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Abstract. This work is concerned with the dynamical behaviors of a singular
predator-prey model. We first review some well-known results obtained re-

cently. Then we give some new results on the spreading speed of the predator,
the existence vs non-existence of traveling waves connecting the predator-free

state to the co-existence state, and the existence vs non-existence of spatially

periodic traveling waves to this singular predator-prey system.

1. Introduction. For the control of introduced rabbits to protect native birds from
introduced cat predation in an island, it is proposed in [4] the model

B′ = rbB
(

1− B
Kb

)
− αB

αB+RµbC,

R′ = rrR
(

1− R
Kr

)
− R

αB+RµrC−λrR,

C ′ = rcC
(

1− C
(B/µb)+(R/µr)

)
−λcC,

(1)

in which B, R, C stand for the population of birds, rabbits, cats, respectively; rb,
rr, rc denote their growth rates; Kb, Kr are the carrying capacities and µb, µr are
the predation rates of birds and rabbits; α is the preference rate; (B/µb) + (R/µr)
is the carrying capacity of cats; and λr, λc denote the control rates of rabbits and
cats.

By numerical simulations, it is concluded in [4] that control of both introduced
species is the best strategy. Without controls, the birds go extinct eventually.
Analytically, this claim is equivalent to the stability analysis for equilibria of system
(1) with/without controls. For the biological background of system (1), we refer
the reader to [4, 5]. However, in reality, species are moving around in the habitat so
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that the spatial movements have to be considered. Our main concern in this paper
is the dynamics of the corresponding system when the spatial dependence is taken
into account. Here we consider the classical random movements so that the Laplace
operator is modeled.

However, the full 3-species model is too hard to be analyzed. We therefore
consider the case without rabbits and the control(s). Then system (1) is reduced
to the following two-component ordinary differential system:

B′ = rb

(
1− B

K

)
B − µC,

C ′ = rc

(
1− µC

B

)
C,

(2)

where we have set Kb := K and µb := µ. Note that the parameter µ is the intake
of birds per individual predator (cat) per unit time. When taking into account the
spatial dependence, we have the following predator-prey model posed on a smooth
domain Ω ⊂ RN :

Bt = db∆B + rb

(
1− B

K

)
B − µC, x ∈ Ω, t > 0, (3)

Ct = dc∆C + rc

(
1− µC

B

)
C, x ∈ Ω, t > 0, (4)

supplemented with the boundary condition

∂B

∂ν
=
∂C

∂ν
= 0, x ∈ ∂Ω, t > 0, (5)

and the initial condition

B(·, 0) = B0 > 0, C(·, 0) = C0 ≥ 0, x ∈ Ω, (6)

where db, dc, rb, rc,K, µ are positive constants and ν denotes the outer normal on ∂Ω
(if ∂Ω 6= ∅). Here db (dc, resp.) is the diffusion coefficient of birds (cats, resp.). The
functions B0 (C0, resp.) is the initial distribution of birds (cats, resp.). There are
two major difficulties in dealing with system (3)-(6), one is the lack of comparison
principle and the other is a singularity occurs when B reaches zero in a finite time.
That is why we call this system as a singular predator-prey model.

In fact, for a closely related system to (3)-(6) when the functional response of
predation is replaced by a linear function of prey, namely, (3) becomes

Bt = db∆B + rbB(1−B/K)− µBC,
it follows from the strong maximum principle that B > 0 for all t > 0. Hence the
rational term C/B in the predator equation never causes troubles in singularity.
Same for the case when µBC is replaced by a more general functional response
h(B,C)B. For the case of linear predation, we refer the reader to, e.g., [13, 15, 16, 6].
Recently, in [3], for rb > µ we derive the existence of traveling waves to address
the question whether both species can survive eventually, if an alien predator is
introduced into the habitat where a prey has been living there. However, the
existence of traveling wave solutions is still open when rb ≤ µ.

Introducing the function P := C/B, system (2) is reduced to the following system
of ordinary differential equations{

B′ =
[
rb(1− B

K )− µP
]
B,

P ′ =
[
rc − rb + rb

B
K − µ(rc − 1)P

]
P.

(7)
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There are always two nontrivial constant equilibria (K, 0) and (0, P ∗∗),

P ∗∗ :=
rc − rb
µ(rc − 1)

,

when rc 6= 1. Also, when rb > 1, there is the unique co-existence state

(B∗, P ∗) := (K(1− 1/rb), 1/µ).

When taking the spatial dependence into account, system (3)-(4) is reduced to

Bt = db∆B + rb(1−B/K)B − µPB, (8)

Pt = dc∆P + (dc − db)
P

B
∆B + 2

dc
B
∇B · ∇P

+
[
rc − rb +

rb
K
B − µ(rc − 1)P

]
P. (9)

The dynamical behaviors for solutions to system (7) has been studied extensively
in [11]. The global vs non-global existence of solutions to (7) and the asymptotic
behaviors of global solutions are derived in [11] for 5 different open domains of the
parameter space (rb, rc). Also, the corresponding dynamical behaviors of problem
(3)-(6) were studied in [11] when db = dc and Ω is a bounded smooth domain. We
refer the reader to [11] for the details. Here quenching (i.e., B reaches zero in finite
time) occurs for non-global solutions. Note that the cross diffusion term in (9) is
disappeared when db = dc.

