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Abstract. In this paper, we study the existence of traveling wave solutions connecting
two constant states to a nonlocal scalar equation with sign-changing kernel. A typical
example of such kernel in the neural fields is the Mexican hat type function. We first
introduce a new notion of upper-lower-solution for the equation of wave profile for a
given wave speed. Then, with the help of Schauder’s fixed point theorem, we construct
two different pairs of upper-lower-solutions to obtain traveling waves for a continuum
of wave speeds under two different assumptions. Due to the sign-changing nature of
the kernel, the wave profiles may take both positive and negative values. Finally, we
analyze the limit of the right-hand tail of wave profiles. Under some further condition
on the wave speeds, we prove that the right-hand tail limit of the wave profile does
exist. In particular, we obtain the existence of nonnegative traveling waves connecting
the unstable state 0 and the stable state 1 for wave speeds large enough.

1. Introduction

In this paper, we consider the following nonlocal evolution equation

(1.1) ut(x, t) = (K ∗ u)(x, t)− αu(x, t) + f(u(x, t)), x ∈ R, t > 0,

where the ∗ denotes the convolution operator with respective to the spatial variable,

(K ∗ u)(x, t) :=
∫
R
K(y)u(x− y, t)dy,

in which K is a continuous function satisfying

(1.2) K(−y) = K(y), ∀ y ∈ R,
∫
R
K(y)dy = α

for some nonnegative constant α. The nonlinearity f is a locally Lipschitz continuous
function defined in R such that

(1.3)

{
f(−a) = f(0) = f(1) = 0, f < 0 in (−a, 0), f > 0 in (0, 1),

f ′(−a) < 0, f ′(0) > 0, f ′(1) < 0

for some positive constant a.
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A classical solution u to (1.1) is called a traveling wave solution if there exist a constant
c (the wave speed) and a continuously differentiable function ϕ (the wave profile) such that
u(x, t) = ϕ(x+ ct). Setting ξ := x+ ct, we see from (1.1) that ϕ satisfies

(1.4) cϕ′(ξ) = (K ∗ ϕ)(ξ)− αϕ(ξ) + f(ϕ(ξ)), ξ ∈ R,
where

(K ∗ ϕ)(ξ) :=
∫
R
K(y)ϕ(ξ − y)dy.

We are interested in the waves connecting the state 0 and a constant state. So we also
impose the boundary condition

(1.5) ϕ(−∞) = 0.

We leave the right-hand boundary condition free. In fact, when a wave profile ϕ has a
limit at ξ = ∞, we have ϕ(∞) ∈ {−a, 0, 1}. This is discussed in Section 4.

The nonlocal equation (1.1) has appeared as model equations in, e.g., neural fields
([3, 15]), dispersal motions of cells or organisms ([25]), pattern formation in biology ([28])
and material sciences ([5, 10]). In all such studies, localized patterns are sorts of main
interests from the pattern formation point of view. As one typical important example of
localized patterns, traveling wave solutions are concerned in this paper.

When the kernel function K is nonnegative (so that α > 0), the nonlocal operator
models a long range migration of the species. It is very important in real applications,
since it takes into account the long-distance interactions and describes the dispersion via a
dispersal kernel. For example, Medlock and Kot [32] investigated the effects of population
dispersal using a nonlocal epidemic model. Lutscher et al. [30] has analyzed a stream
population nonlocal model. In fact, when f(u) = ru(1 − u) with r > 0, the spatial
propagation dynamics for (1.1) has been investigated extensively. We refer the reader
to [35, 13, 16, 17, 40, 23] for the existence and uniqueness of monotone traveling wave
solutions for (1.1). For the biological and theoretical backgrounds on nonlocal operators,
we also refer the reader to, e.g., [21, 33, 26, 4]. For more results on nonlocal equations,
we refer to [9, 6, 7, 5, 19, 11, 27, 36, 37, 38, 18, 22, 34, 1, 12, 29] and the references cited
therein.

In the above mentioned works, nonnegative kernels are dealt with which can be re-
garded as the generalization of the diffusion process ([5]). In fact, similar results to the
case with usual diffusion terms hold such as the monotonicity of solutions together with
the comparison principle. But, from the biological point of view, kernels with negative
parts are essential while there have been very few works for the case with sign-changing
kernel (e.g., [8]). The Mexican hat type kernel is a typical example of it, which has been
frequently used in neural fields ([3, 15]) and pattern formation problems ([28]). One of
the main reasons is that the Mexican hat type kernel has been believed to express the
property of local activation and long range inhibition related to activator-inhibitor sys-
tems causing Turing instability ([24]). Recently, this fact was theoretically shown in [20]
in the sense that some class of activator-inhibitor systems causing Turing instability can
be reduced to model equations (1.1) with the Mexican hat shape kernel K(x).

