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Abstract. In this paper, we study the invading phenomenon of an alien predator to the
habitat of two aborigine preys by traveling waves connecting the predator-free state to the
co-existence state. Based on an application of Schauder’s fixed point theorem with the
help of (generalized) upper-lower-solutions, we characterize the minimal wave speed of this
invading process. New form of upper-lower-solutions are constructed to derive the existence
of traveling waves for all admissible speeds.

1. Introduction

In primary succession, plants such as grass and trees are the pioneer species and then

some animals that feed primarily on grass and trees are the second. The animals (predator)

is attracted to invade the habitat of the preys (grass and trees). This ecological system can

be modeled by the following three species predator-prey system:

(1.1)


ut = d1uxx + r1u(1− u− kv − bw), x ∈ R, t > 0,

vt = d2vxx + r2v(1− hu− v − bw), x ∈ R, t > 0,

wt = d3wxx + r3w(−1 + au+ av − w), x ∈ R, t > 0,

where the unknowns u, v and w as functions of (x, t) stand for the population densities of

preys u, v and predator w at position x and time t. The parameters di, ri, i = 1, 2, 3, a, b, h

and k are positive constants in which di, i = 1, 2, 3, are the diffusion rates of u, v and w; r1

and r2 are the intrinsic growth rates of u and v, respectively, and r3 is the death rate of the

predator w; rib, i = 1, 2, are the predation rates and r3a is the conversion rate of u (and v);

h and k are the competition coefficients between two preys u and v.

Throughout this paper, we always assume that

(1.2) h, k ∈ (0, 1).
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In other words, we consider both preys are weak competitors. Also, to make sure the predator

can survive without other food resources than these two preys we assume

(1.3) a > γ, γ = γ(h, k) :=
1− hk

2− h− k
.

It is easy to check that system (1.1) has two constant states Ep = (up, vp, 0) (the predator-

free state) and Ec = (uc, vc, wc) (the co-existence state), where

up :=
1− k

1− hk
, vp :=

1− h

1− hk
,(1.4)

uc :=
(1 + b)(1− k)

(1− hk) + ab(2− h− k)
,(1.5)

vc :=
(1 + b)(1− h)

(1− hk) + ab(2− h− k)
,(1.6)

wc :=
a(2− h− k)− (1− hk)

(1− hk) + ab(2− h− k)
.(1.7)

Note that γ(h, k) ∈ (1/2, 1). Also, under conditions (1.2) and (1.3) we have

(1.8) up > uc > 0 , vp > vc > 0 and wc > 0.

Ecologically, it is interesting to see whether these three species can live together in the

habitat of two aborigine preys after the invading of an alien species. One of the approaches

to study this problem is to study the so-called traveling wave solutions of system (1.1) con-

necting the predator-free state and the co-existence state. From the view point of invading,

the population densities of preys should be decreasing after the predator invades. So it is

natural to require (1.8).

Another approach of studying the invading phenomenon is the so-called (asymptotic)

spreading speed of the predator, by studying the Cauchy problem for (1.1) with initial

condition

u(x, 0) = up, v(x, 0) = vp, w(x, 0) = w0(x), x ∈ R,

where w0 is a nonnegative continuous function with nonempty compact support. For the

spreading speed for system (1.1), we refer the reader to the work by Wu [17]. In [17], under

the conditions : b = a, d1 = d2 = d and

r1β1 + r2hβ2 = r1kβ1 + r2β2, β1 := 1− k − aβ > 0, β2 := 1− h− aβ > 0,

for some positive constants h, k, a such that 0 < h, k < 1 and 0 < a− 1 ≪ 1, It is shown in

[17] that the spreading speed of the predator w is 2
√
d3r3β with β := a(up + vp)− 1.

A solution of (1.1) is called a traveling wave solution with speed s if there exist positive

functions {ϕ1, ϕ2, ϕ3} defined on R such that u(x, t) = ϕ1(x + st), v(x, t) = ϕ2(x + st) and

w(x, t) = ϕ3(x+st). Here ϕj, j = 1, 2, 3, are the wave profiles. Let z := x+st and substitute



TRAVELING WAVES 3

(u, v, w)(x, t) = (ϕ1, ϕ2, ϕ3)(z) into (1.1). Then {s, ϕ1, ϕ2, ϕ3} satisfy the following system of

equations:

(1.9)


d1ϕ

′′
1(z)− sϕ′

1(z) + r1ϕ1(z)[1− ϕ1(z)− kϕ2(z)− bϕ3(z)] = 0, z ∈ R,
d2ϕ

′′
2(z)− sϕ′

2(z) + r2ϕ2(z)[1− hϕ1(z)− ϕ2(z)− bϕ3(z)] = 0, z ∈ R,
d3ϕ

′′
3(z)− sϕ′

3(z) + r3ϕ3(z)[−1 + aϕ1(z) + aϕ2(z)− ϕ3(z)] = 0, z ∈ R,

where the prime denotes the derivative with respect to z. As we mentioned above, we are

interested in the wave connecting the predator-free state and the co-existence state. Hence

problem (1.9) is supplemented with the following asymptotic boundary conditions

(1.10) lim
z→−∞

(ϕ1, ϕ2, ϕ3)(z) = (up, vp, 0) and lim
z→∞

(ϕ1, ϕ2, ϕ3)(z) = (uc, vc, wc).