However, some results in [11] are given only based on numerical simulations, in
particular, for (rb, rc) lies on the boundaries of the 5 open regions. For examples,
along the segment

rb + rc = 2, rb > 1, rc > 0,

it is conjectured in [11] that the state (B∗, P ∗) is a center of (7) and solutions of
(7) starting with initial data in P+ blow up in finite time, where

P+ :=

{
(B,P ) | B > 0, P > 0,

(
B

K
+

P

P ∗∗
− 1

)
> 0

}
.

Moreover, solutions of (3)-(6) with db = dc exhibits spatio-temporal oscillations,
i.e., solutions become spatially homogeneous and time-periodic asymptotically. In
[12], we verify these three numerical observations rigorously.

On the other hand, in a recent work [8], we analyze the associated shadow system
(as db → ∞ so that B becomes spatially homogeneous) for system (8)-(9). Global
existence with asymptotic behaviors and quenching results for the shadow system
are derived in [8]. More precisely, all results for the kinetic system and system
(3)-(6) with db = dc obtained in [11] are proved in [8] for the following shadow
system 

ξt =
{
rb

(
1− ξ

K

)
− µ
|Ω|
∫

Ω
P dx

}
ξ,

Pt = dc∆P +
[
rc − rb + rb

ξ
K − µ

(
rcP − 1

|Ω|
∫

Ω
P dx

)]
P,

∂P
∂ν = 0, x ∈ ∂Ω, t > 0,

ξ(0) = ξ0 = B0 > 0, P (·, 0) = P0 := C0/B0 ≥ 0, x ∈ Ω.

(10)

Coming back to the (full) reaction-diffusion system (8)-(9), little is known for the
case when db 6= dc. Up to now, we only have the following global existence result.
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Theorem 1.1 ([8]). Let N = 1 and Ω = (0, 1). Suppose that rc ≥ 1, rb > 1,
2π2db + rb ≥ 2, and db ≥ dc. Then every solution to system (8)-(9) with zero
Neumann boundary condition and initial condition

B(·, 0) = B0 > 0, P (·, 0) = P0 := C0/B0 ≥ 0, x ∈ Ω

exists and is bounded globally in time. Moreover, as t → ∞, B(·, t) → B∗ and
P (·, t)→ P ∗ in L∞(Ω).

In fact, the global existence can be proved under conditions rc ≥ 1, db ≥ dc
and N = 1. See [8, Theorem 1.7]. For other related results on system (3)-(4) (or,
(8)-(9)), we refer the interested reader to, e.g., [9, 10, 7] for more details.

In this paper, we shall give some new results on system (3)-(4) when Ω = RN .
In the sequel, for notational simplicity we set

db = d, K = 1, rb = a, rc = b, B = u, µC = v.

Also, without loss of generality (by a suitable spatial scaling) we may assume that
dc = 1. Therefore, system (3)-(4) for Ω = RN is reduced to

ut = d∆u+ au(1− u)− v, x ∈ RN , t > 0, (11)

vt = ∆v + bv
(

1− v

u

)
, x ∈ RN , t > 0. (12)

The rest of this paper is organized as follows. In section 2, we shall describe the
main results of this paper. Our first result is to characterize the spreading speed of
predator for system (11)-(12). We then study the (planar) traveling wave solutions
connecting the predator-free state to the positive co-existence state. It turns out
that the minimal wave speed is the same as the spreading speed of the predator
under the condition a ≥ 4. We suspect that the condition a ≥ 4 should be technical.
This question is left for open. The third result is the existence and non-existence
of periodic (in space) traveling wave solutions. Finally, the proofs of these results
are given in sections 3-5.

2. Main results. In this section, we shall describe the main results obtained in
this paper.

The first result is about the spreading speed of the predator. The study of
spreading speed is important in ecology, since it tells us how fast the predator can
invade the habitat of the existing prey. For the spreading speed in scalar equations
and predator-prey systems, we refer the reader to, e.g., [2, 22, 23, 17, 20, 21].
Here the spreading speed is adopted from the notion introduced by Aronson and
Weinberger [2] for scalar equations. More precisely, a constant c∗ is called the
spreading speed (of the predator) of system (11)-(12) if the following two conditions
hold:

lim
t→∞

sup
|x|>ct

v(x, t) = 0 for c > c∗, (13)

lim inf
t→∞

inf
|x|<ct

v(x, t) > 0 for c ∈ (0, c∗) (14)

for any solution (u, v) of the initial value problem for (11)-(12) supplemented with
the initial condition

u(x, 0) = u0(x) ≡ 1, v(x, 0) = v0(x), x ∈ RN , (15)

where v0 is a nonnegative continuous function with nonempty compact support.
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Theorem 2.1. Suppose that a ≥ 4. Then the spreading speed of system (11)-(12)

is given by c∗ = 2
√
b.