Concerning equation (1.1) with a sign-changing kernel, our aim of this paper is to show
the existence of a traveling wave solution. Due to the sign-changing nature of K, equation
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(1.1) does not have a comparison principle. Therefore, the standard method of monotone
iteration cannot be applied to derive the existence of traveling waves. This is one of
the difficulties in dealing with equation (1.1). On the other hand, since the state 0 is
unstable and the state 1 is stable in the sense of ordinary differential equation ut = f(u),
the traveling waves are of monostable type and we expect to have a continuum of wave
speeds. We shall apply Schauder’s fixed point theorem with the help of (generalized)
upper-lower-solutions to derive the existence of traveling waves (cf., e.g., [31, 14]). To the
best of our knowledge, the definition of upper-lower-solutions introduced in this paper is
new. Although the method of applying Schauder’s fixed point theorem is by now very
standard, to find a suitable pair of upper-lower-solutions is by no means trivial.

Throughout this paper, besides (1.3) we also assume that

(1.6) |f(u)| ≤ f ′(0)|u| for u ∈ [u−, u+]

for some constants u± with −∞ < u− < −a < 1 < u+ < ∞. A typical example of f is
the cubic function f(u) = u(1− u2), where a = 1 and u± = ±

√
2.

In the sequel, we set K+(y) := max{K(y), 0} and K−(y) := max{−K(y), 0}. In this
paper, we always assume that the kernel K has a compact support. Then the functions

I±(λ) :=

∫
R
K±(y)e−λydy

are well-defined for all λ ∈ [0,∞). We also define the following two quantities

c∗ := inf
λ∈(0,λ̂)

Q(λ)

λ
, Q(λ) := I+(λ)− I−(λ)− α + f ′(0),(1.7)

c∗∗ := inf
λ∈(0,∞)

R(λ)

λ
, R(λ) := I+(λ) + I−(λ)− α + f ′(0),(1.8)

where λ̂ is defined to be the first positive zero of Q(λ), if it exists, otherwise, set λ̂ := ∞.
Note that Q(0) = f ′(0) > 0. Hence Q(λ) > 0 for λ > 0 small, by the continuity of Q.

Therefore, c∗ is well-defined and c∗ ≥ 0. In particular, c∗ = 0 when λ̂ < ∞. Also, it is
easy to see that R(λ) is a strictly convex function for λ ≥ 0. Hence c∗∗ is well-defined

and c∗∗ > 0. Moreover, Q(λ) < R(λ) for all λ ∈ (0, λ̂) and c∗ < c∗∗.

Before stating our main results, let us introduce the following assumptions on {f,K}.

Assumption 1.1. There is a small constant η ∈ (0, 1) such that

(1.9) f(u) = f ′(0)u for u ∈ [0, η].

Moreover, there are constants δ ∈ (0,∞) and γ ∈ (a,∞) such that

(1.10) f(1 + δ) < 0, f(−γ) > 0, u− ≤ −γ, 1 + δ ≤ u+.

With these constants δ and γ, K− satisfies

(1.11)

∫
R
K−(y)dy ≤ min

{
−f(1 + δ)

1 + δ + γ
,

f(−γ)
1 + δ + γ

}
.
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An example of {f,K} such that Assumption 1.1 holds is that f is piecewise linear, e.g.,

(1.12) f(u) =


−(u+ 1), u ≤ −1/2,

u, u ∈ [−1/2, 1/2],

−(u− 1), u ≥ 1/2

and K satisfies (a priori) the condition

(1.13)

∫
R
K−(y)dy < 1.

In fact, since

sup
δ>0

−f(1 + δ)

1 + δ + γ
= 1, ∀ γ > 1, sup

γ>1

f(−γ)
1 + δ + γ

= 1, ∀ δ > 0,

we can choose δ > 0 and γ > 1 such that (1.10) and (1.11) hold. Clearly, (1.9) holds.

Assumption 1.2. Besides (1.9), f satisfies

(1.14) f ′(0) > α.

Moreover, K satisfies

(1.15)

∫
R
K−(y)dy ≤ min

{
−f(1 + δ)

1 + δ
,
(f ′(0)− α)η

1 + δ

}
for some positive constant δ ∈ (0, u+ − 1) such that f(1 + δ) < 0.

An example of {f,K} such that Assumption 1.2 holds is that f is piecewise linear
defined by (1.12) and K satisfies

(1.16)

∫
R
K+(y)dy =

∫
R
K−(y)dy ≤ 1

3
.