We now state the main theorem of this paper as follows.

Theorem 1.1. Given h, k, a such that (1.2) and (1.3) hold. Let s∗ := 2
√
d3r3β. Assume

that

a >
2

2− h− k
,(1.11)

0 < b < min

{
1− k

2a− 1
,
1− h

2a− 1
,
a(2− h− k)− 2

2a(2a− 1)

}
.(1.12)

For s > s∗, under the condition

(1.13) d3 ≥ max

{
d1
2
,
d2
2

}
,

system (1.9) has a solution (ϕ1, ϕ2, ϕ3) such that (1.10) holds. For s = s∗, under the condition

(1.14) max

{
d1
2
,
d2
2

}
≤ d3 ≤ min {d1, d2},

system (1.9) has a solution (ϕ1, ϕ2, ϕ3) such that (1.10) holds. Moreover, there is no positive

solution for (1.9)-(1.10) if s < s∗.

Due to the nonlinearity of our predator-prey model, system (1.1) does not have the compar-

ison principle. The proof of Theorem 1.1 is based on an application of Schauder’s fixed point

theorem with the help of (generalized) upper-lower-solutions. This method has been proved

to be very successful in the derivation of traveling waves for non-monotone systems since the

pioneer works [14, 16], if a suitable upper-lower-solutions can be constructed. We refer the

reader to [7, 8, 10, 9, 11, 21, 3, 19] for 2-component systems, [4, 15, 6, 20, 12, 18, 13, 2, 5]

for 3-species cases and the references cited therein.

In particular, in [6], they constructed the traveling waves for a predator-prey system with

one predator and two preys such that all of these 3 species are alien species and the predator

can survive without the predation of the preys. The case when the predator has a negative

growth rate, namely, system (1.1), is left open in [6]. In [2], they considered the same
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predator-prey model as (1.1) to investigate how one alien prey and one alien predator invade

the habitat of an aborigine prey. The case of two alien predators and one aborigine prey

is studied in [5]. However, the construction of suitable upper-lower-solutions is not always

available.

In this paper, we study the predator-prey system (1.1) with two aborigine preys and one

alien predator. To our knowledge, all existing results on the traveling waves for 3-species

predator-prey systems are connecting an unstable state with at most one nonzero component

to the co-existence state. In other words, it is always assumed that there is at most one

aborigine species living in a habitat. This paper is the first work to construct traveling

waves describing one alien predator invades two aborigine preys. In fact, the main difficulty

in the construction of generalized upper-lower-solution is the two nonzero components in the

unstable state.

By a linearization at the unstable state (up, vp, 0) for each equation in (1.9), the decay

rate of ϕ1 − up (ϕ2 − vp, resp.) at z = −∞ should be eλ1z (eλ2z, resp.), where λ1 > 0, λ2 > 0

and they satisfy

d1λ
2
1 − sλ1 − r1up = 0, d2λ

2
2 − sλ2 − r2vp = 0.

However, these are not the correct asymptotic behaviors of ϕ1 and ϕ2 at the unstable tail.

Surprisingly, under certain conditions on the parameters (as stated in Theorem 1.1), it turns

out that the correct decay rate of ϕ1 − up (and ϕ2 − vp) is the same as that of ϕ3, namely,

eλ3z where λ3 is the smaller positive root to

H(λ) := d3λ
2 − sλ+ r3β = 0, β := a(up + vp)− 1,

for s ≥ s∗. This counterintuitive behavior actually causes the major difficulty in the con-

struction of upper-lower-solutions.

We find in this work that the minimal wave speed connecting the predator-free state to

the co-existence state is the same as the spreading speed of the predator. However, the

conditions on the parameters in these two works are very different. In [17], no restrictions

are imposed on the diffusion rate d3 of the predator. But, there are some restrictions on the

growth rates of the preys in [17]. On the other hand, in this paper, we do not impose any

restrictions on the growth rates of preys. Also, we consider different predation rates and

conversion rates. However, we need to restrict ourselves on the diffusion rates di, i = 1, 2, 3.

This may shed light on the limitations of these two different approaches to the invading

phenomenon.

The rest of this paper is organized as follows. In §2, we provide some details of the method

of generalized upper-lower-solutions originated from [10, 11]. The main task is to construct

suitable upper-lower-solutions for each admissible wave speed. Then we give a proof of our
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main result, Theorem 1.1 in §3. For the existence part, based on results of §2, we only

need to verify the wave profiles satisfy the required asymptotic boundary condition at the

right-hand tail. The proof is based on constructing a sequence of shrinking rectangles (cf.

[6, 3, 5]) with some modifications. The proof for the non-existence part of Theorem 1.1 is

standard by using a contradiction argument with the help of the spreading phenomenon of

the Cauchy problem for Fisher’s equation ([1]). Finally, we provide the details of verification

of upper-lower-solutions constructed in §2.