It is rather surprising that Theorem 2.1 also implies that solutions exists globally
even when b < 1. However, a finite time singularity may occur when b < 1 for
solutions to system (3)-(4) on bounded domain Ω. This is true for the case d = 1
(of course for certain initial data) and for the shadow system (10).

The second result is about the planar traveling waves to system (11)-(12). Hence
we assume that N = 1. A solution of (11)-(12) (with N = 1) is called a traveling
wave solution with speed s if there exist positive functions φ1 and φ2 defined on R
such that

u(x, t) = φ1(z), v(x, t) = φ2(z), z := x+ st.

Here φk, k = 1, 2, are called the wave profiles. Then (11)-(12) is reduced to the
following system of equations:

dφ′′1(z)− sφ′1(z) + aφ1(z) [1− φ1(z)]− φ2(z) = 0, z ∈ R,

φ′′2(z)− sφ′2(z) + bφ2(z)

[
1− φ2(z)

φ1(z)

]
= 0, z ∈ R,

(16)

where the prime denotes d/dz.
If a > 1, then (11)-(12) has a positive constant state E∗ = (u∗, v∗), where

u∗ = v∗ = 1− 1/a. We are interested in whether an alien predator can invade the
existing prey in the habitat. Moreover, it is also interesting to see whether both
predator and prey can live together. To see this, we shall study the existence of the
traveling wave solution connecting the predator-free state (1, 0) and the co-existence
state (u∗, v∗). This implies that (φ1, φ2) satisfies the following asymptotic boundary
conditions

lim
z→−∞

(φ1, φ2) = (1, 0), lim
z→∞

(φ1, φ2) = (u∗, v∗). (17)

Theorem 2.2. Suppose that a ≥ 4 and N = 1. Then the minimal speed of traveling
wave solutions of (11)-(12) connecting (1, 0) and (u∗, v∗) is 2

√
b := s∗. In other

words, for each s ≥ s∗, there exists a positive solution of (16) with the condition
(17). On the other hand, for s < s∗, there exist no nonnegative solutions of (16)
with the condition (17).

This result shows that the minimal wave speed is exactly the same as the minimal
wave speed of the Fisher-KPP equation ut = uxx + bu(1− u). Indeed, ahead of the
invading front of predator, the prey population density is approximately equal to
one by (17). Thus we can heuristically reduce the problem to a single equation and
obtain the minimal speed. For more background and illustrations of traveling wave
solutions and minimal speeds in biology, we refer the reader to [19].

Our third result is the existence of (spatially) periodic traveling wave solutions.
The following theorem can be proved by applying a general theory of Hopf bifurca-
tion (cf. [14, 1]).

Theorem 2.3. Suppose that N = 1 and

a > 1, b < 1, a+ b < 2. (18)

Let

ds :=
(2− a− b)(s2 + 2b) +

√
∆(s)

2b(1− b)
− 1, (19)
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where
∆(s) := (2− a− b)2(s2 + 2b)2 + 4(2− a− b)2b(1− b).

Case 1: Assume
a+
√
b ≤ 2. (20)

Then for any s > 0 system (11)-(12) has a family of (positive) periodic traveling
wave solutions when the diffusion coefficient d is sufficiently close to ds.
Case 2: Assume

a+
√
b > 2. (21)

Then there exists a unique minimum speed sp > 0 such that for s > sp system (11)-
(12) has a family of periodic traveling wave solutions when the diffusion coefficient
d is sufficiently close to ds, where sp is the unique positive zero of ds.

Moreover, we have the following non-existence result for periodic traveling waves.

Theorem 2.4. Suppose that N = 1. If a ≥ 2, b ≥ 1 and d ≥ 1, then there exist no
non-constant periodic traveling wave solutions.

3. Spreading speed. In this section, we provide a proof of Theorem 2.1 on the
spreading speed of (11)-(12). For this, we consider the initial value problem for
(11)-(12) with the initial condition (15), in which v0 is a nonnegative continuous
function defined on R with compact support. Let (u, v) be a solution of (11)-(12)
and (15) for t ∈ (0, T ) for some T ∈ (0,∞]. Note that we have u > 0 and v ≥ 0 for
all x ∈ RN , t < T .

Since

ut = d∆u+ au(1− u)− v ≤ d∆u+ au(1− u), x ∈ RN , 0 < t < T,

by the comparison principle we have u(x, t) ≤ 1 for all x ∈ R, t ∈ [0, T ). It follows
that

vt = ∆v + bv
(

1− v

u

)
≤ ∆v + bv(1− v), x ∈ RN , 0 < t < T.

Thus, v(x, t) ≤ 1 for all x ∈ R, t ∈ [0, T ).
For a > 4, the function F (u) := au(1−u)− 1 has two distinct roots in (0, 1) and

they are given by

u :=
1

2
−
√

1

4
− 1

a
, u :=

1

2
+

√
1

4
− 1

a
.