In fact, since

−f(1 + δ)

1 + δ
=

δ

1 + δ
,

f ′(0)η

1 + δ
=

1

2(1 + δ)
,

we can choose δ = 1/2 such that (1.15) holds. Clearly, (1.14) holds with α = 0.
Our first main result reads

Theorem 1.3. Let Assumption 1.1 be enforced. Then for any c > c∗∗ equation (1.4) has
a solution ϕ such that ϕ ̸≡ 0 and ϕ(−∞) = 0.

By some numerical simulations, the wave profile ϕ obtained in Theorem 1.3 may take
both positive and negative values. However, our second result excludes this sign-changing
nature of wave profile as follows.

Theorem 1.4. Let Assumption 1.2 be enforced. Then for any c > c∗∗ equation (1.4) has
a nonnegative solution ϕ such that ϕ ̸≡ 0 and ϕ(−∞) = 0.
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The rest of this paper is organized as follows. In Section 2, we give several preliminaries
including the definition of upper-lower-solution and a proposition to ensure the existence
of solution to (1.4). Then, in Section 3, we construct two different pairs of upper-lower-
solutions under Assumptions 1.1 and 1.2, respectively. Combining these upper-lower-
solutions with the existence theory from Section 2, we give the proofs of Theorems 1.3
and 1.4. Finally, in Section 4, we analyze the right-hand tail of the wave profiles obtained
in Theorems 1.3 and 1.4. Under some further restriction on the wave speeds, we derive
that the right-hand tail limit of the wave profile does exist. In particular, we obtain
nonnegative traveling wave solutions of (1.1) connecting the unstable state 0 and the
stable state 1 for wave speeds large enough, under Assumption 1.2. Unfortunately, we
were unable to determine the minimal speed (if it exists). We leave it as an open problem
for a future study.

Two more remarks are made as follows. First, in [23], they consider the doubly nonlocal
Fisher-KPP equation and the strict monotonicity of wave profiles are derived. Due to the
positivity of the kernels, the comparison principle holds for their model. This important
property is one of the keys to derive the monotonicity of wave profiles. However, our
model does not have the comparison principle and so the theory of monotone semiflow
cannot be applied. On the other hand, from our numerical simulations, we have observed
non-monotone traveling waves. Therefore, we are not sure whether there are monotone
traveling waves for our model with sign-changing kernel, even under some additional
assumptions on the nonlinearity.

Secondly, we suspect that the very restricted condition (1.9) is just technical and it
might be possible to replace this condition by some more general assumptions. However,
our construction of upper-lower-solutions relies heavily on the condition (1.9). For the
sign-changing upper-lower-solutions (for Theorem 1.3), one should notice that the nonlin-
earity is assumed to be of bistable type which is crucial for the kernel to have a nontrivial
negative part. On the other hand, under Assumption 1.2, the constant η in condition
(1.9) is needed for our kernel with a nontrivial negative part. It would be very interesting
either to remove the assumption (1.9) or to replace it by some more general conditions.
We leave this important question to be open.

2. Preliminaries

In this section, we introduce the notion of upper-lower-solution and provide a derivation
of the existence of solution to (1.4). First, due to the sign-changing nature of K, we define
the upper-lower-solutions of (1.4) as follows.

Definition 2.1. Given a constant c > 0. A pair of continuous functions {ϕ, ϕ} are upper
and lower solutions of (1.4) if

cϕ
′
(ξ) ≥ (K+ ∗ ϕ)(ξ)− (K− ∗ ϕ)(ξ)− αϕ(ξ) + f(ϕ(ξ)), ∀ ξ ∈ R \ A,(2.1)

cϕ′(ξ) ≤ (K+ ∗ ϕ)(ξ)− (K− ∗ ϕ)(ξ)− αϕ(ξ) + f(ϕ(ξ)), ∀ ξ ∈ R \ A,(2.2)

for some finite set A ⊂ R.
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Let κ := maxu∈[u−,u+] |f ′(u)|. The constant κ is well-defined, since f is a locally Lip-
schitz continuous function. To apply Schauder’s fixed point theorem, we introduce the
following integral operator

(2.3) P [z](ξ) :=
1

c

∫ ξ

−∞
e−(α+κ)(ξ−y)/c[(K ∗ z)(y) + κz(y) + f(z(y))]dy

for any continuous function z on R with range in [u−, u+].
Note that, by a differentiating z(ξ) = P [z](ξ) with respect to ξ, we obtain

z′(ξ) =
1

c
{(K ∗ z)(ξ) + κz(ξ) + f(z(ξ))} − κ+ α

c
z(ξ).

Hence it is easy to see that ϕ is a fixed point of the mapping P if and only if ϕ satisfies
(1.4). Therefore, to find a solution of (1.4) is equivalent to finding a fixed point of P .
Although the proof of the following proposition is very standard (cf. [31]), for reader’s

convenience we provide some details here.

