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Abstract. We study the spreading dynamics for a three-species predator-prey system with
two weak competing predators and one prey in a shifting habitat. First, we derive some
extinction results for each species. Then we provide some persistence theorems for each
species with moving speeds exceed the shifting speed, but less than some certain quantities.
Finally, the convergence to a certain constant state is proven in each persistent regime.

1. Introduction

In this paper, we consider the following three-species predator-prey system

ut(x, t) = d1uxx(x, t) + r1u(x, t)[α(x− st)− u(x, t)− av(x, t)− aw(x, t)], x ∈ R, t > 0,(1.1)

vt(x, t) = d2vxx(x, t) + r2v(x, t)[−1 + bu(x, t)− v(x, t)− hw(x, t)], x ∈ R, t > 0,(1.2)

wt(x, t) = d3wxx(x, t) + r3w(x, t)[−1 + bu(x, t)− kv(x, t)− w(x, t)], x ∈ R, t > 0,(1.3)

in which u, v, w stand for the population densities of the single prey and two predators,

constants di, i = 1, 2, 3, are their diffusion rates, a is the predation rate, b is the conversion

rate, and h, k are competition coefficients between two predators. The intrinsic growth rate

for u is r1α(x − st), where α is a piecewise continuously differentiable and non-decreasing

function such that

−∞ < α(−∞) < 0 < α(∞) < ∞

in which we may assume without loss of generality that α(∞) = 1. This assumption implies

that the environment is favorable to the prey ahead of the shifting edge, α(x− st) = 0, and

becomes hostile to the prey behind the shifting edge. Here the positive constant s stands

for the speed of shifting habitat due to the climate change effect for example. The intrinsic

growth rates for predators are assumed to be −ri, i = 2, 3. We assume all parameters are

positive. Hence, in particular, either predator cannot survive without the prey.

From the modeling point view, although the shifting term α does not present in each

equation of predator, the effect of changing environment actually comes to play for both
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predators. This can be seen from the results we obtained below. In this paper, for simplicity

we assume the predation rates for the prey are the same for both predators and also for the

conversion rates.

We assume throughout this paper the condition

(1.4) 0 < h, k < 1, b > 1.

Biologically, condition (1.4) means that both predators are weak competitors (in the absence

of the prey) and each predator can survive with the feeding of the prey. Then the constant

equilibria for the limiting system of (1.1)-(1.3) at x− st = ∞, namely,

(1.5)


ut = d1uxx + r1u(1− u− av − aw), x ∈ R, t > 0,

vt = d2vxx + r2v(−1 + bu− v − hw), x ∈ R, t > 0,

wt = d3wxx + r3w(−1 + bu− kv − w), x ∈ R, t > 0,

are

(1, 0, 0), (up, vp, 0), (up, 0, wp), (uc, vc, wc),

where

up :=
1 + a

1 + ab
, vp = wp :=

b− 1

1 + ab
,(1.6)

uc :=
1 + aγ

1 + abγ
, γ :=

2− h− k

1− hk
, vc :=

1− h

1− hk
(buc − 1), wc :=

1− k

1− hk
(buc − 1).(1.7)

Note that, under condition (1.4), the positive co-existence state (uc, vc, wc) exists and it is

stable (in the ODE sense). Moreover, the other three constant equilibria are unstable (in

the ODE sense).

The effect of shifting heterogeneity on ecological species has been studied recently in a

series of works by Berestycki and his coauthors ([5, 6, 3, 2, 4]). We also refer the reader to,

for examples, [17, 19, 13, 16, 23, 18, 7, 20, 21, 22, 9, 12, 8] and references cited therein. One

of the main concerns of these studies is to understand the large time extinction or survival

of all species and their spreading dynamics. Another attention is paid to the existence of

so-called forced waves, which are traveling wave solutions with wave speed s (the speed of

shifting habitat). In the above-mentioned works, either a single species or two species ecolog-

ical systems were investigated. This includes two species competition systems, cooperative

systems and predator-prey systems.

Little is done for three species ecological systems. Motivated by a recent work [8] on a

two species predator-prey system, our aim of this paper is to extend the 2-species case to

a 3-species system. In particular, we are interested in the spreading dynamics of system

(1.1)-(1.3). For system (1.5), we refer the reader to [10] for the study of spreading dynamics

to characterize the asymptotic spreading speeds and [14] for the existence of traveling wave

solutions connecting the predator-free state (1, 0, 0) and the co-existence state (uc, vc, wc).

Let (u, v, w) be a solution of (1.1)-(1.3) with the initial condition

(1.8) u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), ∀x ∈ R.
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Throughout this paper, the initial data (u0, v0, w0) are assumed to be continuous and non-

trivial in the sense u0 ̸≡ 0, v0 ̸≡ 0 and w0 ̸≡ 0. We also assume that u0 ∈ [0, 1] and

v0, w0 ∈ [0, b − 1] in R. Then, by the standard theory of parabolic equations, system

(1.1)-(1.3) with initial condition (1.8) has a unique solution (u, v, w) such that 0 < u ≤ 1,

0 < v ≤ b− 1 and 0 < w ≤ b− 1 for all t > 0.

In the sequel, we denote

s∗1 := 2
√

d1r1, s
∗
i := 2

√
diri(b− 1), i = 2, 3.

Here s∗1 stands for the Fisher invasion speed of u with α ≡ 1 and without predators. Also,

s∗2 (s∗3, resp.) is the Fisher invasion speed of v (w, resp.) with u ≡ 1 and without the other

predator.