2. Method of generalized upper-lower-solutions

In this section, we shall provide some details of the method of generalized upper-lower-

solutions with the help of Schauder’s fixed point theorem (cf. e.g., [14, 10, 11]). First, we

define the following function spaces

X =
{
Φ = (ϕ1, ϕ2, ϕ3) | Φ is continuous function from R to R3

}
,

X0 = {(ϕ1, ϕ2, ϕ3) ∈ X | 0 ≤ ϕ1 ≤ 1, 0 ≤ ϕ2 ≤ 1, 0 ≤ ϕ3 ≤ B for all z ∈ R} ,

where B := 2a− 1.

Define the functions Fk, k = 1, 2, 3,

F1(y1, y2, y3) = τy1 + r1y1(1− y1 − ky2 − by3),

F2(y1, y2, y3) = τy2 + r2y2(1− hy1 − y2 − by3),

F3(y1, y2, y3) = τy3 + r3y3(−1 + ay1 + ay2 − y3),

for some large enough constant τ such that

τ > max {r1(1 + k + bB), r2(1 + h+ bB), r3(2B + 1)}.

Note that we have

∂F1

∂y1
≥ 0,

∂F1

∂y2
≤ 0,

∂F1

∂y3
≤ 0;

∂F2

∂y1
≤ 0,

∂F2

∂y2
≥ 0,

∂F1

∂y3
≤ 0;

∂F3

∂y1
≥ 0,

∂F3

∂y2
≥ 0,

∂F3

∂y3
≥ 0.

Also, system(1.9) can be re-written as

dkϕ
′′
k(z)− sϕ′

k(z)− τϕk(z) + Fk(ϕ1, ϕ2, ϕ3)(z) = 0, k = 1, 2, 3.

Next, we define

ν±
k (s) =

s±
√
s2 + 4dkτ

2dk
, k = 1, 2, 3.
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Clearly ν−
k < 0 < ν+

k and

dk(ν
±
k )

2 − sν±
k − τ = 0, k = 1, 2, 3.

For (ϕ1, ϕ2, ϕ3) ∈ X0, we consider the operator P = (P1, P2, P3) : X0 → X defined by

Pk(ϕ1, ϕ2, ϕ3)(z) :=
1

dk(ν
+
k − ν−

k )

[∫ z

−∞
eν

−
k (z−ξ) +

∫ ∞

z

eν
+
k (z−ξ)

]
Fk(ϕ1, ϕ2, ϕ3)(ξ)dξ,

for k = 1, 2, 3, z ∈ R. It is easy to check that the operator P satisfies

dk(Pk(ϕ1, ϕ2, ϕ3))
′′(z)− s(Pk(ϕ1, ϕ2, ϕ3))

′(z)− τPk(ϕ1, ϕ2, ϕ3)(z) + Fk(ϕ1, ϕ2, ϕ3) = 0

for k = 1, 2, 3, z ∈ R. Therefore, to find a solution of (1.9) is equivalent to finding a fixed

point of the operator P .

Now, we introduce the definition of (generalized) upper-lower-solutions of (1.9) as follows.

Definition 2.1. Positive continuous functions (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) are called a pair

of upper-lower-solutions of (1.9) if ϕ
′′
i , ϕ′′

i
, ϕ

′
i, ϕ′

i
, i = 1, 2, 3, are bounded functions and

satisfy the following inequalities

U1(z) := d1ϕ
′′
1(z)− sϕ

′
1(z) + r1ϕ1(z)[1− ϕ1(z)− kϕ

2
(z)− bϕ

3
(z)] ≤ 0,(2.1)

U2(z) := d2ϕ
′′
2(z)− sϕ

′
2(z) + r2ϕ2(z)[1− hϕ

1
(z)− ϕ2(z)− bϕ

3
(z)] ≤ 0,(2.2)

U3(z) := d3ϕ
′′
3(z)− sϕ

′
3(z) + r3ϕ3(z)[−1 + aϕ1(z) + aϕ2(z)− ϕ3(z)] ≤ 0,(2.3)

L1(z) := d1ϕ
′′
1
(z)− sϕ′

1
(z) + r1ϕ1

(z)[1− ϕ
1
(z)− kϕ2(z)− bϕ3(z)] ≥ 0,(2.4)

L2(z) := d2ϕ
′′
2
(z)− sϕ′

2
(z) + r1ϕ2

(z)[1− hϕ1(z)− ϕ
2
(z)− bϕ3(z)] ≥ 0,(2.5)

L3(z) := d3ϕ
′′
3
(z)− sϕ′

3
(z) + r3ϕ3

(z)[−1 + aϕ
1
(z) + aϕ

2
(z)− ϕ

3
(z)] ≥ 0,(2.6)

for z ∈ R\E with some finite set E = {z1, z2, . . . , zm}.

Then the following lemma gives the existence of positive solutions of (1.9). Since its proof

is standard by now, we safely omit it (cf. [14, 10, 3]).