Proposition 2.2. Suppose that there exists a pair of upper-lower-solution {ϕ, ϕ} with

range in [u−, u+] such that ϕ ≤ ϕ in R. Then (1.4) has a solution ϕ such that ϕ ≤ ϕ ≤ ϕ
in R.

Proof. Choose a constant µ ∈ (0, (α + κ)/c). Define

Bµ(R) := {z ∈ C(R) | ||z||µ <∞}, ∥z∥µ := sup
ξ∈R

|z(ξ)|e−µ|ξ|.

Then (Bµ(R), || · ||µ) is a Banach space. Also, we set

Γ := {z ∈ C(R) | ϕ(y) ≤ z(y) ≤ ϕ(y), ∀ y ∈ R}.

Then Γ is a nonempty convex bounded closed set with respect to the weighted norm ∥·∥µ.
First, we show that P (Γ) ⊂ Γ. For a given z ∈ Γ, we have

P [z](ξ) =
1

c

∫ ξ

−∞
e−(α+κ)(ξ−y)/c[(K+ ∗ z)(y)− (K− ∗ z)(y) + κz(y) + f(z(y))]dy

≥ 1

c

∫ ξ

−∞
e−(α+κ)(ξ−y)/c[(K+ ∗ ϕ)(y)− (K− ∗ ϕ)(y) + κϕ(y) + f(ϕ(y))]dy,

using the fact κu+ f(u) is increasing for u ∈ [u−, u+]. It then follows from (2.2) that

P [z](ξ) ≥ 1

c

∫ ξ

−∞
e−(α+κ)(ξ−y)/c[cϕ′(y) + (α + κ)ϕ(y)]dy = ϕ(ξ)

for all ξ ∈ R. Similarly, one can easily derive that P [z](ξ) ≤ ϕ(ξ) for all ξ ∈ R.
Next, a similar argument as that in [31] implies that the mapping P : Γ → Γ is

completely continuous with respect to the weighted norm ∥z∥µ. We omit the details here.
Therefore, the proposition is proved by applying Schauder’s fixed point theorem. �
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3. Constructions of upper-lower-solution

This section is devoted to the construction of suitable pair of upper-lower-solutions.
For a given c > c∗∗, since c > c∗, it follows from (1.7) that there exists the smallest

positive λ1 ∈ (0, λ̂) such that

(3.1) Q(λ1) = cλ1, Q(λ) > cλ for all λ ∈ [0, λ1).

Also, by the definition of c∗∗, the equation R(λ) = cλ has two positive roots λ2 and λ3
with λ2 < λ3 such that

(3.2) R(λ) < cλ, ∀λ ∈ (λ2, λ3); R(λ) > cλ, ∀λ ∈ [0, λ2) ∪ (λ3,∞).

Note that λ2 > λ1. Indeed, if λ2 ≤ λ1, then

R(λ2) = cλ2 ≤ Q(λ2),

a contradiction. Hence λ2 > λ1.

3.1. Case under Assumption 1.1. Choose ν > 1 such that νλ1 ∈ (λ2, λ3). For a given
constant h > 1, set

ψ(ξ) := eλ1ξ − heνλ1ξ, ξ0 :=
− lnh

(ν − 1)λ1
, ξM :=

− ln(hν)

(ν − 1)λ1
.

Then ψ(ξ) is positive if and only if ξ < ξ0, ψ(ξ0) = 0 and ψ < 0 in (ξ0,∞). Moreover,

(3.3) ψ(ξ) ≤ ψ(ξM) = C(ν)h−1/(ν−1), ∀ ξ ∈ R,
for some positive constant C = C(ν) := ν−1/(ν−1)(1− 1/ν). Then we choose a constant h
large enough such that ψ(ξM) ≤ η, where η is defined in (1.9).

With these λ1, ν and h, we introduce the functions

(3.4) ϕ(ξ) = min{eλ1ξ + heνλ1ξ, 1 + δ}, ϕ(ξ) = max{eλ1ξ − heνλ1ξ,−γ},
where constants δ ∈ (0, 1) and γ ∈ (a, 2a) are given so that (1.10) holds.

Now, we verify the functions {ϕ, ϕ} are upper and lower solutions of (1.4). For conve-
nience, we introduce

N1(ξ) := −cϕ′
(ξ) + (K+ ∗ ϕ)(ξ)− (K− ∗ ϕ)(ξ)− αϕ(ξ) + f(ϕ(ξ)),

N2(ξ) := −cϕ′(ξ) + (K+ ∗ ϕ)(ξ)− (K− ∗ ϕ)(ξ)− αϕ(ξ) + f(ϕ(ξ)).

Then (2.1) ((2.2), resp.) is equivalent to N1(ξ) ≤ 0 (N2(ξ) ≥ 0, resp.) in R \ {ξ1, ξ2}.