First, we discuss the extinction phenomenon. If the shifting speed s exceeds the Fisher

invasion speed of the prey, then the prey goes extinction, which leads to the extinction of the

predators. Moreover, if the shifting speed exceeds the Fisher invasion speed of a predator,

then the predator goes extinction. In fact, we have

Theorem 1.1. Let (u, v, w) be a solution of (1.1)-(1.3) with compactly supported initial data

(u0, v0, w0). Then we have

lim
t→∞

sup
x∈R

[u(x, t) + v(x, t) + w(x, t)] = 0, if s > s∗1,(1.9)

lim
t→∞

sup
x∈R

v(x, t) = 0, if s > s∗2; lim
t→∞

sup
x∈R

w(x, t) = 0, if s > s∗3.(1.10)

On the other hand, behind the transition to the devastating environment, u is already

brought down to a very low density, which leads to the vanishing of each predator. We call

this as the partial extinction in this paper. More precisely, we provide the following partial

extinction result.

Theorem 1.2. Let (u, v, w) be a solution of (1.1)-(1.3) with initial data (u0, v0, w0). Then

we have

lim
t→∞

sup
x≤(s−ε)t

u(x, t) = 0, if s ≤ s∗1,(1.11)

lim
t→∞

sup
x≤(s−ε)t

v(x, t) = 0, if s ≤ s∗2 and u0 has a compact support,(1.12)

lim
t→∞

sup
x≤(s−ε)t

w(x, t) = 0, if s ≤ s∗3 and u0 has a compact support,(1.13)

for any small ε > 0

In other words, each species must keep up with the climate change in order to survive. In

fact, to survive each species cannot move too fast as shown in a classical result by Aronson

and Weinberger [1] (see also Theorem 2.1 in §2). Therefore, the only chance to survive for

a species is to move in a speed bigger than the shifting speed s, but less than its Fisher

invading speed.

In the sequel, for simplicity we only consider the case when

(1.14) d2r2 > d3r3.
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We shall call v the fast predator and w the slow predator, since s∗2 > s∗3.

We now state our main spreading results caused by the climate change as follows. First,

if the Fisher invasion speed of u is bigger than the shifting speed and the speed of leading

edge of the fast predator is smaller than the shifting speed, only the prey can escape from

the climate change, and the predators are wiped out because of the lack of food.

Theorem 1.3. Let (u, v, w) be a solution of (1.1)-(1.3) with compactly supported initial data

(u0, v0, w0) such that u0 ̸= 0. Suppose that s∗1 > s∗2. If s ∈ (s∗2, s
∗
1), then we have

lim
t→∞

{
sup

(s+ε)t≤x≤(s∗1−ε)t

[|u(x, t)− 1|+ v(x, t) + w(x, t)]

}
= 0

for any ε ∈ (0, (s∗1 − s)/2).

Next, if the shifting speed is smaller than the Fisher invasion speeds of u and v and larger

than that of w, only the slow predator w dies out by the environmental change.

Theorem 1.4. Let (u, v, w) be a solution of (1.1)-(1.3) with compactly supported initial data

(u0, v0, w0) such that u0 ̸= 0 and v0 ̸= 0. Suppose that s∗3 < s < s̄∗ := min{s∗1, s∗2}. Then we

have

lim
t→∞

{
sup

(s+ε)t≤x≤(s̄∗−ε)t

[|u(x, t)− up|+ |v(x, t)− vp|+ w(x, t)]

}
= 0

for any ε ∈ (0, (s̄∗ − s)/2).

The remaining range for the shifting speed is when s < ŝ∗ := min{s∗1, s∗2, s∗3}. From the

above theorems, we may expect that all species can escape from the disaster, if s < ŝ∗. In

this aspect, Propositions 3.2 and 3.5 (see below in §3) are the best results we are able to prove
in this paper. Note that, since v and w compete each other, on the favorable environment

of u, there is a possibility that one of the predators defeats.

In order to describe this sustainable coexistence, we introduce the following two quantitiess∗∗2 :=
√

1−h
1+ab

s∗2 = 2
√

d2r2(−1 + bup − hwp),

s∗∗3 :=
√

1−k
1+ab

s∗3 = 2
√

d3r3(−1 + bup − kvp).

Then we have

Theorem 1.5. Let (u, v, w) be a solution of (1.1)-(1.3) with initial data (u0, v0, w0) such

that u0 ̸= 0, v0 ̸= 0 and w0 ̸= 0. Suppose that s < ŝ∗∗ := min{ŝ∗, s∗∗2 , s∗∗3 }. Then we have

lim
t→∞

{
sup

(s+ε)t≤x≤(ŝ∗−ε)t

[|u(x, t)− uc|+ |v(x, t)− vc|+ |w(x, t)− wc|]

}
= 0

for any ε ∈ (0, (ŝ∗∗ − s)/2).

It is well-known that some difficulties arise due to the lack of comparison principle for

predator-prey systems. We adopt the method used in [11, 10, 8] to prove Theorems 1.3-1.5

on spreading dynamics. This method by now is rather standard, but powerful, to derive the
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spreading behaviors of certain reaction-diffusion systems. However, here we extend work [10]

to system (1.1)-(1.3) which involving the shifting nonlinearity and extend [11, 8] of two species

case to three interacting species. The extra interacting species makes the dynamical behavior

of (1.1)-(1.3) more complex than two species case. We were unable to prove definitely the

convergence to the co-existence state in the habitat with moving speeds between ŝ∗∗ and ŝ∗.

