of Theorem 1.1, we can choose a sub-solution ϕ

of (1.2) with ε > 0 small enough and set R = −(z0 + π/(2ω)) with a sufficient large −z0
such that u0(z) ≥ ε for all z ≤ −R. It is easy to check that the constant function ϕ ≡ M a

super-solution of (1.2), if M ≥ supz∈R h(z). We also choose M so that M ≥ ∥u0∥∞. Then

we have ϕ(z) ≥ u0(z) ≥ ϕ(z) for all z ∈ R.
Next, we denote the solution of (1.5) with initial data u0 by u(z, t;u0). Then the solution

u(z, t; ϕ̄) is monotone decreasing in t for t ≥ 0 and u(z, t;ϕ) is monotone increasing in t for

t ≥ 0. By [22, Theorem 3.6] and Theorem 1.2, we deduce that

lim
t→∞

u(z, t;ϕ) = ϕ(z) = lim
t→∞

u(z, t;ϕ)

for every z ∈ R. On the other hand, by the comparison principle, we obtain from ϕ ≤ u0 ≤ ϕ

that

u(z, t;ϕ) ≤ u(z, t;u0) ≤ u(z, t;ϕ), z ∈ R, t ≥ 0.

Letting t→ ∞, we conclude that u(z, t;u0) → ϕ(z) as t→ ∞ for every z ∈ R. The theorem
is thereby proved. □

Remark 4.2. One should note that the perturbation of initial data in Theorem 1.4 can be

arbitrarily near z = ∞. This is due to the uniqueness of forced waves for s ∈ (0, 2). When

h(z) is monotone decreasing, the uniqueness of forced wave with s = 0 is proved in [1]. Hence

Theorem 1.4 also holds for s = 0, if we further assume that h(z) is monotone decreasing.
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