Lemma 3.1. Let Assumption 1.1 be enforced. If c > c∗∗, then the functions {ϕ, ϕ} defined
by (3.4) are upper and lower solutions of (1.4).

Proof. Set ξi, i = 1, 2, to be

eλ1ξ1 + heνλ1ξ1 = 1 + δ, eλ1ξ2 − heνλ1ξ2 = −γ.
Then we have

ϕ(ξ) =

{
eλ1ξ + heνλ1ξ, ξ ≤ ξ1,

1 + δ, ξ ≥ ξ1,
ϕ(ξ) =

{
eλ1ξ − heνλ1ξ, ξ ≤ ξ2,

−γ, ξ ≥ ξ2.
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We first consider N1(ξ). When ξ < ξ1, we have ϕ(ξ) = eλ1ξ + heνλ1ξ. Using ϕ(ξ) ≤
eλ1ξ + heνλ1ξ ≤ 1 + δ ≤ u+ and ϕ(ξ) ≥ eλ1ξ − heνλ1ξ for all ξ ∈ R, we obtain

N1(ξ) ≤ −c(λ1eλ1ξ + hνλ1e
νλ1ξ) +

∫
R
K+(y)[eλ1(ξ−y) + heνλ1(ξ−y)]dy

−
∫
R
K−(y)[eλ1(ξ−y) − heνλ1(ξ−y)]dy − α(eλ1ξ + heνλ1ξ) + f(eλ1ξ + heνλ1ξ)

= eλ1ξ
{
−cλ1 + I+(λ1)− I−(λ1)− α

}
+heνλ1ξ

{
−cνλ1 + I+(νλ1) + I−(νλ1)− α

}
+ f(eλ1ξ + heνλ1ξ)

= eλ1ξ {−cλ1 +Q(λ1)− f ′(0)}
+heνλ1ξ {−cνλ1 +R(νλ1)− f ′(0)}+ f(eλ1ξ + heνλ1ξ)

< f(eλ1ξ + heνλ1ξ)− f ′(0)(eλ1ξ + heνλ1ξ) ≤ 0

for ξ < ξ1, by the conditions (3.1), (3.2) and (1.6).
When ξ > ξ1, ϕ(ξ) = 1 + δ. Using ϕ(ξ) ≤ 1 + δ and ϕ(ξ) ≥ −γ for all ξ ∈ R, we

compute

N1(ξ) ≤ 0 + (1 + δ)

∫
R
K+(y)dy + γ

∫
R
K−(y)dy − α(1 + δ) + f(1 + δ)

= (1 + δ + γ)

∫
R
K−(y)dy + f(1 + δ) ≤ 0

for ξ > ξ1, due to (1.11). Therefore, we obtain N1(ξ) ≤ 0 for all ξ ∈ R \ {ξ1}.

Next, we consider N2(ξ). When ξ < ξ2, we have ϕ(ξ) = eλ1ξ − heνλ1ξ. Then as before
we obtain

N2(ξ) ≥ −c(λ1eλ1ξ − hνλ1e
νλ1ξ) +

∫
R
K+(y)[eλ1(ξ−y) − heνλ1(ξ−y)]dy

−
∫
R
K−(y)[eλ1(ξ−y) + heνλ1(ξ−y)]dy − α(eλ1ξ − heνλ1ξ) + f(eλ1ξ − heνλ1ξ)

= eλ1ξ
{
−cλ1 + I+(λ1)− I−(λ1)− α

}
−heνλ1ξ

{
−cνλ1 + I+(νλ1) + I−(νλ1)− α

}
+ f(eλ1ξ − heνλ1ξ)

= eλ1ξ {−cλ1 +Q(λ1)− f ′(0)}
−heνλ1ξ {−cνλ1 +R(νλ1)− f ′(0)}+ f(eλ1ξ − heνλ1ξ)

> f(eλ1ξ − heνλ1ξ)− f ′(0)(eλ1ξ − heνλ1ξ)

for ξ < ξ2, by using condition (3.1) and (3.2).
If eλ1ξ − heνλ1ξ ≤ 0, then f(eλ1ξ − heνλ1ξ) − f ′(0)(eλ1ξ − heνλ1ξ) ≥ 0 using conditions

(1.6) and (1.10). Here u− ≤ −γ ≤ eλ1ξ − heνλ1ξ ≤ 0 were used. On the other hand,
suppose that eλ1ξ − heνλ1ξ ≥ 0. By (3.3) and the choice of h, we have ψ(ξ) ≤ η for all
ξ ∈ R. Then, we deduce from (1.9) that f(eλ1ξ −heνλ1ξ)−f ′(0)(eλ1ξ −heνλ1ξ) = 0. Hence
N2(ξ) ≥ 0 for all ξ < ξ2.
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When ξ > ξ2, we know that ϕ(ξ) = −γ. Then we have