As indicated in [10, Theorem 2.6], even for system (1.5) (without the shifting effect), there

is a so-called non-local pulling phenomenon. So we are not sure whether Theorem 1.5 can

be improved by removing the restriction s < ŝ∗∗. We leave this delicate problem to be an

open question.

For the reader’s convenience, we recall the recent progress of the propagation dynamics

for system (1.5) from [10] as follows. Suppose, in addition to (1.4), that 2a(b− 1) < 1. Let

(u, v, w) be a solution of (1.5) with initial data (u0, v0, w0) such that

1− 2a(b− 1) := β ≤ u0 ≤ 1, 0 ≤ v0, w0 ≤ b− 1.

Then the following results are derived in [10].

(1) If both v0 and w0 are compactly supported, then

lim
t→∞

sup
|x|≥ct

|u(x, t)− 1| = 0, ∀ c > max{s∗2, s∗3},

lim
t→∞

sup
|x|≥ct

v(x, t) = 0, ∀ c > s∗2; lim
t→∞

sup
|x|≥ct

w(x, t) = 0, ∀ c > s∗3.

(2) Suppose s∗2 = s∗3. If both v0 and w0 are nontrivial and compactly supported, then

lim inf
t→∞

inf
|x|≤ct

(v + w)(x, t) > 0, ∀ c ∈ (0, s∗2),

lim inf
t→∞

inf
|x|≤ct

v(x, t) > 0, ∀ c ∈ (0, s∗∗2 ), lim inf
t→∞

inf
|x|≤ct

w(x, t) > 0, ∀ c ∈ (0, s∗∗3 ),

lim
t→∞

sup
|x|≤ct

[|u(x, t)− uc|+ |v(x, t)− vc|+ |w(x, t)− wc|] = 0, ∀ c ∈ (0,min{s∗∗2 , s∗∗3 }).

(3) Suppose s∗2 > s∗3. If both v0 and w0 are nontrivial and compactly supported, then

lim inf
t→∞

inf
|x|≤ct

v(x, t) > 0, ∀ c ∈ (0, s∗2),

lim
t→∞

sup
c1t≤|x|≤c2t

[|u(x, t)− up|+ |v(x, t)− vp|+ w(x, t)] = 0, if s∗3 < c1 < c2 < s∗2,

lim
t→∞

sup
|x|≤ct

[|u(x, t)− uc|+ |v(x, t)− vc|+ |w(x, t)− wc|] = 0, ∀ c ∈ (0, s∗∗3 ).

(4) Nonlocal pulling: under certain parameter range (see [10, Theorem 2.6] for details),

there is c0 > s∗∗3 such that

lim inf
t→∞

inf
|x|≤c0t

w(x, t) > 0.

The rest of this paper is organized as follows. In the next section, we investigate the

extinction or partial extinction of each species and prove Theorems 1.1 and 1.2. Then we

study the persistence of each species and give the detailed proofs of Theorems 1.3, 1.4 and

1.5 in section 3.
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2. Extinction and partial extinction

In this section, we shall discuss extinction or partial extinction results for each species

and prove Theorems 1.1 and 1.2. Although the proofs are similar to those in [8], we provide

some details here for the reader’s convenience.

First, the Fisher invasion speed of each species yields the following theorem. Note that

this theorem is irrelevant to the shifting environment.

Theorem 2.1. Let (u, v, w) be a solution of (1.1)-(1.3) with initial data (u0, v0, w0). If

u0(x) = v0(x) = w0(x) = 0 for x ≥ K for some constant K, then

lim
t→∞

sup
x≥(s∗1+ε)t

u(x, t) = 0, lim
t→∞

sup
x≥(s∗1+ε)t

v(x, t) = 0, lim
t→∞

sup
x≥(s∗1+ε)t

w(x, t) = 0,(2.1)

lim
t→∞

sup
x≥(s∗2+ε)t

v(x, t) = 0, lim
t→∞

sup
x≥(s∗3+ε)t

w(x, t) = 0(2.2)

for any ε > 0.

Proof. The proofs of (2.1) and (2.2) can be done as that in [8, Theorem 5.3 (ii)]. We provide

some details here. Given ε > 0. Let U(x, t) := Ae−ν1[x−(s∗1+ε/2)t], where ν1 is the smaller

positive root of

d1ν
2 − (s∗1 + ε/2)ν + r1 = 0.

Then, using u0(x) = 0 for x ≥ K, it holds u0(x) ≤ U(x, 0) for all x ∈ R for some positive

constant A large enough. Since

ut ≤ d1uxx + r1u[α(x− st)− u], Ut = d1Uxx + r1U ≥ d1Uxx + r1U [α(x− st)− U ],

by a comparison principle, u ≤ U for all t > 0. Hence

lim
t→∞

sup
x≥(s∗1+ε)t

u(x, t) = 0.

For (2.2), we compare v with v̄ and w with w̄, where

v̄(x, t) := Be−ν21[x−(s∗2+ε/2)t], w̄(x, t) := Ce−ν31[x−(s∗3+ε/2)t],

and νi1 is the smaller positive root of

diν
2 − (s∗i + ε/2)ν + ri(b− 1) = 0, i = 2, 3,

for some positive constants B and C. Then (2.2) follows.