Moreover, for a = 4, F (u) has the double root u = 1/2.
We now assume that a ≥ 4. Since

ut = d∆u+ au(1− u)− v ≥ d∆u+ au(1− u)− 1, x ∈ RN , 0 < t < T,

and w ≡ u is a sub-solution of{
wt = dwxx + aw(1− w)− 1, x ∈ RN , 0 < t < T,

w(x, 0) = u, x ∈ RN ,
we have

u ≤ u ≤ 1, 0 ≤ v ≤ 1, x ∈ RN , t ∈ [0, T ). (22)

We conclude that (u, v) exists globally in time (so that T =∞) such that estimate
(22) holds for all t ≥ 0.

Since v ≤ V , where V satisfies V (x, 0) = v0(x), x ∈ RN , and

Vt = ∆v + bV (1− V ), x ∈ RN , t > 0,
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it follows from the classical result of spreading (cf. [2]) that

0 ≤ lim
t→∞

sup
|x|>(c∗+ε)t

v(x, t) ≤ lim
t→∞

sup
|x|>(c∗+ε)t

V (x, t) = 0 (23)

for any ε > 0, where c∗ := 2
√
b.

On the other hand, by (22), we have

vt = ∆v + bv
(

1− v

u

)
≥ ∆v + bv(1− v

u
), x ∈ RN , t > 0.

Hence v ≥W , where W (x, 0) = v0(x), x ∈ RN , and

Wt = Wxx + bW (1− W

u
), x ∈ RN , t > 0.

Again, it follows from the classical result of spreading (cf. [2]) that

lim inf
t→∞

inf
|x|<(c∗−ε)t

v(x, t) ≥ lim inf
t→∞

inf
|x|<(c∗−ε)t

W (x, t) = u > 0 (24)

for any ε ∈ (0, c∗). Therefore, Theorem 2.1 is proved by combining (23) and (24).

4. Traveling wave solutions. This section is devoted to the existence and non-
existence of traveling wave solutions of (11)-(12) (with N = 1) connecting (1, 0)
and (u∗, v∗). We shall always assume that a ≥ 4. Since the method here is very
standard, we shall only provide some outline of the proof.

First, we introduce the function space

X =
{
Φ = (φ1, φ2) | Φ is continuous function from R to R2

}
,

X0 =

{
(φ1, φ2) ∈ X | 1

2
≤ φ1 ≤ 1 and 0 ≤ φ2 ≤ 1 for all z ∈ R

}
.

Define the functions

F1(y1, y2) := τy1 + ay1(1− y1)− y2,

F2(y1, y2) := τy2 + by2

(
1− y2

y1

)
.

for a constat τ such that τ > max {a, 3b}. Then it is easy to see that ∂F1

∂y1
≥ 0,

∂F1

∂y2
≤ 0, ∂F2

∂y1
≥ 0 and ∂F2

∂y2
≥ 0 for 1

2 ≤ y1 ≤ 1 and 0 ≤ y2 ≤ 1. Then (16) can be
re-written as

dkφ
′′
k(z)− sφ′k(z)− τφk(z) + Fk(φ1, φ2)(z) = 0, z ∈ R, k = 1, 2,

where d1 = d and d2 = 1. Now we define

λ±k (s) =
s±
√
s2 + 4τdk
sdk

, k = 1, 2.

For convenience, we write λ±k instead of λ±k (s). Also, notice that λ−k < 0 < λ+
k and

dk(λ±k )2 − sλ±k − τ = 0, k = 1, 2.

For (φ1, φ2) ∈ X0, we consider the operator P = (P1, P2) : X0 → X defined as
follows

Pk(φ1, φ2)(z) =
1

dk(λ+
k − λ

−
k )

[∫ z

−∞
eλ

−
k (z−ξ) +

∫ ∞
z

eλ
+
k (z−ξ)

]
Fk(φ1, φ2)(ξ)dξ
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for z ∈ R, k = 1, 2. It is easy to check that the operator Pk satisfies

dk(Pk(φ1, φ2))′′ − s(Pk(φ1, φ2))′ − τPk(φ1, φ2) + Fk(φ1, φ2) = 0 in R, k = 1, 2.

Next, we give the definition of upper and lower solutions of (16) as follows.

Definition 4.1. Positive functions (φ1, φ2) and (φ
1
, φ

2
) are called a pair of upper

and lower solutions of (16) if φ
′′
k , φ

′′
k
, φ
′
k, φ

′
k
, k = 1, 2, are bounded functions and

satisfy the following inequalities

dφ
′′
1(z)− sφ′1(z) + aφ1(z)

[
1− φ1(z)

]
− φ

2
(z) ≤ 0, (25)

dφ1
′′(z)− sφ′

1
(z) + aφ

1
(z)
[
1− φ

1
(z)
]
− φ2(z) ≥ 0, (26)

φ
′′
2(z)− sφ′2(z) + bφ2(z)

[
1− φ2(z)/φ1(z)

]
≤ 0, (27)

φ′′
2
(z)− sφ′

2
(z) + bφ

2
(z)
[
1− φ

2
(z)/φ

1
(z)
]
≥ 0. (28)

for z ∈ R\D with some finite set D = {z1, z2, . . . , zm}.