N2(ξ) ≥ 0− γ

∫
R
K+(y)dy − (1 + δ)

∫
R
K−(y)dy + αγ + f(−γ)

≥ −(1 + δ + γ)

∫
R
K−(y)dy + f(−γ) ≥ 0

for ξ > ξ2, due to (1.11). Therefore, N2(ξ) ≥ 0 for all ξ ∈ R \ {ξ2}.
We conclude that {ϕ, ϕ} is a pair of upper-lower-solution to (1.4). �

Hence Theorem 1.3 is proved by applying Lemma 3.1 and Proposition 2.2.

3.2. Case under Assumption 1.2. Recall the function ψ defined in Subsection 3.1.
With λ1 in (3.1), ν > 1 such that νλ1 ∈ (λ2, λ3) and the constants δ and η in Assump-
tion 1.2, we introduce the functions

(3.5) ϕ(ξ) =

{
eλ1ξ + heνλ1ξ, ξ ≤ ξ1,

1 + δ, ξ ≥ ξ1,
ϕ(ξ) =

{
eλ1ξ − heνλ1ξ, ξ ≤ ξM ,

η, ξ ≥ ξM .

where the constants ξ1 and h are chosen so that

eλ1ξ1 + heνλ1ξ1 = 1 + δ, ψ(ξM) = η.

Now, we verify the functions {ϕ, ϕ} are upper and lower solutions of (1.4).

Lemma 3.2. Let Assumption 1.2 be enforced. Assume that c > c∗∗. Then the functions
{ϕ, ϕ} defined by (3.5) are upper and lower solutions of (1.4).

Proof. As in Subsection 3.1, we have N1(ξ) ≤ 0 for all ξ < ξ1.
When ξ > ξ1, ϕ(ξ) = 1+ δ. Using ϕ(ξ) ≤ 1+ δ and ϕ(ξ) ≥ 0 for all ξ ∈ R, we compute

N1(ξ) ≤ 0 + (1 + δ)

∫
R
K+(y)dy − α(1 + δ) + f(1 + δ)

= (1 + δ)

∫
R
K−(y)dy + f(1 + δ) ≤ 0

for ξ > ξ1, due to (1.15). Therefore, N1(ξ) ≤ 0 for all ξ ∈ R \ {ξ1}.
For ξ < ξM , we have ϕ(ξ) = eλ1ξ − heνλ1ξ ∈ (0, η]. Then as in Subsection 3.1 we obtain

N2(ξ) ≥ −c(λ1eλ1ξ − hνλ1e
νλ1ξ) + eλ1ξI+(λ1)− heνλ1ξI+(νλ1)

−eλ1ξI−(λ1)− heνλ1ξI−(νλ1)− α(eλ1ξ − heνλ1ξ) + f(eλ1ξ − heνλ1ξ)

= eλ1ξ
{
−cλ1 + I+(λ1)− I−(λ1)− α

}
−heνλ1ξ

{
−cνλ1 + I+(νλ1) + I−(νλ1)− α

}
+ f(eλ1ξ − heνλ1ξ)

> f(eλ1ξ − heνλ1ξ)− f ′(0)(eλ1ξ − heνλ1ξ) = 0

for ξ < ξM , by using conditions (3.1), (3.2) and (1.9).
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When ξ > ξM , we have ϕ(ξ) = η. Then we have

N2(ξ) ≥ 0 + 0− (1 + δ)

∫
R
K−(y)dy − αη + f(η)

= −(1 + δ)

∫
R
K−(y)dy − αη + f ′(0)η ≥ 0

for ξ > ξM , due to (1.9) and (1.15). Therefore, N2(ξ) ≥ 0 for all ξ ∈ R \ {ξM}. We
conclude that {ϕ, ϕ} is a pair of upper-lower-solution to (1.4). �

Finally, applying Lemma 3.2 and Proposition 2.2, Theorem 1.4 follows with a nonneg-
ative wave profile ϕ, since ϕ ≥ 0.

4. Right-hand tail of wave profile

In this section, we investigate the behavior of a solution to (1.4) at ξ = ∞. In the
sequel, we denote by ∥g∥∞ the supremum of |g| over R.

Proposition 4.1. Let ϕ be a solution to (1.4) obtained in Theorems 1.3 and 1.4. Suppose
that the limit l := limξ→∞ ϕ(ξ) exists. Then f(l) = 0.

Proof. First, by assumption, we can find a sequence {ξn} with ξn → ∞ and ϕ′(ξn) → 0
as n→ ∞.
To prove the proposition, it suffices to prove that

(4.1) (K ∗ ϕ)(ξn) → αl as n→ ∞.