Finally, recall u ≤ 1 and let V be the solution of

(2.3) Vt(x, t) = d2Vxx(x, t) + r2V (x, t)[−1 + bmin{1, U(x, t)} − V (x, t)], x ∈ R, t > 0,

with initial condition V (x, 0) = v0(x). Then, by comparison, v(x, t) ≤ V (x, t) for all x ∈ R,
t > 0. Suppose that s∗2 > s∗1. Then, by choosing a positive constant ν22 small enough such

that

d2ν
2
22 − (s∗1 + ε)ν22 − r2/2 < 0
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and setting

v̂(x, t) := min
{
b− 1, B̂e−ν22[x−(s∗1+ε/2)t]

}
for some large enough positive constant B̂, a simple comparison gives V ≤ v̂. Indeed, this

can be done by checking that v̂ is a supersolution of (2.3). Hence

lim
t→∞

sup
x≥(s∗1+ε)t

v(x, t) = 0.

Similarly, we can prove

lim
t→∞

sup
x≥(s∗1+ε)t

w(x, t) = 0

when s∗3 > s∗1. Since the case when s∗i ≤ s∗1 is included in (2.2), this completes the proof of

(2.1). Therefore, the theorem is proved. �

Next, we give the proofs of Theorems 1.1 and 1.2 as follows.

Proof of Theorem 1.1. First, since u satisfies ut ≤ d1uxx + r1u[α(x − st) − u], by a simple

comparison with the help of [17, Theorem 2.1], we can easily see that u tends to zero

uniformly over R as t → ∞, if s > s∗1.

Secondly, let s > s∗2, Then, by [16, Theorem 1.1], there is a monotone traveling wave

solution U(x, t) = ϕ(ξ), ξ := x− st, to

Ut(x, t) = d1Uxx(x, t) + r1U(x, t)[α(x− st) + δ − U(x, t)], x ∈ R, t ∈ R,

such that ϕ(−∞) = 0 and ϕ(∞) = 1 + δ, where δ is a small enough positive constant such

that

s > 2
√

d2r2[b(1 + δ)− 1], α(−∞) + δ < 0.

Since u0 has a compact support and u0 ≤ 1, we can find a constant x0 such that u0(x) ≤
ϕ(x+x0) for all x ∈ R. Then, by comparison, we have u(x, t) ≤ ϕ(x+x0−st) and so v ≤ V ,

where V is the solution of

Vt = d2Vxx + r2V [bϕ(x+ x0 − st)− 1− V ], x ∈ R, t > 0, V (x, 0) = v0(x), x ∈ R.

It follows from [17, Theorem 2.1] again that v tends to zero uniformly in R as t → ∞. The

case for w can be proved similarly and so (1.10) is proved.

Finally, suppose that s > s∗1. Given ε ∈ (0, 1/b). Since s > s∗1, there is T ≫ 1 such that

u(x, t) ≤ ε for all x ∈ R, t ≥ T . Choose σ ∈ (0, r2(1− bε)) and set

V (x, t) := (b− 1)e−σ(t−T ).

Note that

Vt − {d2Vxx + r2V (−1 + bε− V )} ≥ 0.

Hence v ≤ V for x ∈ R, t ≥ T , since v(x, T ) ≤ b− 1 = V (x, T ) for all x ∈ R and v satisfies

vt ≤ d2vxx + r2v(−1 + bε− v), x ∈ R, t ≥ T.
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Hence v(x, t) → 0 uniformly in R as t → ∞. The case for w can be treated similarly. This

completes the proof of (1.9) and so the theorem follows. �

Proof of Theorem 1.2. First, we apply [17, Theorem 2.2 (i)] and using a comparison to obtain

u ≤ ū, where ū is the solution of{
ūt = d1ūxx + r1ū[α(x− st)− ū], x ∈ R, t > 0,

ū(x, 0) = u0(x), x ∈ R.

Then we conclude

lim
t→∞

sup
x≤(s−ε)t

u(x, t) ≤ lim
t→∞

sup
x≤(s−ε)t

ū(x, t) = 0, if s ≤ s∗1.

Hence (1.11) follows. We remark here [17, Theorem 2.2 (i)] does not require the compactness

assumption on the initial data.

Next, we recall from the proof of (1.10) that v ≤ V , using the compactness of u0. Then

(1.12) follows from [17, Theorem 2.2 (i)], using s ≤ s∗2 < 2
√
d2r2[b(1 + δ)− 1]. The proof

for (1.13) is similar. The proof is complete. �

3. Spreading dynamics

This section is devoted to the proofs of the main theorems on the spreading dynamics.

3.1. Survival of the prey. First, we give a proof of Theorem 1.3 as follows.

Proof of Theorem 1.3. Given a fixed ε ∈ (0, (s∗1 − s)/2). First, since s > s∗2 > s∗3 (by (1.14)),

it follows from Theorem 1.1 that both v and w tend to zero uniformly in R as t → ∞.

Consequently, for a given small positive constant δ such that s∗δ := 2
√

d1r1(1− δ) > s∗1−ε/2,

there is T ≫ 1 such that u ≥ u for all t ≥ T , where u is the solution of{
ut = d1uxx + r1u[α(x− st)− δ − u], x ∈ R, t > T,

u(x, T ) = min{1− δ, u(x, T )}.

It follows from [17, Theorem 2.2 (iii)] that

(3.1) lim
t→∞

{
sup

(s+ε/2)t≤x≤(s∗δ−ε/2)t

|u(x, t)− 1 + δ|

}
= 0.