Following [18, 3], we have the following existence result for (16).

Lemma 4.2. Let s > 0. Suppose that (16) has a pair of upper and lower solutions

(φ1, φ2) and (φ
1
, φ

2
) in X0 satisfying φk(z) ≥ φ

k
(z), z ∈ R, and φ

′
k(z−) ≥ φ′k(z+)

and φ′
k
(z−) ≤ φ′

k
(z+), z ∈ D, k = 1, 2, where

φ
′
k(z±) := lim

ξ→z±
φ
′
k(ξ), φ′

k
(z±) := lim

ξ→z±
φ′
k
(ξ).

Then (16) has a positive solution (φ1, φ2) such that φk(z) ≥ φk(z) ≥ φ
k
(z) for all

z ∈ R for k = 1, 2.

Proof. Since the proof is rather standard by now, we only give the outline of the
proof here.

Take a constant α with 0 < α < min {−λ1,−,−λ2,−} and denote ‖ · ‖ the supre-
mum norm in R2. Define

Bα(R,R2) :=

{
Φ ∈ X0 | sup

z∈R
‖Φ‖e−α|z| <∞

}
, |Φ|α := sup

z∈R
‖Φ‖e−α|z|.

Then
(
Bα(R,R2), | · |α

)
is a Banach space. Also, we let

Γ :=
{

(φ1, φ2) ∈ X0 : φ
k
(z) ≤ φk(z) ≤ φk(z) for all z ∈ R, k = 1, 2

}
.

First, we claim that P maps Γ into itself. This is equivalent to the following
inequalities: {

φ
1
(z) ≤ P1(φ

1
, φ2)(z) ≤ P1(φ1, φ2

)(z) ≤ φ1(z), z ∈ R,

φ
2
(z) ≤ P2(φ

1
, φ

2
)(z) ≤ P2(φ1, φ2)(z) ≤ φ2(z), z ∈ R,

(29)

by the choice of τ . Next, since P : Γ → Γ is completely continuous in the sense
of the weighted norm | · |α, the lemma follows by applying Schauder’s fixed point
theorem.

4.1. Upper and lower solutions. To derive the existence of traveling waves, we
need to find some suitable pairs of upper and lower solutions of (16). For this, we

divide it into two cases: s > s∗ and s = s∗, where s∗ := 2
√
b. The main idea of the

following construction is from [3] with some modifications.
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4.1.1. The case s > s∗. For a given wave speed s > s∗ = 2
√
b, we define the

following positive constants:

λ1 =
s+
√
s2 + 4ad

2d
, λ2 =

s−
√
s2 − 4b

2
, λ3 =

s+
√
s2 − 4b

2
. (30)

Notice that
dλ2

1 − sλ1 − a = 0, λ2
k − sλk + b = 0, k = 2, 3. (31)

For given constants µ > 1 and q > 1 we define f(z) := eλ2z − qeµλ2z. Then f(z)
has exactly one zero z0 < 0 and exactly one maximum point zM < z0. Note that

f(z) ≤ f(zM ) =

(
1− 1

µ

)(
1

qµ

)1/(µ−1)

, zM = − ln(qµ)

(µ− 1)λ2
.

For a given positive δ < min{f(zM ), 1/2}, since f(z) is continuous and positive on
(−∞, z0), we can choose a point z2 ∈ (zM , z0) such that f(z2) = δ.

With this choice of δ, we further take the constants µ, ν, η, p, q and ε (in sequence)
satisfying the following assumptions (A1)-(A3).

(A1) 1 < µ < min {λ3/λ2, 2}, ν > max {1, λ2/λ1} and 0 < η < min {1/
√

2, λ2/λ1}.
(A2) p > (a/2)+2

−[d(ηλ1)2−s(ηλ1)−a/2] and q > max
{

1, 2b
−[d(µλ2)2−s(µλ2)+b]

}
.

(A3) 0 < ε < min
{

δ
d(νλ1)2−s(νλ1)−a ,

1−qe(µ−1)λ2z2

d(νλ1)2−s(νλ1)−a

}
.

Note that, by using (31) and (A1),

d(ηλ1)2 − s(ηλ1)− a/2 < 0, d(µλ2)2 − s(µλ2) + b < 0,

d(νλ1)2 − s(νλ1)− a > 0, 1− qe(µ−1)λ2z2 > 1− qe(µ−1)λ2z0 = 0.