Lemma 2.2. Given s > 0, suppose that (1.9) has a pair of upper-lower-solutions (ϕ1, ϕ2, ϕ3)

and (ϕ
1
, ϕ

2
, ϕ

3
) in X0 satisfying

(1) ϕk(z) ≥ ϕ
k
(z), z ∈ R, k = 1, 2, 3;

(2) ϕ
′
k(z

−) ≥ ϕ
′
k(z

+) and ϕ′
k
(z−) ≤ ϕ′

k
(z+), z ∈ E, k = 1, 2, 3,

where

ϕ
′
k(z

±) := lim
z→z±

ϕ
′
k(z), ϕ′

k
(z±) := lim

z→z±
ϕ′
k
(z).

Then (1.9) has a positive solution (ϕ1, ϕ2, ϕ3) such that ϕ
k
(z) ≤ ϕk(z) ≤ ϕk(z) for all z ∈ R

for k = 1, 2, 3.
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Based on this lemma, it remains to construct a suitable pair of upper-lower-solutions for

all admissible wave speeds. For the construction of upper-lower-solutions, we divide our

discussion into two cases: s > s∗ and s = s∗.

Case 1. s > s∗. Given s > s∗ = 2
√
d3r3β. Recall β = aup + avp − 1 and B = 2a− 1. Note

that B > 0, since a > γ > 1/2.

Let H(λ) := d3λ
2 − sλ + r3β and 0 < λ3 < λ4 be two roots of H. We introduce the

following upper-lower-solutions

ϕ1(z) =

{
up + kvpe

λ3z, z < 0,
1, z > 0,

(2.7)

ϕ
1
(z) =

{
up − (up − δ1)e

λ3z, z < 0,
δ1, z > 0,

(2.8)

ϕ2(z) =

{
vp + hupe

λ3z, z < 0,
1, z > 0,

(2.9)

ϕ
2
(z) =

{
vp − (vp − δ2)e

λ3z, z < 0,
δ2, z > 0,

(2.10)

ϕ3(z) =

{
Beλ3z, z < 0,
B, z > 0,

(2.11)

ϕ
3
(z) =

{
Beλ3z − qeµλ3z, z < z3,
δ3, z > z3,

(2.12)

where constants µ, q and δi, i = 1, 2, 3, are chosen in the following order:

1 < µ < min {2, λ4/λ3},(2.13)

q ≥ max

{
B,

r3B(β +B)

−H(µλ3)

}
,(2.14)

δ1 := (1− k − bB)/2, δ2 := (1− h− bB)/2, δ3 := min{a(δ1 + δ2)− 1,M/2},(2.15)

in which M := B(B/qµ)1/(µ−1)(1 − 1/µ) = f(zM) = maxz∈R f(z), f(z) := Beλ3z − qeµλ3z.

The number z3 ∈ (zM , z0), where f(z0) = 0 with z0 :=
ln (B/q)
λ3(µ−1)

≤ 0, is defined by

Beλ3z3 − qeµλ3z3 = δ3.

Note that the conditions (1.11) and (1.12) are assumed to ensure δi > 0 for i = 1, 2, 3. Also,

by the choice of µ in (2.13), H(µλ3) < 0. Furthermore, the condition q ≥ B is assumed to

ensure that z3 < 0; while δ3 ≤ M/2 is for the continuity of ϕ
3
and that condition (2) in

Lemma 2.2 holds. Then we have

Lemma 2.3. Suppose that s > s∗. Then the functions (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) defined

in (2.7)-(2.12) are a pair of upper and lower solutions of (1.9).
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Case 2. s = s∗. Note that s = 2d3λ3 when s = s∗ = 2
√
d3r3β. We follow an idea from [3]

and consider the following upper-lower-solutions

ϕ1(z) =

{
up + L1(−z)eλ3z, z < −1/λ3,
1, z > −1/λ3,

(2.16)

ϕ
1
(z) =

{
up − (up − δ1)λ3e(−z)eλ3z, z < −1/λ3,
δ1, z > −1/λ3,

(2.17)

ϕ2(z) =

{
vp + L2(−z)eλ3z, z < −1/λ3,
1, z > −1/λ3,

(2.18)

ϕ
2
(z) =

{
vp − (vp − δ2)λ3e(−z)eλ3z, z < −1/λ3,
δ2, z > −1/λ3,

(2.19)

ϕ3(z) =

{
L3(−z)eλ3z, z < −1/λ3,
B, z > −1/λ3,

(2.20)

ϕ
3
(z) =

{ [
L3(−z)− q(−z)1/2

]
eλ3z, z < z∗3 ,

δ3, z > z∗3 ,
(2.21)

where

L1 = kvpλ3e, L2 = hupλ3e, L3 = Bλ3e,

the parameter q is chosen to satisfy

(2.22) q ≥ max

{
Beλ

1/2
3 ,

4C

d3
r3B(β +B)

}
, C := (λ3e)

2

(
7

2λ3e

)7/2

,

and the constants δi, i = 1, 2, 3, are defined by (2.15) in which M := g(z∗M) is the maximum

of g(z) :=
[
L3(−z)− q(−z)1/2

]
eλ3z for z < 0. The number z∗3 ∈ (z∗M , z∗0), where z∗0 :=

− (q/L3)
2 ≤ −1/λ3, is defined by[

L3(−z∗3)− q(−z∗3)
1/2

]
eλ3z∗3 = δ3.