On the other hand, since [s + ε, s∗1 − ε] ⊂ [s + ε/2, s∗δ − ε/2] and u ≤ 1, we deduce from

(3.1) that

lim
t→∞

{
sup

(s+ε)t≤x≤(s∗1−ε)t

|u(x, t)− 1|

}
= 0,

since δ is arbitrarily. The proof is thus complete. �

Next, we prepare the following lemma for the weak persistence of prey u with speed

c ∈ (s, s∗1).
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Lemma 3.1. Suppose that s < s∗1. Then for any c ∈ (s, s∗1) there exists δ1(c) ∈ (0, 1)

(independent of initial data (u0, v0, w0) with u0 ̸= 0) such that

(3.2) lim sup
t→∞

u(ct, t) ≥ δ1(c)

for any solution (u, v, w) of (1.1)-(1.3).

Proof. We assume for contradiction that there are sequences {(u0,n, v0,n, w0,n)} and {tn} such

that limn→∞ tn = ∞ and

(3.3) lim
n→∞

sup
t≥tn

un(ct, t) = 0,

where (un, vn, wn) is the solution of (1.1)-(1.3) with the initial datum (u0,n, v0,n, w0,n). Then,

for any R > 0, we claim

(3.4) lim
n→∞

{ sup
|x−ct|≤R,t≥tn

un(x, t)} = 0.

Indeed, otherwise there exist sequences {xn} ⊂ [−R,R] and {τn} with τn ≥ tn such that

lim inf
n→∞

un(xn + cτn, τn) > 0.

Without loss of generality (up to a subsequence) we may assume that xn → x0 as n → ∞ for

some x0 ∈ [−R,R]. By the standard parabolic estimates and using c > s, up to extraction

of a subsequence, we have

(un, vn, wn)(x+ cτn, t+ τn) → (u∞, v∞, w∞)(x, t) as n → ∞

locally uniformly in R× R, where (u∞, v∞, w∞) is an entire solution of

(3.5)


ut = d1uxx + r1u(1− u− av − aw),

vt = d2vxx + r2v(−1 + bu− v − hw),

wt = d3wxx + r3w(−1 + bu− kv − w).

Hereafter, an entire solution is a solution defined for all x, t ∈ R. Since u∞(0, 0) = 0 by (3.3),

the strong maximum principle implies that u∞ ≡ 0. However, u∞(x0, 0) > 0, a contradiction.

Hence (3.4) is proved.

From (3.4), we can further derive that

(3.6) lim
n→∞

{ sup
|x−ct|≤R,t≥tn

vn(x, t)} = lim
n→∞

{ sup
|x−ct|≤R,t≥tn

wn(x, t)} = 0.

Indeed, by the same limiting argument as for (3.4), the limit function (v∞, w∞) satisfies

(using also u∞ ≡ 0){
vt = d2vxx + r2v(−1− v − hw), x ∈ R, t ∈ R,
wt = d3wxx + r3w(−1− kv − w), x ∈ R, t ∈ R.

Then (3.6) follows by using a comparison and the fact that any nonnegative bounded entire

solution V of

Vt = dVxx + rV (−1− V ), d > 0, r > 0,

must be identically zero.
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Now, let

λR :=
c2

4d1
+

d1π
2

4R2
, ϕ(x) := e−cx/(2d1) cos

(πx
2R

)
.

Then ϕ satisfies

−d1ϕxx − cϕx = λRϕ in (−R,R); ϕ(±R) = 0.

Since c < s∗1, we can find a small positive constant δ such that c2/(4d1) < r1(1− 2δ) and R

large enough such that λR < r1(1 − 2δ). Then, by (3.4) and (3.6), for large enough n the

positive function un satisfies

(un)t ≥ d1(un)xx + r1(1− δ)un for x ∈ (ct−R, ct+R), t ≥ tn.

Then ûn(x, t) := un(x+ ct, t) satisfies

(ûn)t ≥ d1(ûn)xx + c(ûn)x + r1(1− δ)ûn for x ∈ (−R,R), t ≥ tn.

A comparison principle gives that

un(x+ ct, t) = ûn(x, t) ≥ Aer1δtϕ(x), |x| ≤ R, t ≥ tn,

provided that the positive constant A is chosen small enough so that ûn(x, tn) ≥ Aer1δtnϕ(x)

for all x ∈ [−R,R]. This implies that un(ct, t) → ∞ as t → ∞, a contradiction. Hence (3.2)

follows and the lemma is proved. �

Remark 1. It is easy to see that the same argument as above also leads to (3.2) with a

constant δ′1(c) ∈ (0, 1) for any solution (u, v, w) of system (3.5) for any c ∈ (0, s∗1).

Then we show the uniform persistence of prey u for all speeds c ∈ (s, ŝ∗).

Proposition 3.2. Suppose that s < ŝ∗ = min{s∗1, s∗2, s∗3}. Then for any ε ∈ (0, (ŝ∗ − s)/2)

there is a positive constant θ1 (independent of initial data (u0, v0, w0) with u0 ̸= 0) such that

(3.7) lim inf
t→∞

{
inf

(s+ε)t≤x≤(ŝ∗−ε)t
u(x, t)

}
≥ θ1

for any solution (u, v, w) of (1.1)-(1.3).

Proof. We divide our proof into two steps.

Step 1. Claim: for any c ∈ (s, ŝ∗) there exists δ2(c) ∈ (0, 1) (independent of initial data

(u0, v0, w0)) such that any solution (u, v, w) of (1.1)-(1.3) satisfies

(3.8) lim inf
t→∞

u(ct, t) ≥ δ2(c).

Again, proceed by a contradiction. Assume that there are sequences {(u0,n, v0,n, w0,n)} and

{tn} with tn → ∞ as n → ∞ such that the corresponding solution {(un, vn, wn)} satisfies

(3.9) lim
n→∞

un(ctn, tn) = 0.