Hence the constants p, q and ε in (A2)-(A3) are well-defined.
Then we introduce the following functions

φ1(z) =

{
1, z ≥ 0,
1− ε(eλ1z − eνλ1z), z < 0,

φ
1
(z) =

{
1
2 , z ≥ z1,
1− 1

2 (eλ1z + peηλ1z), z < z1,

φ2(z) =

{
1, z ≥ 0,
eλ2z, z < 0,

φ
2
(z) =

{
δ, z ≥ z2,
eλ2z − qeµλ2z, z < z2,

(32)

where z1 < 0 is defined by eλ1z1 + peηλ1z1 = 1.

Lemma 4.3. For s > s∗, the functions (φ1, φ2) and (φ
1
, φ

2
) defined in (32) are a

pair of upper and lower solutions of (16).

4.1.2. The case s = s∗. In this case, we have (30) with λ2 = λ3 =
√
b. First, for

given positive constants q and h, recall from [3] that the function

g(z) :=
[
−hz − q(−z)1/2

]
eλ2z, z ≤ 0,

has exactly two critical points in (−∞, 0) such that g > 0 in (−∞, z0), where
z0 := −(q/h)2, g(z0) = 0, and there is a unique maximal point z̃ in (−∞, z0). We
choose z2 in (z̃, z0) such that g(z2) = δ for a fixed δ < 1/2. Set h = λ2e

2/2.
With these constants δ and h, we then choose the constants η, ν, p, q and ε (in

sequence) satisfying the following assumptions (B1)-(B4).
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(B1) 0 < η � 1 such that d(ηλ1)2 − s(ηλ1)− a/2 < 0 and λ2 > 2ηλ1.
(B2) ν > max {1, λ2/λ1}.

(B3) p > max
{
e, (a/2)+2he−1/(ηλ1)
−[d(ηλ1)2−s(ηλ1)−a/2]

}
and q > max

{
1,
√

2
λ2
h, 8bh2

(
7

2λ2e

)7/2
}

.

(B4) 0 < ε < min
{

δ
d(νλ1)2−s(νλ1)−a ,

−hz2−q(−z2)1/2

d(νλ1)2−s(νλ1)−a

}
.

Note that d(νλ1)2 − s(νλ1) − a > 0 and −hz2 − q(−z2)1/2 > 0 so that ε is well-
defined.

Then we define the functions

φ1(z) =

{
1, z ≥ 0,
1− ε(eλ1z − eνλ1z), z < 0,

φ
1
(z) =

{
1
2 , z ≥ z1,
1− 1

2 (eλ1z + peηλ1z), z < z1,

φ2(z) =

{
1, z ≥ −2/λ2,
−hzeλ2z, z < −2/λ2,

φ
2
(z) =

{
δ, z ≥ z2,[
−hz − q(−z)1/2

]
eλ2z, z < z2,

(33)

where z1 < 0 is defined by eλ1z1 + peηλ1z1 = 1. Note that z2 < z0 < −2/λ2 and
z1 < −2/λ2.

Lemma 4.4. For s = s∗, the functions (φ1, φ2) and (φ
1
, φ

2
) define in (33) are pair

of upper and lower solutions of (16).

The proofs of Lemmas 4.3 and 4.4 are by straightforward calculations, we safely
omit it here. Of course, to find a suitable pair of upper-lower-solutions is not always
simple. We were unable to find a suitable pair of upper-lower-solutions for a ∈ (1, 4).
Again, as for the spreading speed, the restriction of a ≥ 4 should be only due to
technical reasons. Note that the above choices of upper-lower-solutions are well-
defined for a ∈ (1, 4), but they do not satisfy (25)-(28). In particular, to verify (26)
the condition a ≥ 4 is needed.

4.2. Existence of traveling wave solutions. Having the upper and lower solu-
tions of (16), the following theorem follows immediately from Lemma 4.2.

Theorem 4.5. Suppose that s ≥ s∗. Then there exists a positive solution (φ1, φ2)
of (16) such that (φ1, φ2)(−∞) = (1, 0).

To derive the existence of traveling wave connecting (1, 0) and (u∗, v∗), it remains
to verify the tail behavior of solutions at z = +∞. Following [3], we define the
following functions

m(θ) := θ

(
1− 1

a

)
, M(θ) := θ

(
1− 1

a

)
+ (1− θ)(1 + ε)

for some ε ∈ (1/8, 1/4). Here ε > 1/8 is imposed so that

− εa2 + 2εa+ 1 < 0 for all a ≥ 4. (34)

For 0 < θ1 < θ2 < 1, it is easy to see that

0 = m(0) < m(θ1) < m(θ2) < m(1) = 1− 1

a
= M(1) < M(θ2) < M(θ1) < M(0) = 1 + ε.
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Theorem 4.6. Let (φ1, φ2) be a positive solution obtained in Theorem 4.5. Then

lim
z→+∞

(φ1, φ2)(z) =

(
1− 1

a
, 1− 1

a

)
.

Proof. Since the proof is completely similar to that of [3], we only point out the
difference due to the nonlinearity here is different from there.