Then we obtain

Lemma 2.4. Suppose that s = s∗. Then the functions (ϕ1, ϕ2, ϕ3) and (ϕ
1
, ϕ

2
, ϕ

3
) defined

by (2.16)-(2.21) are a pair of upper-lower-solutions of (1.9).

With the constructed upper-lower-solutions, we deduce the following existence theorem by

applying Lemma 2.2. Since the proof is just to check the conditions (1) and (2) in Lemma

2.2, we safely omit it.

Theorem 2.5. For all s ≥ s∗, there exists a positive solution (ϕ1, ϕ2, ϕ3) of (1.9) such that

lim
z→−∞

(ϕ1, ϕ2, ϕ3) = (up, vp, 0) and ϕ
j
(z) ≤ ϕj(z) ≤ ϕj(z), z ∈ R, j = 1, 2, 3.
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3. Proof of Theorem 1.1

This section is devoted to the proof of our main theorem, Theorem 1.1. For the existence

part of Theorem 1.1, it remains to show the convergence of the wave profile to the co-existence

state Ec as z → ∞.

Theorem 3.1. Let (ϕ1, ϕ2, ϕ3) be a solution obtained in Theorem 2.5 for a given s ≥ s∗.

Then (ϕ1, ϕ2, ϕ3)(z) → (uc, vc, wc) as z → ∞.

Proof. First, we consider the rectangle Q := I1 × I2 × I3 with Ik(θ) := [mk(θ),Mk(θ)],

θ ∈ [0, 1], where
m1(θ) := (1− θ)(δ1 − ε2) + θuc, M1(θ) := (1− θ)(1 + ε2) + θuc,

m2(θ) := (1− θ)(δ2 − ε2) + θvc, M2(θ) := (1− θ)(1 + ε2) + θvc,

m3(θ) := (1− θ)(δ3 − ε) + θwc, M3(θ) := (1− θ)(B + ε) + θwc

for some positive constant ε satisfying

(3.1) 0 < ε < min

{
1

2a
,
√
δ1,

√
δ2, δ3,

δ1
b
,
δ2
b

}
.

From (1.5)-(1.7), it is easy to check that δ1 < uc < 1, δ2 < vc < 1 and δ3 < wc < B, by

using condition (1.12). Hence mi(θ) is strictly increasing and Mi(θ) is strictly decreasing in

θ such that (m1,m2,m3)(1) = (M1,M2,M3)(1) = (uc, vc, wc).

For convenience, we let

ϕ+
j := lim sup

z→∞
ϕj(z), ϕ

−
j := lim inf

z→∞
ϕj(z), j = 1, 2, 3.

Obviously, we have

m1(0) = δ1 − ε2 < δ1 ≤ ϕ−
1 ≤ ϕ+

1 ≤ 1 < 1 + ε2 = M1(0);

m2(0) = δ2 − ε2 < δ2 ≤ ϕ−
2 ≤ ϕ+

2 ≤ 1 < 1 + ε2 = M2(0);

m1(0) = δ3 − ε < δ3 ≤ ϕ−
3 ≤ ϕ+

3 ≤ B < B + ε = M3(0).

Hence the quantity

θ0 := sup
{
θ ∈ [0, 1) | mk(θ) < ϕ−

k ≤ ϕ+
k < Mk(θ), k = 1, 2, 3

}
is well-defined and θ0 > 0. Then the theorem follows if we can prove that θ0 = 1.

Upon choosing the sequence of rectangles, the proof of θ0 = 1 can be carried out by a

method used in [3, 5] as follows. For contradiction, we assume that θ0 ∈ (0, 1).

First, we check that

α1 := 1−m1(θ0)− kM2(θ0)− bM3(θ0)

= 1− (1− θ0)(δ1 − ε2)− θ0uc − k(1− θ0)(1 + ε2)− kθ0vc − b(1− θ0)(B + ε)− bθ0wc

= (1− θ0)[1− k − bB − δ1 + ε2(1− k)− bε] ≥ (1− θ0)(δ1 − bε) > 0,
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by (2.15) and (3.1). Similarly, we have

ω1 := 1−M1(θ0)− km2(θ0)− bm3(θ0) = −(1− θ0)[ε
2 + k(δ2 − ε2) + b(δ3 − ε)] < 0,

α2 := 1− hM1(θ0)−m2(θ0)− bM3(θ0) ≥ (1− θ0)(δ2 − bε) > 0,

ω2 := 1− hm1(θ0)−M2(θ0)− bm3(θ0) = −(1− θ0)[ε
2 + h(δ1 − ε2) + b(δ3 − ε)] < 0,

α3 := −1 + am1(θ0) + am2(θ0)−m3(θ0) = (1− θ0)[ε(1− 2aε)] > 0,

ω3 := −1 + aM1(θ0) + aM2(θ0)−M3(θ0) = −(1− θ0)[ε(1− 2aε)] < 0,

by using (2.15) and (3.1).