By (3.2), we can choose a sequence {t′n} with t′n < tn and t′n → ∞ such that

un(ct
′
nt

′
n) ≥ δ1(c)/2 for all n.
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Recall the lower bound ε1(κ, c), κ := max{1, b − 1}, derived in [11, Lemma 5.2] for the

problem {
ut = d1uxx + r1u(1− u− av),

vt = d2vxx + r2v(−1 + bu− v).
(3.10)

Let δ′1(c) be the constant introduced in Remark 1. Then, for

τn := sup{t′n ≤ t ≤ tn | un(ct, t) ≥ γ1(c)}, γ1(c) := min{δ1(c), δ′1(c), ε1(κ, c)}/2,

it follows from a limiting argument and a strong maximum principle that tn − τn → ∞ as

n → ∞. Indeed, by taking the limit, we have (up to extraction of a subsequence)

(un, vn, wn)(x+ cτn, t+ τn) → (u∞, v∞, w∞)(x, t)

locally uniformly in R × R, where (u∞, v∞, w∞) is an entire solution of (3.5). If (up to a

subsequence) tn − τn → t0 as n → ∞ for some t0 ∈ R, then

u∞(ct0, t0) = lim
n→∞

un(c(tn − τn) + cτn, (tn − τn) + τn) = lim
n→∞

un(ctn, tn) = 0,

by (3.9). It then follows from the strong maximum principle that u∞ ≡ 0. This is a

contradiction to u∞(0, 0) = γ1(c), since un(cτn, τn) = γ1(c) for all n. Hence tn − τn → ∞ as

n → ∞.

Furthermore, since

un(ct, t) ≤ γ1(c), ∀ t ∈ (τn, tn),

we obtain

(3.11) u∞(ct, t) ≤ γ1(c) for all t ≥ 0,

due to tn − τn → ∞ as n → ∞.

Now, suppose that v∞ = w∞ ≡ 0. Then u∞ satisfies

(u∞)t = d1(u∞)xx + r1u∞(1− u∞).

Since u∞(·, 0) ̸≡ 0 and c < s∗1, we have (cf. [1]) that u∞(ct, t) → 1 as t → ∞, a contradiction

to (3.11). If v∞ ̸≡ 0 and w∞ ≡ 0, then (u∞, v∞) satisfies (3.10). Then (3.11) contradicts

[11, Lemma 5.2], since s < min{s∗1, s∗2} yields u∞(ct, t) ≥ ε1(c). The case when v∞ ≡ 0 and

w∞ ̸≡ 0 can be treated similarly, by using s < min{s∗1, s∗3}. Lastly, by Remark 1, the case

when both v∞ and w∞ are nontrivial also leads to a contradiction. This proves (3.8).

Step 2. To reach the conclusion of the proposition, we use a contradiction argument. For a

given ε ∈ (0, (ŝ∗−s)/2), we assume that there are a sequence of initial data {(u0,n, v0,n, w0,n)}
and sequences {xn,k}, {tn,k} such that tn,k → ∞ as k → ∞,

xn,k ∈ [(s+ ε)tn,k, (ŝ
∗ − ε)tn,k], un(xn,k, tn,k) ≤

1

n
, ∀n, k ∈ N.

Note that, by Step 1, we have

lim inf
t→∞

un((ŝ
∗ − ε/2)t, t) ≥ δ2(c1), c1 := ŝ∗ − ε/2.
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Then, for the sequence {t′n,k := xn,k/c1}, we have t′n,k < tn,k, t
′
n,k → ∞ as k → ∞ and

(3.12) un(xn,k, t
′
n,k) = un(c1t

′
n,k, t

′
n,k) ≥ δ2(c1)/2 for all k ≫ 1.

Now, for each n we choose k = k(n) ≫ 1 such that (3.12) holds and define

τn := sup{t′n,k ≤ t ≤ tn := tn,k | un(ct, t) ≥ δ0}, δ0 := min{ε1(κ, c), δ′1(c), δ2(c1)}/2,

where the constant ε1(κ, c) is the constant defined in [11, Lemma 5.2]. Then, as in Step 1,

the strong maximum principle implies that tn − τn → ∞ as n → ∞. From this, for (up to

extraction of a subsequence) the limit

(u∞, v∞, w∞)(x, t) := lim
n→∞

(un, vn, wn)(x+ cτn, t+ τn), (x, t) ∈ R× R,

an entire solution of (3.5), we have

u∞(0, 0) = δ0, u∞(0, t) ≤ δ0, ∀ t ≥ 0.

Then the same argument as that in Step 1 leads to a contradiction. This completes the proof

of the proposition. �

When s∗3 < s̄∗, we have the following uniform persistence of prey u for speeds over (s, s̄∗).

Proposition 3.3. Suppose that s∗3 < s < s̄∗ = min{s∗1, s∗2}. Then for any ε ∈ (0, (s̄∗ − s)/2)

there is a positive constant θ2 (independent of compactly supported initial data (u0, v0, w0)

with u0 ̸= 0) such that

(3.13) lim inf
t→∞

{
inf

(s+ε)t≤x≤(s̄∗−ε)t
u(x, t)

}
≥ θ2

for any solution (u, v, w) of (1.1)-(1.3).

Proof. Since s > s∗3, w tends to zero uniformly in R as t → ∞. Hence the case w∞ ̸≡ 0

cannot happen in the proof of Proposition 3.2. The same proof as that for Proposition 3.2

leads to the conclusion of this proposition. �

3.2. Survival of the fast predator. In this subsection, we give a proof of Theorem 1.4

and discuss the survival of predators with moving speeds between the shifting speed s and

ŝ∗. First, we prove the following lemma, which states that at least one of the predators

persists weakly for each speed c ∈ (s, ŝ∗).