Since 1/2 = φ
1
(z) ≤ φ1(z) ≤ φ1(z) = 1 and δ = φ

2
(z) ≤ φ2(z) ≤ φ2(z) = 1 for

all z > 0, we have

lim sup
z→+∞

φ1(z) ≤ 1, lim sup
z→+∞

φ2(z) ≤ 1, (35)

lim inf
z→+∞

φ1(z) ≥ 1

2
, lim inf

z→+∞
φ2(z) ≥ δ > 0. (36)

Denote

φ−k = lim inf
z→+∞

φk(z), φ+
k = lim sup

z→+∞
φk(z), k = 1, 2,

and define

θ0 = sup
{
θ ∈ [0, 1) : m(θ) < φ−k ≤ φ

+
k < M(θ), k = 1, 2

}
.

Then it suffices to show that θ0 = 1.
By contradiction, we assume that θ0 < 1. By taking a sequence {θj} with θj ↑ θ0

and passing to the limit, we obtain

m(θ0) ≤ φ−1 ≤ φ
+
1 ≤M(θ0), m(θ0) ≤ φ−2 ≤ φ

+
2 ≤M(θ0).

We next show that

m(θ0) < φ−1 ≤ φ
+
1 < M(θ0), m(θ0) < φ−2 ≤ φ

+
2 < M(θ0). (37)

Suppose for contradiction that (37) does not hold. Then one of the following four
cases must happen.
Case 1: φ−1 = m(θ0). Note that m(θ0) ≥ 1/2, by (36). Hence

lim inf
z→∞

{aφ1(z)[1− φ1(z)]− φ2(z)}

≥ am(θ0)[1−m(θ0)]−M(θ0)

= am(θ0)[1−m(θ0)]− [m(θ0) + (1− θ0)(1 + ε)]

= (1− θ0)[m(θ0)(a− 1)− 1− ε] ≥ (1− θ0)[(a− 1)/2− 1− ε] > 0,

due to a ≥ 4 and ε < 1/4. Then, following the same argument as that in [3], it
leads to a contradiction.
Case 2: φ+

1 = M(θ0). Note that M(θ0) ≥ 1− 1/a. Then we have

lim sup
z→∞

{aφ1(z)[1− φ1(z)]− φ2(z)}

≤ aM(θ0) [1−M(θ0)]−m(θ0)

= aM(θ0) [1−M(θ0)]− [M(θ0)− (1− θ0)(1 + ε)]

= (1− θ0) [(1 + ε)−M(θ0)(1 + aε)] ≤ (1− θ0)

[
(1 + ε)− (1− 1

a
)(1 + aε)

]
= (1− θ0)

(
−εa2 + 2εa+ 1

)
/a < 0,

due to (34) and a ≥ 4. With this fact, similar to case 1, this case is also impossible.
Case 3: φ−2 = m(θ0). The same argument as that in [3] leads to a contradiction.
Case 4: φ−2 = M(θ0). Similar to case 3, this case is also impossible.
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We conclude that (37) holds. Therefore, by the continuity of m(θ) and M(θ),
due to θ0 < 1, there exists a small positive constant τ ∈ (0, 1− θ0) such that

m(θ0 + τ) < φ−1 ≤ φ
+
1 < M(θ0 + τ), m(θ0 + τ) < φ−2 ≤ φ

+
2 < M(θ0 + τ),

which gives a contradiction to the definition of θ0. Consequently, we must have
θ0 = 1 and we finish the proof.

4.3. Nonexistence of traveling wave solutions. In this subsection, we complete
the proof of Theorem 2.2 by showing that there is no positive traveling wave solution
of (11)-(12) with N = 1 connecting (1, 0) and (u∗, v∗) for s < s∗.

First we recall the following spreading phenomenon [2]. Consider the following
Cauchy problem for Fisher’s equation{

zt(x, t) = dzxx(x, t) + rz(x, t)[1− kz(x, t)], x ∈ R, t > 0,

z(x, 0) = z0(x), x ∈ R,

where d, r, k are positive constants and z0(x) is a positive bounded continuous func-
tion. Then we have

lim inf
t→∞

inf
|x|<ct

z(x, t) = lim sup
t→∞

sup
|x|<ct

z(x, t) =
1

k
.

for any c ∈ (0, 2
√
dr). Then the same proof as that of [3, Theorem 2.6] leads

Theorem 4.7. For s < s∗, there is no positive solution of (16) and (17).

5. Periodic traveling waves.

5.1. Proof of Theorem 2.3. The proof is almost the same as that of [24, Theorem
1.2] except the problem here is different from there. We give some details here for
the reader’s convenience.