Now, given ϵ > 0 small enough. Since ϕ(ξ) → l as ξ → ∞ and by (1.2), there is M ≫ 1
such that

|ϕ(ξ)− l| < ϵ/{4[I+(0) + I−(0)]}, ∀ ξ ≥M,(4.2) ∫
|y|≥M

K±(y)dy < ϵ/[4∥ϕ∥∞],(4.3) ∣∣∣ ∫
|y|≥M

K(y)dy
∣∣∣ < ϵ/[4(|l|+ 1)].(4.4)

Next, we choose N ≫ 1 such that ξn ≥ 2M for all n ≥ N . Then, by (4.2),

(4.5) |ϕ(ξn − y)− l| < ϵ/{4[I+(0) + I−(0)]}, ∀n ≥ N, ∀ y ∈ [−M,M ],

since ξn − y ≥ 2M −M =M .
We compute∣∣∣ ∫
R
K(y)ϕ(ξn − y)dy − αl

∣∣∣ ≤
∣∣∣ ∫

|y|≥M

K(y)ϕ(ξn − y)dy
∣∣∣

+
∣∣∣ ∫ M

−M

K(y)[ϕ(ξn − y)− l]dy
∣∣∣+ ∣∣∣ ∫ M

−M

K(y)dy − α
∣∣∣ · |l|.
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Since, for n ≥ N ,∣∣∣ ∫
|y|≥M

K(y)ϕ(ξn − y)dy
∣∣∣ ≤ (∫

|y|≥M

K+(y)dy +

∫
|y|≥M

K−(y)dy

)
∥ϕ∥∞ < ϵ/2,∣∣∣ ∫ M

−M

K(y)[ϕ(ξn − y)− l]dy
∣∣∣ ≤ ∫ M

−M

|K(y)|dy · ϵ/{4[I+(0) + I−(0)]} ≤ ϵ/4,∣∣∣ ∫ M

−M

K(y)dy − α
∣∣∣ · |l| = ∣∣∣ ∫

|y|≥M

K(y)dy
∣∣∣ · |l| < ϵ/4,

by using (4.3), (4.5) and (4.4). Hence (4.1) follows.
Finally, putting ξn into (1.4) and letting n → ∞, we deduce that f(l) = 0. Hence the

proposition is proved. �

To prove that the right-hand tail converges, we find a condition for the derivative of a
solution to (1.4) converges to 0 at ξ = ∞, using L2 estimates based on a method of [2].
For convenience, we define

mi :=

∫
R
|yiK(y)|dy, i = 0, 1, 2.

Note that mi is well-defined, since K has a compact support. Also, we define the set

Ck
b (R) := {g ∈ Ck(R) | ||g(j)||∞ <∞, j = 0, 1, ..., k}.

Lemma 4.2. Let (c, ϕ) ∈ R × C2
b (R) be a solution to (1.4). Suppose that c >

√
m0m2.

Then ϕ′ ∈ L2(R) and ϕ′(∞) = 0.

Proof. Let us define

F (u) :=

∫ u

0

f(s)ds, M := ||ϕ||∞, M ′ := ||ϕ′||∞, Mf := max
u∈[−M,M ]

|F (u)|.

We multiply (1.4) by ϕ′ and then integrate from −q < 0 to p > 0 to get

0 ≤ c

∫ p

−q

(ϕ′)2(ξ)dξ =

∫ p

−q

{ϕ′[(K ∗ ϕ)− αϕ+ f(ϕ)]}(ξ)dξ

=

∫ p

−q

[ϕ′{(K ∗ ϕ)− αϕ}+ (F (ϕ))′] (ξ)dξ

≤
(∫ p

−q

(ϕ′)2(ξ)dξ

)1/2(∫ p

−q

{[(K ∗ ϕ)− αϕ](ξ)}2dξ
)1/2

+ 2Mf .

For ξ ∈ R, we write

[(K ∗ ϕ)− αϕ](ξ) =

∫
R
K(ξ − y)(ϕ(y)− ϕ(ξ))dy

=

∫
R

∫ 1

0

K(ξ − y)(y − ξ)ϕ′(ξ + s(y − ξ))dsdy.
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Applying the Cauchy-Schwartz inequality yields

{[(K ∗ ϕ)− αϕ](ξ)}2

≤
(∫

R

∫ 1

0

|K(y − ξ)(y − ξ)ϕ′(ξ + s(y − ξ))|dsdy
)2

≤
(∫

R

∫ 1

0

|K(y − ξ)|(y − ξ)2dsdy

)(∫
R

∫ 1

0

|K(y − ξ)|[ϕ′(ξ + s(y − ξ))]2dsdy

)
= m2

(∫
R

∫ 1

0

|K(z)|(ϕ′(ξ + sz))2dsdz

)
.