Next, by passing to the limit, mk(θ0) ≤ ϕ−
k ≤ ϕ+

k ≤ Mk(θ0), k = 1, 2, 3, and at least one

of the following equalities

ϕ−
k = mk(θ0), ϕ

+
k = Mk(θ0), k = 1, 2, 3,

must hold. Then, with the help of the positivity of {αi,−ωi, i = 1, 2, 3}, the method of [3, 5]

can be applied to get a contradiction.

For the reader’s convenience, we give the idea as follows. Suppose, for example, that

ϕ+
3 = M3(θ0). Then there are the following two possibilities. Suppose that ϕ3(z) is monotone

for z in a neighborhood of ∞. Then ϕ3(∞) = M3(θ0). By integrating the third equation in

(1.9) from 0 to n for any n ∈ N, we obtain

(3.2) −d3ϕ
′
3(n) + d3ϕ

′
3(0) + sϕ3(n)− sϕ3(0) = r3

∫ n

0

ϕ3(z)(−1 + aϕ1 + aϕ2 − ϕ3)(z)dz.

Since

lim sup
z→∞

{ϕ3(z)(−1 + aϕ1 + aϕ2 − ϕ3)(z)} ≤ M3(θ0)ω3 < 0,

the right-hand side of (3.2) tends to −∞ as n → ∞. But, the left-hand side of (3.2) is

bounded uniformly for all n ∈ N, a contradiction.

Now, suppose that ϕ3(z) is oscillatory near z = ∞. Then there is a sequence of local

maximal points {zn} of ϕ3 such that zn → ∞ and ϕ3(zn) → M3(θ0) as n → ∞. Since

d3ϕ
′′
3(zn)− sϕ′

3(zn) ≤ 0 for all n and

lim sup
n→∞

{ϕ3(zn)(−1 + aϕ1 + aϕ2 − ϕ3)(zn)} ≤ M3(θ0)ω3 < 0,

we reach a contradiction. Hence the case ϕ+
3 = M3(θ0) is impossible. The other cases are

similar. This proves the theorem. �

Finally, the proof of the non-existence part of Theorem 1.1 is almost the same as that of

[5, Proposition 5.1], we only give an outline of the proof here.

Theorem 3.1. For s < s∗, there is no positive solution (ϕ1, ϕ2, ϕ3) of (1.9)-(1.10).
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Proof. First, we claim that s > 0 by a contradiction argument. Suppose that there exists a

positive solution (ϕ1, ϕ2, ϕ3) of (1.9)-(1.10) for some s ≤ 0. Then, due to (ϕ1, ϕ2, ϕ3)(−∞) =

(up, vp, 0), there is a large N > 0 such that

−1 + aϕ1(y) + aϕ2(y)− ϕ3(y) ≥
β

2
, ∀ y ≤ −N.

Integrating the third equation in (1.9) in y from −∞ to z ≤ −N and then in z from −∞ to

−N , we obtain

0 <
r3β

2

∫ −N

−∞

∫ z

−∞
ϕ3(y)dydz ≤ −

∫ −N

−∞
d3ϕ

′
3(z)dz = −d3ϕ3(−N) < 0,

a contradiction. Hence s > 0.

Now suppose that there is a positive solution (ϕ1, ϕ2, ϕ3) of (1.9)-(1.10) for some s ∈ (0, s∗).

Since 0 < s < s∗, there is a small positive ε such that 0 < s < 2
√

d3r3(β − 2aε). For this ε,

using (1.10) and positivity of (ϕ1, ϕ2, ϕ3), there are constants c1 and c2 such that

ϕ1(z) + c1ϕ3(z) > up − ε, ∀z ∈ R,(3.3)

ϕ2(z) + c2ϕ3(z) > vp − ε, ∀z ∈ R.(3.4)

Note that (u, v, w)(x, t) = (ϕ1, ϕ2, ϕ3)(x+ st) satisfies

(3.5) wt = d3wxx + r3w(−1 + au+ av − w), x ∈ R, t > 0.

Plugging (3.3) and (3.4) into (3.5), we obtain

wt ≥ d3wxx + r3w[(β − 2aε)− (ac1 + ac2 + 1)w], x ∈ R, t > 0.

Then the spreading theory of [1] gives

lim inf
t→∞

w(y(t), t) ≥ β − 2aε

ac1 + ac2 + 1
> 0,

where y(t) := −(s + 2
√

d3r3(β − 2aε))t/2, since |y(t)| < 2
√

d3r3(β − 2aε)t for all t > 0.

But, y(t) + st → −∞ as t → ∞. This implies that w(y(t), t) = ϕ3(y(t) + st) → 0 as t → ∞.

Thus we finish our proof by contradiction. �

4. Verification of upper-lower-solutions

Proof of Lemma 2.3. For z > 0, ϕ1(z) = 1, ϕ
2
(z) = δ2 and ϕ

3
(z) = δ3. Then

U1(z) = −r1(kδ2 + bδ3) ≤ 0, z > 0.