First, we set ψ1 := φ′1 and ψ2 := φ′2. Then system (16) can be re-written as
φ′1 = ψ1,

ψ′1 = {sψ1 − aφ1(1− φ1) + φ2}/d,
φ′2 = ψ2,

ψ′2 = sψ2 − bφ2(1− φ2/φ1),

(38)

which has two fixed points (1, 0, 0, 0) and (u∗, 0, u∗, 0).
Linearizing (38) at (u∗, 0, u∗, 0), we obtain the following characteristic equation

for eigenvalues of the corresponding Jacobian matrix

λ4 − s
(

1 +
1

d

)
λ3 +

(s2 + 2− a
d

− b
)
λ2 − s

d
(2− a− b)λ+

b

d
(a− 1) = 0. (39)

For a given s > 0, it is easy to see that equation (39) has a pair of pure imaginary
solutions, λ = ±iω, ω > 0, if and only if there is a unique positive d = ds (given by
(19)) such that

g(d) := b(1− b)(d+ 1)2 − (2− a− b)(s2 + 2b)(d+ 1)− (2− a− b)2 = 0. (40)

Here we have used the fact that 0 < b < 1 and a+ b < 2.
To determine the existence of admissible ds, we observe that d0 ≥ 0 if and only

if a+
√
b ≤ 2, since for s = 0

d0 =
(2− a− b)/

√
b− (a− 1)

1− b
.



SINGULAR PREDATOR-PREY MODEL 13

Moreover, it is easy to see from (19) that ds, as a function of s, is strictly increasing
in s for s ≥ 0. Hence ds > 0 for any s > 0, if (20) holds. On the other hand, if (21)
holds, then there exists a unique sp > 0 such that ds > 0 if and only if s > sp.

In order to apply the standard theory of Hopf bifurcation, we need to compute
the derivative of λ(d) at d = ds for an admissible s. More precisely, the existence
of periodic traveling wave solutions follows if we have

Re(λ′(ds)) < 0, (41)

where Re(z) denotes the real part of z. Hereafter the prime denotes the derivative
respect to d. In fact, by differentiating (39) with respect to d, the expression of
λ′(d) can be easily derived.

Since the coefficient, −s(2 − a − b)/d, of λ in (39) is negative, by [24, Lemma
3.2], condition (41) holds if {

s2

d3
g(d)

}′
(ds) > 0.

However, we have{
s2

d3
g(d)

}′
(ds) = − s

2

d4
s

g(ds) +
s2

d3
s

g′(ds) =
s2

d3
s

g′(ds)

=
s2

d3
s

[2b(1− b)(ds + 1)− (2− a− b)(s2 + 2b)] =
s2

d3
s

√
∆(s) > 0,

by using (19) and (40). Hence (41) is satisfied. Therefore, Theorem 2.3 follows by
applying the general theory of Hopf bifurcation.

5.2. Proof of Theorem 2.4. For a > 1, the positive co-existence state (u∗, u∗) =
(1− 1/a, 1− 1/a) exists and, as in [8], we introduce the functional

E[u, P ](t) := d

∫ L

0

(ux
u

)2

dx+
d− 1

2b

∫ L

0

(vx
v

)2

dx

+a

∫ L

0

(
u− u∗ − u∗ ln

u

u∗

)
dx+

∫ L

0

(
P − 1− lnP

)
dx

for a given (global in time) periodic solution (u, v) of period L > 0 to (11)-(12).
Here P := v/u and P satisfies

Pt = Pxx − (d− 1)
P

u
uxx +

2

u
uxPx + {b− a+ au− (b− 1)P}P, x ∈ R, t > 0. (42)

Then we have the following lemma.

Lemma 5.1. Suppose that a > 1, 8π2d/L2 + a ≥ 2, b ≥ 1 and d ≥ 1. Let (u, v) be
a periodic solution of (11)-(12) with period L and P = v/u. Then the functional
E[u, P ](t) is decreasing in t.

Proof. The proof is almost the same as that of [8, Lemma 6.1], except that here
we have the periodic boundary condition. Recall that the optimal constant of the
Poincaré-Wirtinger’s inequality for periodic functions of period L is (2π/L)2. Hence
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the same calculations as that in the proof of [8, Lemma 6.1] gives

d

dt
E[u, P ](t)

≤ −[2(2π/L)2d+ a− 2]d

∫ L

0

(ux
u

)2

dx− (2π/L)2(d− 1)

b

∫ L

0

(vx
v

)2

dx

−
∫ L

0

{
a2(u− u∗)2 + (b− 1)(P − 1)2

}
dx ≤ 0,

if a > 1, 8π2d/L2 + a ≥ 2, b ≥ 1 and d ≥ 1. This proves the lemma.

Proof of Theorem 2.4. We use a contradiction argument. Suppose that there exists
a nontrivial periodic traveling wave solution (u, v) to (11)-(12) of period L > 0.
Since a ≥ 2, the assumptions made in Lemma 5.1 hold. With Lemma 5.1 and
following exactly the same argument as that in the proof of [8, Theorem 1.6], we
can prove that, as t→∞, u(·, t)→ u∗ and v(·, t)→ u∗ uniformly in R.

However, due to the periodicity of wave profile, we have

(u, v)(x, t+ L/s) = (φ1, φ2)(x+ st+ L) = (φ1, φ2)(x+ st) = (u, v)(x, t)

for all x ∈ R, t > 0. With this time periodicity, we deduce that (u, v) ≡ (u∗, v∗), a
contradiction. Hence the theorem is proved.
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