Lemma 3.4. Suppose that s < ŝ∗. Then for any c ∈ (s, ŝ∗) there exists δ3(c) ∈ (0, 1)

(independent of initial data (u0, v0, w0)) such that

(3.14) lim sup
t→∞

(v + w)(ct, t) ≥ δ3(c)

for any solution (u, v, w) of (1.1)-(1.3).

Proof. Assume for contradiction that there are sequences {(un, vn, wn)} and {tn} with tn →
∞ as n → ∞ such that

lim
n→∞

{sup
t≥tn

(vn + wn)(ct, t)} = 0.
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Then we have

(3.15) lim
n→∞

{sup
t≥tn

vn(ct, t)} = 0, lim
n→∞

{sup
t≥tn

wn(ct, t)} = 0.

As in the proof of (3.4), we can infer from (3.15) and the strong maximum principle that

(3.16) lim
n→∞

{
sup

|x−ct|≤R,t≥tn

vn(x, t)

}
= 0, lim

n→∞

{
sup

|x−ct|≤R,t≥tn

wn(x, t)

}
= 0

for any R > 0. Furthermore, we can deduce from (3.16) that

(3.17) lim sup
n→∞

{
sup

|x−ct|≤R,t≥tn

un(x, t)

}
= 1

for any R > 0, by a contradiction argument similar to that for (3.4). Indeed, otherwise there

is a sequence {(xn, t
′
n)} with t′n ≥ tn and xn ∈ [ct′n −R, ct′n +R] such that

lim sup
n→∞

un(xn, t
′
n) < 1.

Then, up to extraction of a subsequence, (un, vn, wn)(x + xn, t + t′n) converges to an entire

solution (u∞, v∞, w∞) of (3.5) as n → ∞. It follows from (3.16) and the strong maximum

principle that v∞ = w∞ ≡ 0, since v∞(0, t) = w∞(0, t) = 0 for all t > 0. Hence u∞ satisfies

(u∞)t = d1(u∞)xx + r1u∞(1− u∞) in R× R.

However, by Proposition 3.2, u∞ ≥ θ1 > 0.Hence u∞ ≡ 1, a contradiction. Thus (3.17) is

proved.

Since vn(·, 0) ̸≡ 0, we have vn > 0 for t > 0. Then for any small δ > 0, R ≫ 1 and n ≫ 1

it holds

(vn)t ≥ d2(vn)xx + r2(b− 1− 2δ)vn, |x− ctn| ≤ R, t ≥ tn.

From this, by the same argument as in the proof of Lemma 3.1 and using s < ŝ∗ ≤ s∗2, we

reach a contradiction. The lemma is proved. �

Remark 2. The same argument as above also leads to (3.14) with a constant δ′3(c) ∈ (0, 1)

for any solution (u, v, w) of system (3.5) for any c ∈ (0, ŝ∗).

Next, we show the uniform persistence of predators as follows.

Proposition 3.5. Suppose that s < ŝ∗. Then for any ε ∈ (0, (ŝ∗ − s)/2) there is a positive

constant θ3 (independent of initial data (u0, v0, w0)) such that

lim inf
t→∞

{
inf

(s+ε)t≤x≤(ŝ∗−ε)t
(v + w)(x, t)

}
≥ θ3

for any solution (u, v, w) of (1.1)-(1.3).

Proof. The proof is similar to that of Proposition 3.2. We only outline it here.

Claim: for any c ∈ (s, ŝ∗) there exists δ4(c) ∈ (0, 1) (independent of initial data (u0, v0, w0))

such that any solution (u, v, w) of (1.1)-(1.3) satisfies

(3.18) lim inf
t→∞

(v + w)(ct, t) ≥ δ4(c).
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Proceeding as Step 1 in the proof of Proposition 3.2 with u replaced by v + w, we end up

with the limit solution (u∞, v∞, w∞) satisfies

(3.19) (v∞ + w∞)(0, 0) = γ2(c), (v∞ + w∞)(ct, t) ≤ γ2(c), ∀ t ≥ 0,

where

γ2(c) := min{δ3(c), δ′3(c), ε1(κ, c)}/2.

Then the same argument as that in the proof of Proposition 3.2, using Remark 2, leads to a

contradiction and so (3.18) is proved.

With (3.18), we can complete the proof by repeating Step 2 in the proof of Proposition 3.2.

We safely omit the detail here. �

In particular, we immediately have the following result on the survival of the fast predator.

Proposition 3.6. Suppose that s∗3 < s < s̄∗. Then for any ε ∈ (0, (s̄∗ − s)/2) there is a

positive constant θ4 (independent of compactly supported initial data (u0, v0, w0)) such that

(3.20) lim inf
t→∞

{
inf

(s+ε)t≤x≤(s̄∗−ε)t
v(x, t)

}
≥ θ4

for any solution (u, v, w) of (1.1)-(1.3).

Proof. Since w tends to zero uniformly over R as t → ∞, due to s > s∗3. A similar proof to

that of Lemma 3.4 using Proposition 3.3 leads that

lim sup
t→∞

v(ct, t) ≥ δ3(c)

for any solution (u, v, w) of (1.1)-(1.3) for any c ∈ (s, s̄∗). From this, the same proof as that

for Proposition 3.2 (with u replaced by v) leads to the desired conclusion. �

Combining Theorem 1.1, Proposition 3.3 and Proposition 3.6, we now give a proof of

Theorem 1.4.