Therefore, we compute∫ p

−q

{[(K ∗ ϕ)− αϕ](ξ)}2dξ ≤ m2

∫ p

−q

∫
R

∫ 1

0

|K(z)|[ϕ′(ξ + sz)]2dsdzdξ

= m2

∫
R

∫ 1

0

|K(z)|
∫ p

−q

[ϕ′(ξ + sz)]2dξdsdz

= m2

∫
R

∫ 1

0

|K(z)|
∫ p+sz

−q+sz

[ϕ′(ξ)]2dξdsdz.

Now, using |u′| ≤M ′, we get∫ p+sz

−q+sz

[ϕ′(ξ)]2dξ =

∫ −q

−q+sz

[ϕ′(ξ)]2dξ +

∫ p

−q

[ϕ′(ξ)]2dξ +

∫ p+sz

p

[ϕ′(ξ)]2dξ

≤
∫ p

−q

[ϕ′(ξ)]2dξ + 2(M ′)2s|z|, ∀ s ∈ [0, 1], z ∈ R.

This implies that∫ p

−q

{[(K ∗ ϕ)− αϕ](ξ)}2dξ ≤ m2

{
m0

∫ p

−q

(ϕ′)2 + (M ′)2m1

}
.

Therefore, we see that

c

∫ p

−q

(ϕ′)2 ≤
√
m2

{
m0

(∫ p

−q

(ϕ′)2
)2

+ (M ′)2m1

(∫ p

−q

(ϕ′)2
)}1/2

+ 2Mf .

If c >
√
m0m2, then {

∫ p

−q
(ϕ′)2 | p > 0, q > 0} is uniformly bounded and so ϕ′ ∈ L2(R).

Since ϕ′ is uniformly continuous on R, this implies ϕ′(∞) = 0. The lemma is proved. �

Remark 4.3. Let ϕ be a solution obtained in Theorems 1.3 and 1.4. Since ϕ is continuous
and bounded in R, by (1.4), ϕ′ is also continuous and bounded in R. In the case when
f ∈ C1, by differentiating (1.4) once, we see easily that ϕ′′ is also continuous and bounded
in R, i.e., ϕ ∈ C2

b (R).

Proposition 4.4. Let (c, ϕ) ∈ R×C2
b (R) be a solution to (1.4). Suppose that c >

√
m0m2

and {u ∈ [−||ϕ||∞, ||ϕ||∞] | f(u) = 0} = {−a, 0, 1}. Then ϕ(∞) exists and belongs to
{−a, 0, 1}.
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Proof. Denote by A the set of accumulation points of ϕ at +∞. Since ϕ is bounded, A
is not empty. Let l ∈ A. Then there exists a sequence ξn → +∞ such that ϕ(ξn) → l as
n→ ∞. Then ψn(ξ) := ϕ(ξ + ξn) satisfies

cψ′
n(ξ) = (K ∗ ψn)(ξ)− αψn(ξ) + f(ψn(ξ)), ξ ∈ R.

For all L > 0 and all 1 < p < ∞, the sequence {ψn} is bounded in W 2,p([−L,L]). From
the Sobolev embedding theorem, there exists a subsequence {ψn(k)} of {ψn} such that

ψn(k) → ψ as k → ∞ strongly in C1
loc(R) and weakly in W 1,p

loc (R). It follows Lemma 4.2
that

ψ′(ξ) = lim
k→∞

ϕ′(ξ + ξn(k)) = 0, ∀ ξ ∈ R.

Combining this with the fact that ψ solves

cψ′(ξ) = (K ∗ ψ)(ξ)− αψ(ξ) + f(ψ(ξ)), ξ ∈ R,
we deduce that ψ(ξ) ∈ {u ∈ [−||ϕ||∞, ||ϕ||∞] | f(u) = 0} for all ξ ∈ R. In particular,

l = lim
k→∞

ϕ(ξn(k)) = ψ(0) ∈ {u ∈ [−||ϕ||∞, ||ϕ||∞] | f(u) = 0}.

Hence, by assumption, l ∈ {−a, 0, 1}. Since ϕ is a continuous function, A is connected.
Therefore, ϕ(∞) exists and belongs to {−a, 0, 1}. The proof is complete. �

Applying this proposition and using (3.5), we obtain the following corollary.

Corollary 4.5. Let Assumption 1.2 be enforced. Also, assume that f ∈ C1(R) and
{u ∈ [u−, u+] | f(u) = 0} = {−a, 0, 1}. Then for any c > max{c∗∗,√m0m2} equation
(1.4) has a nonnegative solution ϕ such that ϕ(−∞) = 0 and ϕ(+∞) = 1.
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