For z < 0, ϕ1(z) = up + kvpe
λ3z and ϕ

2
(z) = vp − (vp − δ2)e

λ3z. Then

U1(z) = (d1λ
2
3 − sλ3)kvpe

λ3z + r1(up + kvpe
λ3z)(−δ2ke

λ3z − bϕ
3
).
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Note that d1λ
2
3 − sλ3 ≤ 0 if λ3 ∈ [0, s/d1]. By (1.13), d3 ≥ d1/2,

λ3 =
s−

√
s2 − 4d3r3β

2d3
≤ s−

√
s2 − 4d3r3β

d1
<

s

d1
.

It follows that

U1(z) = (d1λ
2
3 − sλ3)kvpe

λ3z + r1(up + kvpe
λ3z)(−δ2ke

λ3z − bϕ
3
) ≤ 0

for z < 0. Hence U1(z) ≤ 0 for all z ̸= 0.

Similarly, U2(z) ≤ 0 for all z ̸= 0, by (1.13).

Next, we show that U3(z) ≤ 0 for z ̸= 0. For z > 0, ϕ1(z) = ϕ2(z) = 1 and ϕ3(z) = B. It

follows that

U3(z) = r3B(−1 + 2a−B) = 0, z > 0,

since B = 2a− 1. For z < 0, ϕ1(z) = up + kvpe
λ3z, ϕ2(z) = vp + hupe

λ3z and ϕ3(z) = Beλ3z.

Then

U3(z) = B(d3λ
2
3 − sλ3)e

λ3z + r3Beλ3z
[
β + a(kvp + hup)e

λ3z −Beλ3z
]

= BH(λ3)e
λ3z + r3Be2λ3z [a(kvp + hup − 2) + 1]

= −r3Be2λ3z(a/γ − 1) ≤ 0,

by the fact that H(λ3) = 0 and (1.3). Hence U3(z) ≤ 0 for all z ̸= 0.

Thirdly, we show that L1(z) ≥ 0 for z ̸= 0. For z > 0, ϕ
1
(z) = δ1, ϕ2(z) = 1 and

ϕ3(z) = B. It follows that

L1(z) = r1δ1(1− δ1 − k − bB) ≥ 0, z > 0.

For z < 0, ϕ
1
(z) = up− (up− δ1)e

λ3z, ϕ2(z) = vp+hupe
λ3z and ϕ3(z) = Beλ3z. Then, setting

p1 := 1− δ1/up,

we compute

L1(z) = −p1up(d1λ
2
3 − sλ3)e

λ3z + r1up(1− p1e
λ3z)(p1upe

λ3z − khupe
λ3z − bBeλ3z)

≥ r1up(1− p1e
λ3z)(p1upe

λ3z − khupe
λ3z − bBeλ3z)

= r1up(1− p1e
λ3z)(1− k − δ1 − bB)eλ3z ≥ 0, z < 0,

using d1λ
2
3 − sλ3 ≤ 0. Hence L1(z) ≥ 0 for all z ̸= 0.

Similarly, L2(z) ≥ 0 for all z ̸= 0.

Finally, we show that L3(z) ≥ 0 for z ̸= z3. For z > z3, ϕ3
(z) = δ3, ϕ1

≥ δ1 and ϕ
2
≥ δ2.

Hence, by (2.15),

L3(z) ≥ r3δ3(−1 + aδ1 + aδ2 − δ3)≥ 0, ∀ z > z3.
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For z < z3 < 0,

ϕ
3
(z) = Beλ3z − qeµλ3z, ϕ

1
(z) = up − (up − δ1)e

λ3z, ϕ
2
(z) = vp − (vp − δ2)e

λ3z.

Then, setting

(4.1) p1 := 1− δ1/up, p2 := 1− δ2/vp,

we compute

L3(z) = B(d3λ
2
3 − sλ3)e

λ3z − q[d3(µλ3)
2 − s(µλ3)]e

µλ3z

+r3(Beλ3z − qeµλ3z)
[
β − ap1upe

λ3z − ap2vpe
λ3z −Beλ3z + qeµλ3z

]
.

Due to the fact H(λ3) = 0, we have

L3(z) = −qH(µλ3)e
µλ3z + r3(Beλ3z − qeµλ3z)

(
−ap1upe

λ3z − ap2vpe
λ3z −Beλ3z + qeµλ3z

)
≥ −qH(µλ3)e

µλ3z + r3Be2λ3z(−ap1up − ap2vp −B)

= eµλ3z[−qH(µλ3)− r3Be(2−µ)λ3z(ap1up + ap2vp +B)]

≥ eµλ3z[−qH(µλ3)− r3B(β +B − δ3)] ≥ 0,

for z < z3, by the choices of µ in (2.13) and q in (2.14). This completes the proof of this

lemma. �

Proof of Lemma 2.4. Note that 2d3λ3 − s = 0 ≤ 2dkλ3 − s, k = 1, 2, when s = s∗.