Proof of Theorem 1.4. We apply a contradiction argument used in [15]. Suppose that there

exist δ > 0 and a sequence of points {(xn, tn)} with tn → ∞ and xn ∈ [(s+ ε)tn, (s̄
∗ − ε)tn]

such that

(3.21) |u(xn, tn)− up|+ |v(xn, tn)− vp| ≥ δ, ∀n.

Then, up to extraction a subsequence, we have

(u, v, w)(x+ xn, t+ tn) → (u∞, v∞, w∞)(x, t) locally uniformly for (x, t) ∈ R2,

where w∞ ≡ 0, by s > s∗3 and (1.10), and (u∞, v∞) is an entire solution of{
ut = d1uxx + r1u(1− u− av),

v2 = d2vxx + r2v(−1 + bu− v).

Now, using Corollaries 3.3 and 3.6, we can find a constant T ≫ 1 such that

θ2/2 ≤ u(x+ xn, t+ tn) ≤ 1, θ4/2 ≤ v(x+ xn, t+ tn) ≤ b− 1,
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for x + xn ∈ [(s + ε/2)(t + tn), (s̄
∗ − ε/2)(t + tn)], if t + tn ≥ T , where θ2 = θ2(ε/2) and

θ4 = θ4(ε/2) are constants defined in Corollaries 3.3 and 3.6, respectively. This implies

that θ2/2 ≤ u∞ ≤ 1 and θ4/2 ≤ v∞ ≤ b − 1 in R2. It follows from [10, Lemma 4.1] that

(u∞, v∞) ≡ (up, vp). This contradicts (3.21). Hence the proof is complete. �

Now, we come to the second result on the survival of the fast predator as follows.

Proposition 3.7. Suppose that s < ŝ∗∗2 := min{ŝ∗, s∗∗2 }. Then for any ε ∈ (0, (ŝ∗∗ − s)/2)

there is a positive constant θ5 (independent of initial data (u0, v0, w0)) such that

(3.22) lim inf
t→∞

{
inf

(s+ε)t≤x≤(ŝ∗∗−ε)t
v(x, t)

}
≥ θ5

for any solution (u, v, w) of (1.1)-(1.3).

Proof. First, we claim: for any c ∈ (s, ŝ∗∗2 ) there exists δ5(c) ∈ (0, 1) (independent of initial

data (u0, v0, w0)) such that any solution (u, v, w) of (1.1)-(1.3) satisfies

(3.23) lim sup
t→∞

v(ct, t) ≥ δ5(c).

Assume for contradiction that there are sequences {tn} with tn → ∞ and {(un, vn, wn)} such

that

lim
n→∞

{sup
t≥tn

vn(ct, t)} = 0.

Then, as in the proof of (3.4), we have

(3.24) lim
n→∞

{
sup

|x−ct|≤R,t≥tn

vn(x, t)

}
= 0

for any R > 0.

Next, we claim that

(3.25) lim sup
n→∞

{
sup

|x−ct|≤R,t≥tn

un(x, t)

}
= up, lim sup

n→∞

{
sup

|x−ct|≤R,t≥tn

wn(x, t)

}
= wp.

Indeed, (3.25) can be proved by a contradiction argument similar to that for (3.17) as follows.

Up to extraction of a subsequence, the limit

(u∞, v∞, w∞)(x, t) := lim
n→∞

(un, vn, wn)(x+ ctn, t+ tn), (x, t) ∈ R2,

exists such that v∞ ≡ 0, using (3.24), and (u∞, w∞) is an entire solution of{
ut = d1uxx + r1u(1− u− aw),

wt = d3wxx + r3w(−1 + bu− w).

Recall Propositions 3.2 and 3.5. Then from the same argument as in the proof of Theorem 1.4

it follows that u∞ ≡ up and w∞ ≡ wp. This leads to a contradiction and so (3.25) is proved.

Now, given δ > 0 small. Then, for n large, vn satisfies

(vn)t ≥ d2(vn)xx + r2(−1 + bup − hwp − δ)vn, |x− ctn| ≤ R, t ≥ tn.



16 J.-S. GUO, M. SHIMOJO, AND C.-C. WU

From this we reach a contradiction, by the same argument as in the proof of Lemma 3.1 and

using c < s∗∗2 . Hence (3.23) is proved.

With (3.23), the proposition can be proved by a similar argument to the proof of Propo-

sition 3.2. We safely omit it here and finish the proof. �

3.3. Survival of the slow predator. In this subsection, we give a proof of Theorem 1.5.

First, a similar proof to that of Proposition 3.7, we obtain the following uniform persistence

of the slow predator w. We shall not repeat the proof here.

Proposition 3.8. Suppose that s < ŝ∗∗3 := min{ŝ∗, s∗∗3 }. Then for any ε ∈ (0, (ŝ∗∗3 − s)/2)

there is a positive constant θ6 (independent of initial data (u0, v0, w0)) such that

(3.26) lim inf
t→∞

{
inf

(s+ε)t≤x≤(ŝ∗∗3 −ε)t
w(x, t)

}
≥ θ6

for any solution (u, v, w) of (1.1)-(1.3).

Finally, we prove Theorem 1.5.

Proof of Theorem 1.5. The proof is similar to that for Theorem 1.4. In fact, here we use

Propositions 3.2, 3.7 and 3.8 to ensure the limit entire solution is bounded below by a

positive constant and bounded above. Then the theorem follows from [10, Lemma 4.3]. �
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