First, we show U1(z) ≤ 0 for all z ̸= −1/λ3. For z > −1/λ3, ϕ1(z) = 1, ϕ
2
(z) = δ2 and

ϕ
3
(z) = δ3. Then

U1(z) = −r1(kδ2 + bδ3) ≤ 0

For z < −1/λ3, ϕ1(z) = up + L1(−z)eλ3z, ϕ
2
(z) = vp − (vp − δ2)λ3e(−z)eλ3z, ϕ

3
(z) ≥ 0, and

so

U1(z) ≤ L1(−2d1λ3 + s)eλ3z + L1(d1λ
2
3 − sλ3)(−z)eλ3z

+r1ϕ1{−L1(−z)eλ3z + k(vp − δ2)λ3e(−z)eλ3z}

= L1(−2d1λ3 + s)eλ3z + L1(d1λ
2
3 − sλ3)(−z)eλ3z − r1ϕ1λ3e(−z)kδ2e

λ3z

≤ 2λ3L1(d3 − d1)e
λ3z + λ2

3L1(d1 − 2d3)(−z)eλ3z ≤ 0,

by (1.14). Hence U1(z) ≤ 0 for all z ̸= −1/λ3. Similarly, we also have U2(z) ≤ 0 for all

z ̸= −1/λ3.

Secondly, we show that U3(z) ≤ 0 for all z ̸= −1/λ3. For z > −1/λ3,

U3(z) = r3B(−1 + 2a−B) = 0.
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For z < −1/λ3, we have

ϕ1(z) = up + L1(−z)eλ3z, ϕ2(z) = vp + L2(−z)eλ3z, ϕ3(z) = L3(−z)eλ3z.

Hence, using aup + avp − 1 = β, s = 2d3λ3 and H(λ3) = 0,

U3(z) = L3(d3λ
2
3 − sλ3 + r3β)(−z)eλ3z + L3(−2d3λ3 + s)eλ3z

+r3L3(−z)2e2λ3z(aL1 + aL2 − L3)

= r3λ3eL3(−z)2e2λ3z(akvp + ahup − 2a+ 1)

= r3λ3eL3(−z)2e2λ3z(1− a/γ) ≤ 0,

by (1.3). Hence U3(z) ≤ 0 for all z ̸= −1/λ3.

Thirdly, we show that L1(z) ≥ 0 for all z ̸= −1/λ3. For z > −1/λ3, ϕ1
(z) = δ1, ϕ2(z) = 1

and ϕ3(z) = 1, it follows that

L1(z) = r1δ1(1− δ1 − k − bB) ≥ 0.

For z < −1/λ3, we have, recalling p1 = 1− δ1/up ∈ (0, 1),

L1(z) = −p1upλ3e(−2λ3d1 + s)eλ3z − p1upλ3e(d1λ
2
3 − sλ3)(−z)eλ3z

+r1ϕ1
(z){(1− up − kvp) + (p1upλ3e− kL2 − bL3)(−z)eλ3z}

= −p1upλ3e(−2λ3d1 + s)eλ3z − p1upλ3e(d1λ
2
3 − sλ3)(−z)eλ3z

+r1ϕ1
(z){[(1− kh)up − bB − δ1]λ3e(−z)eλ3z}

≥ −p1upλ3e(−2λ3d1 + s)eλ3z − p1upλ3e(d1λ
2
3 − sλ3)(−z)eλ3z

= 2p1upλ
2
3e (d1 − d3) e

λ3z + p1upλ
3
3e (2d3 − d1) (−z)eλ3z ≥ 0,

by using 1− up − kvp = 0, (2.15) and (1.14).

Similarly, we also have L2(z) ≥ 0 for all z ̸= −1/λ3.

Finally, we show that L3(z) ≥ 0 for all z ̸= z∗3 . By the choice of q, z∗3 ≤ −1/λ3. For

z > z∗3 , ϕ3
(z) = δ3, ϕ1

≥ δ1 and ϕ
2
≥ δ2. Hence, as before,

L3(z) ≥ r3δ3(−1 + aδ1 + aδ2 − δ3)≥ 0, ∀ z > z∗3 .

For z < z∗3 , by using the facts that d3λ
2
3 − sλ3 + r3β = 2d3λ3 − s = 0,

L3(z) =
d3
4
q(−z)−3/2eλ3z

+ r3[L3(−z)− q(−z)1/2]eλ3z
[
−(β − δ3)λ3e(−z)eλ3z − L3(−z)eλ3z + q(−z)1/2eλ3z

]
≥ d3

4
q(−z)−3/2eλ3z − r3L3(−z)2e2λ3zλ3e [β − δ3 +B]

=
d3
4
(−z)−3/2eλ3z

[
q − 4r3B(λ3e)

2(−z)7/2eλ3z(β − δ3 +B)/d3
]

≥ d3
4
(−z)−3/2eλ3z

[
q − 4r3B(λ3e)

2

(
7

2eλ3

)7/2

(β − δ3 +B)/d3

]
≥ 0,



TRAVELING WAVES 15

by the choice of q in (2.22) and the fact that

(−z)7/2eλ3z ≤
(

7

2eλ3

)7/2

for all z ≤ 0.

Hence we obtain L3(z) ≥ 0 for all z < z∗3 . The proof of the lemma is thus completed. �
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